
2019 IEEE International Conference on Blockchain (Blockchain)

ChainSplitter: Towards Blockchain-based Industrial IoT
Architecture for Supporting Hierarchical Storage

Gang Wang∗, Zhijie Jerry Shi∗, Mark Nixon†, Song Han∗
∗University of Connecticut

†Emerson Automation Solutions
Email: {gang.wang, zshi}@uconn.edu, mark.nixon@emerson.com, song.han@uconn.edu

Abstract—The fast developing Industrial Internet of Things (IIoT)
technologies provide a promising opportunity to build large-scale systems
to connect numerous heterogeneous devices into the Internet. Most
existing IIoT infrastructures are based on a centralized architecture,
which is easier for management but cannot effectively support immutable
and verifiable services among multiple parties. Blockchain technology
provides many desired features for large-scale IIoT infrastructures,
such as decentralization, trustworthiness, trackability, and immutability.
This paper presents a blockchain-based IIoT architecture to support
immutable and verifiable services. However, when applying blockchain
technology to the IIoT infrastructure, the required storage space posts a
grant challenge to resource-constrained IIoT infrastructures. To address
the storage issue, this paper proposes a hierarchical blockchain storage
structure, ChainSplitter. Specially, the proposed architecture features a
hierarchical storage structure where the majority of the blockchain is
stored in the clouds, while the most recent blocks are stored in the overlay
network of the individual IIoT networks. The proposed architecture
seamlessly binds local IIoT networks, the blockchain overlay network,
and the cloud infrastructure together through two connectors, the
blockchain connector and the cloud connector, to construct the hierarchical
blockchain storage. The blockchain connector in the overlay network
builds blocks in blockchain from data generated in IIoT networks, and the
cloud connector resolves the blockchain synchronization issues between
the overlay network and the clouds. We also provide a case study to
show the efficiency of the proposed hierarchical blockchain storage in a
practical Industrial IoT case.

I. INTRODUCTION

Internet of Things (IoT) is a paradigm that heterogeneous physical
objects are interconnected through wired or wireless technologies,
and further seamlessly connected to the Internet, enabling anywhere
and anytime connectivity [1]. In recent years, we have witnessed the
wide adoption of IoT applications across a variety of industry sec-
tors [2], including manufacturing, home automation, transportation,
and healthcare, to name a few. Most existing large-scale industrial
IoT (IIoT) infrastructures nowadays are developed, deployed and
maintained by individual parties. They are typically cloud-based and
rely on centralized communication models [3], in which all devices
are identified, authenticated, and connected through cloud servers that
provide abundant computation and storage capacities.

Along with the rapid growth of the size and complexity of IIoT
networks, centralized IIoT solutions however are becoming more
expensive due to the high deployment and maintenance cost asso-
ciated with the network and cloud infrastructures [3]. This problem
is further exacerbated by the growing demand that IIoT networks from
different parties should be able to communicate and collaboratively
provide immutable and verifiable data. With traditional IIoT networks,
data provided by individual industrial parties may not be trustworthy
because they can be forged or modified by attackers or the owner
of the data [4]. It is desirable to have mechanisms to verify the
trustworthiness of data in IIoT networks.

Considering these requirements of IIoT networks, the emerging
blockchain technology can serve as a promising candidate to provide
immutable and verifiable services [5]. Blockchain is a distributed
data structure comprising a chain of blocks which is based on a
decentralized peer-to-peer (P2P) network. It removes the need of a
central controller, and also allows parties to transact even though they
may not trust specific individuals. By introducing the blockchain tech-
nology into IIoT solutions, the management of numerous unspecified
devices and processes – including transactions and communications
among the devices – will become much easier. Cryptocontract (e.g.,
self-executing, self-enforcing protocols) among IIoT devices can
be recorded on blockchain as a smart contract [6] and executed
automatically to greatly improve transaction efficiency [1].

The blockchain technology, however, cannot be directly incorpo-
rated into existing IIoT solutions, given the extremely constrained
resources in IIoT networks, and the requirement of the blockchain
technology that each participant must keep an exact copy of the
blockchain to guarantee the consistency. For example, Bitcoin is one
of the most successful blockchain-based applications to date. The
Bitcoin blockchain, even though not updated frequently, currently
contains more than 190GB of data, of which only some are related
to currency transfers. Compared with Bitcoin, most large-scale IIoT
systems generate much larger data volumes, and it is simply infeasible
to store all the blocks in local IIoT networks. It is thus important to
remove layers of inefficiency from the traditional storage structure in
blockchain and design a new method which can scale out.

Motivated by these challenges, this paper presents a blockchain-
based IIoT architecture, which uses the blockchain as a distributed
ledger to maintain records of all transactions in the IIoT networks.
The proposed architecture separates the IIoT infrastructure into three
layers: local IIoT networks, the blockchain overlay network, and
the cloud infrastructure. To address the storage challenges in IIoT
networks, a novel blockchain storage structure is proposed to store
the blocks in a hierarchical manner: the majority of the blockchain
is stored in the cloud to leverage its abundant storage capacity, while
the most recent blocks are stored in the overlay network of the
individual IIoT networks. As the blocks continue to be appended to
the blockchain, the percentage of each part is maintained dynamically,
depending mainly on two factors: the size of the current blockchain
and the size of the storage (e.g., disk) provided on consensus nodes.
To seamlessly connect these three layers, the design details of two
connectors, the blockchain connector and the cloud connector, are
also presented. The blockchain connector in an overlay network
prepares blocks from transactions (data generated in IIoT networks),
and the cloud connector addresses the blockchain synchronization
issues between the overlay network and the clouds.

ar
X

iv
:1

91
0.

00
74

2v
1 

 [
cs

.C
R

] 
 2

 O
ct

 2
01

9



Fig. 1. An overview of a typical cloud-based IIoT infrastructure.

The rest of the paper is organized as follows. Section II presents
the existing cloud-based IIoT infrastructure. Section III discusses the
opportunities and challenges to integrate the blockchain technology
into IIoT solutions. Section IV presents the proposed blockchain-
based IIoT architecture and the proposed hierarchical blockchain
storage structure. Section V and Section VI describe the function-
alities of the blockchain connector and cloud connector, respectively.
Section VII provides a case study in one IIoT scenario to show the
efficiency of the proposed framework. Section VIII summarizes the
related work. Section IX concludes the paper and discusses future
work.

II. CLOUD-BASED IIOT INFRASTRUCTURE

Fig. 1 gives an overview of a typical cloud-based IIoT infras-
tructure, which mainly consists of three layers: device layer, gateway
layer and cloud service layer. The device layer comprises hetero-
geneous IIoT devices, varying from powerful computing units to
extremely low-power microcontrollers. These devices are connected
to the gateway layer through various wired and wireless networking
technologies, such as ZigBee, BLE, Ethernet, etc. At the gateway
layer, most companies and organizations deploy their own customized
gateways to manage the local IIoT networks, aggregate the data, and
serve as the bridges to the clouds [7] [8]. These customized gateways
are usually an integral part of the deployed IIoT infrastructure, which
leads directly to “stovepipe” solutions [9]. This further causes the
interoperability issues, that is data and services provided by one
organization cannot be shared or utilized by devices from the other
organizations (due to different networking protocols, data formats,
etc.), and the employed security mechanisms are often proprietary
and undocumented.

For easy understanding and presentation, we use “IoT” to repre-
sent “IIoT” in the following description.

Traditionally, the device layer and gateway layer together form
the local IoT networks. A typical local IoT network consists of the
following four components (as shown in the left of Fig. 2):

IoT Devices: Most IoT devices are deployed in the physical world
to measure and sample their associated physical or cyber objects.
They have constrained resources, including memory size, computation

power, and communication bandwidth [10]. In addition, the devices
and their adopted networking technologies are highly heterogeneous.
This heterogeneity posts a grant challenge in interconnecting IIoT
devices. It requires the interaction among the IoT devices to put the
interoperability at the first place, such that heterogeneous devices
are transformable in user’s acceptable forms for both syntax and
semantics [11].

IoT Storage: In a local IoT network, a centralized storage scheme
is commonly adopted to manage the IoT data, instead of either local
schemes (e.g., storing data within the local memory of IoT devices)
or distributed schemes (e.g., storing data within some nodes with rich
storage resources in the network). In a centralized storage scheme, the
data are collected by the local gateway, and then sent to and stored
in a local centralized storage. In our scheme, the local centralized
storage could be either a historian or a private data center, in which
all data are stored locally and privately. This centralized storage
within a local IoT network can provide faster access to the recent
data without accessing the cloud. Where and how the local storage
is deployed in the local IoT network depends on the system design
specification.

Data Engine: The data engine is a software component that trans-
forms incoming and outgoing raw data to and from the IoT devices
into required forms. For example, in the proposed blockchain-based
IoT architecture to be elaborated in Section IV, raw data are formed as
transactions, and encrypted and uploaded to the clouds upon requests.
The data engine can be deployed on the gateway or a stand-alone
computing facility in the local IoT network. To guarantee the security
in the local IoT network, the data engine also provides additional
services, such as key management (e.g., distributing and updating keys
to secure data transfer in local IoT network) and security mechanisms
(e.g., authentication, authorization and audit services).

Gateway: In a typical cloud-based IoT infrastructure, the gateway
is a connection entity that links the local IoT network to a cloud.
In our proposed blockchain-based IoT architecture in section IV,
the gateway plays two main roles. On one hand, it is the sink
of the local IoT network, providing data management and network
management functions; on the other hand, it also serves as a P2P
node on the blockchain overlay network, providing proxy functions,
such as routing information provisioning, node authentication, and
multicast group management [12].

In addition to the device and gateway layers, the cloud service
layer provides cloud-related functionalities, such as database service
and application service, to manage the data provided by the local
IoT networks. Both the local IoT networks and the cloud service
layer together comprise the most common existing cloud-based IoT
infrastructure.

III. OPPORTUNITIES AND CHALLENGES TO INTEGRATE

BLOCKCHAIN INTO IOT

Blockchain, based on a decentralized P2P network and integrated
with cryptographic processes, can offer many new features and
improve existing functionalities of IoT systems. Since blockchain
is built for decentralized environments, its security scheme is more
scalable than traditional ones, and its strong protections against data
tampering will help prevent rogue devices. The following features
of the distributed architecture of blockchain make it an attractive
technology for addressing many of the security and trust challenges
in large-scale IoT systems [13].



• Blockchain can be used to trace the measurements of IoT
devices and prevent forging or modifying data.

• The IoT devices can exchange data through a blockchain to
establish trust among themselves, instead of going through a third
party. This significantly reduces the deployment and operation cost
of IoT applications.

• The distributed ledger structure of blockchain eliminates a
single source of failure within the IoT ecosystem, protecting the IoT
devices’ data from tampering.

• Blockchain enables device autonomy via smart contract, indi-
vidual identity, integrity of data, and supports P2P communication by
removing technical bottlenecks and inefficiencies.

• Configuration of IoT devices can be complex, and the
blockchain can be well adapted to provide IoT device identification,
authentication and seamless secure data transfer.

Blockchain technology has enormous potential in creating trust-
less decentralized IoT applications, and provides lots of advantages
from the technical perspectives. However, blockchain technology is
still in its early stages, and there exist many barriers that limit the
current blockchain technology from being applied to IoT applications.

One of the most challenging problems is the storage issue when
integrating the blockchain technology into IoT applications. In IoT
scenarios, IoT devices can generate a huge amount of data in a short
period, and both the data hash and the data itself need to be stored 1.
When a blockchain grows over time, all participating nodes will
need larger storage capacity and higher bandwidth to keep up-to-
date with the transactions added to the ledger, which is potential to
become very costly. In this paper, we focus on solving the limited
storage issue when introducing blockchain into the traditional cloud-
based IoT architecture. In the following, we first use a heuristic
case study to illustrate the significance of the blockchain storage
issue. Among many research topics emerging from the blockchain
technology, Bitcoin is one of the most successful implementations
of blockchain [14]. A Bitcoin block consists of a block header with
a size of 80 bytes and a list of transactions as block payload (or
block body) [15]. And both block header and block body are included
into the block. Although the size of the block header is small, one
of the major drawbacks of the existing Bitcoin witnessing scheme
is that the auditors have to download the entire Bitcoin blockchain.
As of November 2018, the Bitcoin blockchain contains more than
190GB of data, and it grows by 52GB every year [16] [17] [14].
It is a challenging task if not impossible to download and store the
whole blockchain in resource-constrained IoT gateways. Thus, a more
efficient blockchain storage structure is desired.

To better describe this challenge, we provide a numerical compar-
ison, regarding the storage issue, between Bitcoin and a medium-size
Industrial IoT (IIoT) system. In Bitcoin, the block size is currently
limited at 1MB. The average size of a Bitcoin transaction, in one
week of February 2019, is around 500 Bytes [18]. Considering that
the average number of transactions per block is 2000, and a Bitcoin
block is generated by the miner around every 10 minutes, in every
second it has 3.33 transactions generated within the Bitcoin network
and thus the average data volume is 1.67KB per second, which is
pretty mild. On the other hand, the comparing IIoT system is based on

1In most cryptocurrencies (e.g., Bitcoin), it is enough to only store the
transaction hash.

Emerson Wireless Industrial Automation Systems [19]. We evaluate
an industrial plant which has many wireless sensor and actuator
networks (WSANs) deployed. We choose a medium-size system to
estimate the average data volume, which consists of 50 WSANs, each
having 100 nodes. We assume the average device sampling period is
1 second and the average message size is 100 bytes 2. This leads to
an average data volume of 500KB per second.

Assuming the block size is limited at 1 MB, from the above
comparison, we have the observation that, in one week, the average
block volume generated from Bitcoin network is about 1 GB, while
the average block volume generated from the medium-size IIoT
system is 302.4 GB, which is a huge amount of data that certainly
cannot be stored in local IoT networks. It is worth noting that the
required data for immutable and verifiable services are application
dependent. Typically, these data will be stored at least one year in
the industrial case.

In our proposed hierarchical storage structure for blockchain-
based IoT systems, this issue can be addressed by a layered structure,
where a blockchain overlay network is inserted in between the local
IoT networks and the clouds. Resource-constrained IoT nodes only
store a small portion of the blockchain that they need for their
own transactions, while the majority of the blockchain is stored
on the clouds. To ensure that this proposed layered structure work
properly, interfaces (also called connectors in this paper) between
the layers need to be carefully designed. In the following, we
first present the blockchain-based IoT architecture with hierarchical
storage structure, and then describe the two designed connectors, the
blockchain connector and the cloud connector.

IV. BLOCKCHAIN-BASED IOT ARCHITECTURE

The proposed blockchain-based IoT architecture, as shown in
Fig. 2, consists of three layers: local IoT networks, the P2P blockchain
network, and the clouds. We first take a bottom-up approach to
describe the key components of each layer, and then present the design
details of the proposed hierarchical blockchain structure to mitigate
the issue of storage capability.

A. System Architecture

1) IoT Network: In addition to their routine functions (see Sec-
tion II), the key added task of local IoT networks is to prepare
transactions from the massive raw data collected from the network.
Due to the heterogeneity of devices and applications in local IoT
networks, the data need to be formatted and encrypted in a consistent
format, so that the generated transactions can be easily operated and
chained together in the blockchain overlay network. These operations
are mainly done in the data engine. To seamlessly assemble the
transactions into the blocks, the proposed architecture employs a
blockchain connector to serve as the interface between the IoT
network and the overlay network (see Section V for the details).
The blockchain connector provides the functionalities to secure the
transactions and the mechanisms to manage the devices access. Within
the IoT network, this can be achieved by deploying a security platform
to guarantee the authenticity of raw data from the authorized IoT de-
vices. For example, in Emerson’s blockchain project, it leverages the
Mocana Security Platform [20], which is based on trusted hardware,
to ensure the security of transactions.

2For simplicity, we only provide one heuristic scenario.



Fig. 2. Overview of the blockchain-based IoT architecture. It consists of three components: local IoT networks, the blockchain overlay network, and clouds.

Note that the proposed blockchain-based IoT architecture assumes
that, by utilizing the security platform, securing and transferring the
raw data into transactions happen in the local IoT network. The trust
and security of local transactions can be guaranteed via security
platform in a centralized and private manner. And, the gateway,
as a peer in the overlay network, sends the prepared transactions
to the overlay network. After obtaining the transactions, it is the
responsibility of the overlay network (via the peers) to create blocks,
verify blocks, and chain the blocks together.

2) Overlay Network: After the transactions are published from
the local IoT networks via the gateways, nodes in the P2P overlay
network are responsible for forming the blockchain. The use of a
P2P overlay network can provide several desirable features, such as
scalability, high availability, and self-configuration [21]. The gateways
of local IoT networks are organized as peers of the P2P overlay via
Blockchain Connectors (see Section V for the details), which provide
an efficient relay to construct the blocks from the transactions. The
proposed architecture assumes that the overlay network follows the
specified blockchain consensus protocols, e.g., PoW (Proof-of-Work)
or PoS (Proof-of-Stake) [22], or Byzantine Fault Tolerance (BFT)
schemes [23], depending on different IoT applications. Roughly
speaking, BFT-based protocols do not have double spending issues,
which is more suitable for industrial IoT.

Industrial IoT scenarios typically adopt a permissioned setting,
which is operated by the known entities and imposes more stringent
access control. BFT-like consensuses have been widely investigated
in permissioned blockchain [24] with the aim of outperforming
PoW while ensuring adequate fault tolerance and faster finality of
transactions. We assume the overlay network adopts a BFT protocol to
achieve consensus process, such as scalable BFT for industrial secure
metering [25]. And the threat model follows the definition in [25],
i.e., Byzantine nodes are less than 1/3 of the total participating nodes.

3) Clouds: By connecting the local IoT networks to the clouds,
the IoT applications benefit from the virtually unlimited computing
and storage resources of the cloud to compensate for its techno-
logical constraints (e.g., limited storage size, processing capability,
and communication bandwidth). In our proposed architecture, the
blockchain overlay network serves as the bridge that connects local
IoT networks and the clouds together. To smoothly connect the
overlay network to clouds, besides the basic functionalities of the
cloud service layer (e.g., data storage, data management, etc.), the

proposed architecture requires an additional bridging component,
referred as cloud connector to resolve the blockchain synchronization
issues between the overlay network and clouds. The design details of
the cloud connector will be presented in Section VI.

Notice that the clouds in our architecture are not maintained
by a single group or entity. Instead, the clouds are organized as
a decentralized cloud storage, in which there not exists a single
operator. To ensure the data consistency among the clouds, our
scheme needs a decentralized object storage system to manage these
clouds. Storj network [26] can serve as a promising candidate, which
provides a robust object storage that encrypts, shards and distributes
data to the distributed nodes for storage. Storj storage management
platform provides several key features, such as security and privacy,
decentralization and Byzantine fault tolerance [26]. These key features
can meet the designated storage requirements.

B. Hierarchical Storage Structure of Blockchain

As stated in Section III, how to store the blockchain for large-
scale IoT applications is a critical issue. In the original design of
blockchain, every participating node has to store all the blocks locally.
This storage mechanism is prohibitive when applying to large scale
IoT applications, and a new structure needs to be devised to address
the storage issue. The main purpose of this paper is to handle
the storage issues via hierarchical structure. Before we present the
proposed hierarchical storage structure for blockchain, we first make
some assumptions on the overlay network. For example, assuming
BFT algorithm as the underlying blockchain consensus protocol, the
adopted BFT protocol should be robust enough to deal with a large
number of participating nodes, and the ratio of Byzantine nodes is
less than 1/3.

To address the storage issue in the proposed blockchain-based
IoT architecture, we adopt a hierarchical storage structure in which
the blockchain data, or chain of blocks, are stored separately at two
locations: the majority in the cloud storage and the latest portion in the
peer nodes of the overlay network. Note that the local IoT networks
might have the ability to store or download the blockchain, but it is
not required in this proposed architecture. We assume that the main
task of the local IoT network is to collect raw data generated from
IoT devices and construct transactions.

The constituent nodes in the overlay network, known as overlay



nodes, can be either the IoT gateways or other powerful devices
with much richer computing and storage resources, such as high-
performance computers. The main task of the overlay nodes is to
generate valid blocks that can be added into the blockchain. Different
from the resource-constrained IoT devices, the overlay nodes have
enough local storage to store a small portion of the blockchain, which
is needed for computing new blocks and keeping them before sending
them to the cloud.

To reduce the storage requirement, the overlay nodes only store
the latest portion of the blockchain locally, and have the rest of
the blocks in blockchain stored in the clouds. Fig. 3 shows an
overview of the proposed blockchain structure. It consists of three
major parts: the first part is to deal with transactions in a centralized
and private manner (e.g., information processing in gateways); the
second part is to form the blocks according to the most recent blocks
in a P2P overlay network (e.g., following consensus protocol); the
last part is the majority of blocks stored in the cloud. The authorized
parties can access the data from the cloud and provide various smart
services for IoT applications [27]. In our proposed hierarchical storage
architecture, blocks can be uploaded and stored (or we can say
synchronized) in multiple clouds while ensuring their consistency.
The main purpose of using the cloud to store the blockchain data is
to meet the storage capacity requirements from the large-scale IoT
applications. Storing blocks in multiple clouds can prevent attacks
where the data in a particular cloud (or a small set) are modified,
if we assume most clouds are honest. The proposed scheme uses
Storj storage, a distributed and decentralized cloud storage platform,
to distribute and manage the data blocks in the clouds. Besides,
other decentralized cloud storage platform can be used as a potential
solution, such as IPFS file systems [28], to manage the data.

To seamlessly connect the hierarchical storage together, we need
to define two interfaces (alternatively called connectors) to integrate
these three layers together. The blockchain connector in an overlay
network prepares blocks from transactions (data generated in IoT
networks), and the cloud connector addresses the blockchain syn-
chronization issues between the overlay network and the clouds.

V. DESIGN OF THE BLOCKCHAIN CONNECTOR

The blockchain connector can be viewed as a middleware in
the proposed architecture, residing on the overlay node. It has
several essential functions to securely generate the blocks and chain
them together. The functions include permission management, access
control, transaction validation, data signature, and chain forming. In
the following, we will describe these functions in detail. Note that the
functionalities of the blockchain connector can be further extended
to meet the requirements of different IoT applications.

A. Permission Management

Blockchain connector functions as an interface to the overlay
network, and its permission management mainly serves to the local
IoT network. In general, blockchains can be classified into per-
missioned and permissionless blockchains [29]. In a permissioned
blockchain, the permission management is required to manage the
identity of its participants via certain procedures, such as whitelists or
blacklists. In contrast, the participants in a permissionless blockchain
are either pseudonymous or anonymous, like Bitcoin and Ethereum.
However, using anonymous validators increases the risk of Sybil
attack [30], where the attacker gains a disproportional amount of

influence on the system. The protection mechanisms for Sybil at-
tack, such as PoW consensus protocol, is costly and wasteful in
permissionless blockchain. In general, the permissioned blockchain
is able to legally host identity-related assets, while the permissionless
system cannot. Considering the unique features of most IoT appli-
cations, the proposed blockchain-based IoT architecture adopts the
permissioned blockchain, which can efficiently deal with massive
transactions, and only legitimate identities/nodes can construct blocks
in the blockchain. Also, most BFT consensus protocols require the
permission management for the consensus nodes [23].

Besides the permission of validation, other basic permissions, e.g.,
joining the network, submitting transactions, aggregating transactions
into blocks, and creating assets, can also be managed by the permis-
sion management services.

B. Access Control

In a permissioned blockchain, authentication and access control
technologies are two critical mechanisms to address the security and
privacy issues in IoT applications. With access control, the users
of the IoT applications will have full access to their data and have
control over how the data will be shared. The user can assign a set
of access permissions and designate who can query their blockchain.
The access control permissions can be flexible and handle more than
“all-or-nothing” permissions [31]. Similar to permission management,
the access control mainly targets to its local IoT network, and in
a blockchain network, there no exists a centralized controller or
authenticator.

Many existing access control mechanisms can be adopted in the
blockchain connector. For example, in [32], the authors proposed an
automated access-control manager using blockchain that does not
require trust in a third party. The access-control manager ensures
that users own and control their personal data and can perform the
fine-grained access control, i.e., altering the set of permissions and
revoking access to previously collected data. In [33], the authors
developed the ChainAchor system which can address the issues of
identity and access control within the shared permissioned blockchain.
ChainAchor can provide access control to entities seeking to submit
transactions to the blockchain to read/verify transactions on the
permissioned blockchain.

C. Transaction Validation and Data Signature

The mechanism to validate transactions is specific to the
blockchain. In general, the transactions are validated via being re-
executed by the nodes that receive the blocks. For instance, the
transaction validation mechanisms in Bitcoin rely on two general
scripts: locking and unlocking [34]. Its verification scheme is mainly
based on Unspent Transaction Output (UTXO) model, which defines
an output of a blockchain transaction that has not been spent, i.e.
used as an input in a new transaction.

Different from the complex transaction validation in Bitcoin,
in IoT scenarios, the main task of the transaction validation is
to prevent the data modification attacks in the P2P network. The
transaction validation process generally can be divided into two
phases: the initial verification and the transaction validation. The
initial verification consists of validating the transaction’s integrity by
hashing the received transaction and comparing its hash against the
hash value computed in the data engine. After the transaction passes
the hash verification, the transaction validation process is simple; it



Fig. 3. Overview of the proposed blockchain structure.

adds a universal “mark” and the new hash value to the policy header
of the verified transaction. Since the verified transaction changes the
mark field, it needs to compute the new hash of transaction. As long
as the transaction validation finished, the transaction can be replayed
to the neighbors. If the transaction fails to pass the validation process,
the node in the overlay network might require the same transaction
from the same gateway to perform the above validation process again.
The validation scheme can set up an upward-boundary to the number
of requests for the same transaction to avoid malicious gateways.

Due to the publicity of communication messages and the existence
the malicious nodes, it needs to deal with the data’s confidentiality
integrity and authenticity (CIA) when applying blockchain in IoT
systems. The blockchain connector thus requires to sign transactions
(as a block) before sending out for verification. The blockchain
connector can be implemented on the local IoT gateway, thus the
gateway must have the ability to perform the specified signature
scheme. This however needs the local IoT gateways to provide the
cryptographic primitives to perform the digital signature, such as
ECDSA scheme [35].

D. Block and Chain Forming

Another two important functions of the blockchain connector are
the block forming and the chain forming. The block forming is used
to form blocks from a set of transactions while the chain forming is
to chain the generated blocks together to form the blockchain.

Once passing the transaction validation and the transactions are
signed, the blockchain connector in a gateway, as a consensus node
in the overlay network, can propose blocks from the transactions
according to specific rules or smart contract [36]. The verified
and signed transactions are then broadcasted, via the blockchain
connector, to the overlay network for consensus processes. Typically,
devices in an IoT application might generate many transactions at the
same time. The consensus node (or gateway) should have enough
buffer to store the incoming transactions from all consensus nodes.
The blockchain connector gathers the transactions that have been sent
out over the blockchain network but have not yet been included in a
confirmed block. Depending on the specified consensus protocol, the
actual block and chain forming processes might be different. In the
designated scheme, we adopt a BFT-based consensus protocol.

We briefly introduce how a BFT-based consensus protocol works
for forming blockchain in our setting. BFT is an epoch-based con-
sensus protocol, with the advantage of instant finality. In each epoch,
one participating node (or gateway in our setting) is elected to be a
leader and the leader coordinates each participating node. To simplify
the description, a participating node and a gateway (equipped with

blockchain connector) are the same entity as a consensus node in
blockchain overlay network. In each epoch, the leader first verifies
the integrity of the received transactions, and orders these validated
transactions. A set of transactions are bundled together to form a
block body, and the leader performs the Merkle tree hash on the
block body to get a Merkle Root. The Merkle Root, together with
other auxiliary information (e.g., the previous block hash, timestamp),
are put into block header. In each epoch, only one leader node can
propose the block. Then, this proposed block is broadcasted to each
participating node for verification and consensus process. Depending
on the adopted BFT algorithm, it might have a different number
of communication rounds among the participating nodes and leader.
Typically, the blockchain connector can implement a smart contract to
order these transactions, and the blockchain connector maintains the
latest block he knows. Once the block is confirmed among the honest
nodes, this block is added to the blockchain of each consensus node
and the blockchain connector updates its latest block information for
the next epoch block forming.

In case of the malicious leader, the consensus process goes into
a view-change procedure to elect a new leader. By leveraging BFT
consensus, it can ensure the instant finality of blockchain in each
consensus round, which is more suitable for IoT scenarios. By the
property of instant finality, each consensus node keeps a same copy
of blocks among all the honest participating nodes.

VI. DESIGN OF THE CLOUD CONNECTOR

Similar to the blockchain connector, the proposed architecture
also defines the cloud connector between the overlay network and
clouds, which updates and synchronizes the blocks into clouds. If we
take the overlay network as a central element or a black box in the
proposed blockchain-based IoT architecture, the blockchain connector
serves as an input source from local IoT networks, while the cloud
connector serves as an output port to the cloud service layer.

In this section, we focus on the introduction of the functionalities
of the cloud connector. The cloud connector deals with the issues on
when and how the blocks in the overlay network need to be synchro-
nized to the cloud. In addition, it can provide mechanisms to deal
with exceptions, such as the malicious overlay nodes in the overlay
network. In general, the cloud connector includes three important
components: the request handler, the synchronization engine, and an
exception handler, as shown in Fig. 2.

A. Overview of the Cloud Connector

The deployment of a cloud connector is very flexible. It can be
either deployed on the overlay nodes (like the blockchain connector),



or integrated as a cloud management mechanism in the cloud service
layer. Given that deploying the cloud connector in the cloud is subject
to the single point failure attack in the proposed architecture, we
install the cloud connector on the overlay nodes.

The cloud connector is the interface between the overlay network
and the clouds. It mainly includes a unified cloud protocol module for
communicating with the overlay network. For secure communication
between the overlay nodes and clouds, other mechanisms are still
needed to guarantee the security. Here we only focus on when and
how to synchronize the blocks in the overlay network to the clouds.
From the connectivity perspective between the overlay network and
clouds, it is not a good practice to perform synchronization immedi-
ately once a new block is generated. Instead, we intend to synchronize
the blocks as a group based on the occurrence of certain triggering
events or when some predefined time interval expires. Thus, our
synchronization mechanism is mainly a hybrid scheme. Meanwhile,
we assume that the overlay network always has a network connection
with the cloud.

To successfully synchronize the blocks between the overlay nodes
and the cloud, the cloud connector needs to have the ability to
handle when and how to perform the synchronization process. In the
following subsections, the request handler is used to decide when the
blocks in the overlay network need to be synchronized to the cloud;
the synchronization engine is to deal with how the synchronization
is performed; and the exception handler is to handle the potential
exceptions during the synchronization process.

B. Request Handler

Different overlay nodes may have different storage for the latest
blocks in the overlay network. In the case that there is not too much
space for an overlay node to store new blocks, the node broadcasts
a message 3, together with its latest block, to the whole overlay
network to notify a request to synchronize the blocks to the clouds.
The peer nodes who receive this request check the received latest
block with its own latest block. If both blocks are the same, the peer
sends an “agree to synchronization” response to the current leader.
As long as the leader receives the same “agree to synchronization”
response from more than 2/3 total peers 4. Then, the leader agrees to
this synchronization request and broadcasts the aggregated response
information (e.g., who vote to this synchronization). This process
is actually a round of BFT consensus process. Note that each
communicated message is signed by its sender, thus even a malicious
leader cannot compromise the decision of synchronization from other
nodes. After the synchronization process among the overlay nodes,
each overlay node has the same blockchain, which indicates that the
last block in each overlay node is the same. To prevent the flooding
attack by malicious nodes, we assume there exists a minimum storage
capacity for individual overlay nodes so that a certain number of
blocks can be stored. It is recommended that each node in the overlay
network has the same storage capacity; otherwise, there exists some
resource wasted for the nodes with large capacity. According to this
minimum storage capacity and speed of blockforming, a time interval
can be set between two consecutive broadcasts. After the peer nodes
receive the synchronization requests, they will connect to the cloud
to synchronize the blocks.

3For example, this message indicates that its storage almost used up.
4Each communication message is signed by its sender.

C. Synchronization Process

After the cloud receives a synchronization request from the
overlay node, it starts the synchronization process. This process
synchronizes the blockchain and the transactions at the same time.

In the cloud connector, it has a field to specify the blockchain
header, which is the most recently synchronized block in the cloud.
In case that the cloud receives multiple synchronization requests, the
cloud connector only needs to keep one copy of both the blockchain
and its transactions. To resolve this issue, the basic idea is to let the
cloud connector compare the blockchain header in the cloud with
the current blockchain header from the overlay network. If both
headers are the same, then the cloud is synchronized and denies
this synchronization request; otherwise, the cloud will synchronize
the blockchain and transactions from the overlay network. There
exist several sophisticated works to solve file synchronization across
multiple storages, such as MetaSync [37] and UniDrive [38].

Once the block synchronization process is finished, the cloud
needs to send out the response message to notify the overlay network
so that the overlay nodes know that the status of the current syn-
chronization. The response message typically has two types: regular
response message and exception response message. The exception
response message is used to notify the overlay network that errors
happened during the synchronization process. This might require the
repeat of the synchronization process. While the regular response
message from the cloud needs to include in the most recently updated
block information, the overlay nodes will only keep the most recently
updated block, and swipe out all other blocks. We assume the
communication between the overlay network and the cloud are secure
e.g., via secure communication channel or security platform. Then,
the overlay nodes consider this feedback block as the first block in its
partial chain, and continue a new round block forming process until
the storage space is full. Due to the separation of the synchronization
process and the consensus protocol in the overlay network, the overlay
network does not stop the formation of the new blocks.

D. Exception Handler

To guarantee that the blockchain is chained together as it was,
the cloud needs to regularly perform a verification process to check
if the currently synchronized blockchain is consistent. This task
is performed by the Storj cloud platform within the clouds. The
exception handler is required to be performed before the cloud sends
out the respond message (as in the synchronization process). If some
errors (e.g., inconsistency among the clouds) happen during the syn-
chronization process, the cloud will send out the exception response
message, otherwise, it will send out the regular response message.
Compared to the nodes in the overlay network, the cloud typically
has sufficient computing resources. If an error is detected, the cloud
will try other nodes to synchronize the blockchain and transactions.
If the cloud detects the error (e.g., refusing to synchronization or
synchronous wrong blockchain) twice from the same overlay node,
this node will be marked as a potential malicious node, and the cloud
will notify the node administrators to inspect the malicious behavior.

VII. CASE STUDY

This section provides an industrial case study to illustrate the
efficiency of the proposed framework. We choose a medium-size
industrial system, based on Emerson Wireless Industrial Automa-
tion Systems, to estimate the average data volume generated when



TABLE I. DESCRIPTION OF A TRANSACTION

Field Description

From The address of local metering device,
e.g., UUID of meters

To
The target gateway, either field gateway

or edge gateway, that the metering
measurement is sent to

Type What type of measurement, e.g, warning
Device

info The information of metering device

One Time
PK

The device’s one-time public key used to
encrypt the message from device to gateway

so gateway can verify its integrity
and confidentiality

TimeStamp

Unix timestamp when a device is measured
its measurement (assuming all plants are)
synchronous locally. Also, a timestamp is
used to accept as valid if it is greater than

the timestamp from the previous data block

TX ID
To identify the order of measurement from

“from” to the same “to”. Each measurement
has a unique ID during its block epoch

Data Measured value from physical devices

Hash Type Indicate what digest algorithm used, e.g.,
SHA-256, SHA-512

TX Hash The digest of the measured value
Sig Type Indicate what signature algorithm used
Signature The signature of the measurement

implementing the proposed hierarchical storage architecture 5. The
adopted system performs a continuous condition monitoring on in-
dustrial Smart Metering scenarios [39], which consists of 50 WSANs
(Wireless Sensor and Actuator Networks), each having 100 nodes.
Each node is an industrial gateway, connected via SATA to a 2.5”
drive bay for storage.

We first present the industrial data structure for this case study
(including transactions and blocks) and then provide the quantitative
analysis on of the storage volume.

A. Data Structure

1) Industrial Transactions: Transactions in cryptocurrencies (e.g.,
UTXOs in Bitcoin [40]) are quite different from industrial trans-
actions, as they need to carry the industrial information on their
own transactions. In the following description, we use a smart
metering system as an example to outline the basic structure of an
industrial transaction, which can be generalized into other industrial
cases. Table I shows a conceptual structure of the transaction with
description.

Here we specify some cryptography-related fields of Table I.
One Time PK uses secp160r1 of Elliptic Curve Cryptography (ECC)
(20 bytes); TX Hash is based on SHA-256 algorithm (32 bytes);
Signature is based on Boneh-Lynn-Shacham (BLS) [41] signatures,
which only require 33 bytes to achieve the same level security as
2048-bit RSA [42].

2) Industrial Block: A block in our industrial blockchain is called
a “data block”. A data block is directly related to the transactions,
which come from physical resources and local networks. Each data
block consists of two parts: a block header and a block body. The
header contains metadata about its block. The body of the data
block contains the transactions. These transactions are hashed only
indirectly through the Merkle root. The description of each field of a
data block is as shown in Table II. Notice that most cryptocurrencies,
e.g., Bitcoin, only store the transactions’ hashes and the Merkle

5We provide a quantitative analysis only regarding the storage requirements;
other metrics, such as throughput and latency, are out the scope of this paper.

TABLE II. DESCRIPTION OF A DATA BLOCK

Field Description
Data Block Header

Hash Pre
Data Blk

Hash of previous data block. Each data blk
is inherited from its previous data block,
since it uses the previous block’s hash to

create the new block’s hash.

Block Hash An identifier to identify a block,
which is a cryptographic hash.

Version
The block version number, with which the

system can upgrade the software and
specify a new version.

Merkle Root
of TXs

Merkle tree root, a data structure that
summarizes the transactions in the block.

No. of
TXs

Identify the number of transactions to be
included in block body.

Signature The signature of the block, which is signed
by the creator of the block.

Timestamp Show the time when a new block created.
Data Block Body

No.
Shows the order of transactions in one data

block sequentially from 1 to N, where
N is the total number of TXs in this block.

TX ID Extracted from Transaction.
TX Data Extracted from Transaction.
TX Hash Extracted from Transaction.

Fig. 4. Data Storage Requirements for One-week’s Data in a Medium-size
Industrial Case.

tree root into the blockchain, but industrial cases need the whole
transaction to be stored in the data block for further analysis in
condition monitoring.

B. Analysis

A typical transaction size for smart metering in continuous con-
dition monitoring is in the range of 120 ∼ 180 bytes for quantitative
analysis. For example, if 150 bytes is the average transaction size
and the average device sampling period is 1 second, then the average
data volume per second for a medium level industrial IoT platform
is 50 WSANs ∗ 100 nodes ∗ 1 sample/second ∗ 150 bytes =
750, 000 bytes/second (750KB/second). Compared with the average
data volume of 1.67 KB per second in the Bitcoin network, this
storage requirement in the industrial case is pretty huge.

In our smart metering system, each consensus node (e.g., gate-
way) is equipped with one 128GB SATA Harddisk to store the
blockchain. Considering the data volume generated and the size
of the hard disk on each consensus node, the system updates the
consensus node’s data blocks to the cloud every 24 hours. Fig. 4



Fig. 5. The Ratio of Data Saving Compared with the Existing Approaches.

shows the block data storage requirement for one-week’s evaluation
in a medium-size industrial case on each consensus node. The existing
approaches represent the generic solutions that store all the blockchain
data on consensus nodes without resorting to storing the block data
on external storage, such as cloud storage. As the figure shows, the
blockchain storage requirement for existing approaches is huge. For
a week period, the block data generated can be more than 500GB.
Without effective backup storage, the old data will be overwritten
by the newly generated blockchain, and one 128G disk is only large
enough to store one day’s data. Our approach utilizes the hierarchical
blockchain storage to maintain the most recent blocks in consensus
nodes, and the majority of the blockchain is synchronized into the
cloud. We use the 200Mbps data link to synchronize the data from
consensus nodes to the cloud. In this case study, it takes about 1 hour
to upload one-day’s blockchain to the cloud. As the synchronization
processes and block forming processes in the overlay network happen
simultaneously, the system does not need to stop. The subfigure in
Fig. 4 shows the data volume change during the synchronization
processes. We observed that the data volume cannot go down to zero
during the synchronization processes, since the new blocks are still
forming on the overlay network to link the blocks to the blockchain.

Fig. 5 shows the overall percentage of the blockchain stored on
consensus nodes as the time increasing over 30 days. From this figure,
we can observe that the percentage of blockchain data stored on the
consensus nodes is continually decreasing as time increases. Although
the data volume of the whole blockchain continues growing, the
blocks stored on the consensus nodes cannot be larger than a threshold
because of the storage limitation of the consensus nodes. For instance,
this threshold is 100GB in our case. When the blockchain data volume
reaches this threshold, it triggers the synchronization processes to
synchronize the recent blocks to the cloud.

VIII. RELATED WORK

The blockchain technology was first introduced along with the
Bitcoin by Satoshi Nakamoto [40]. A tremendous amount of efforts
from both academia and industry have contributed to the research of
blockchain. When applying blockchain into IoT, it is still subject to
several challenges, such as storage issues. This section provides the
literature reviews on the blockchain storage.

Some researches focus on increasing the usability by reducing the
storage requirements on the client side. In Bitcoin [40], Nakamoto

proposes to use simplified payment verification (SPV) without run-
ning a full network node, and a user only needs to keep a copy of the
block headers of the longest PoW chain. However, it does not mention
how to reduce blockchain storage on the full network node, and its
verification is more vulnerable if the network is overpowered by an
attacker. Xu et.al. [1] propose a blockchain-based storage system,
Sapphire, for data analytics applications in the IoT. They present an
OSD-based smart contract (OSC) as a transaction protocol, in which
object storage devices employ embedded processors in the devices to
process apart from storing data.

Lunardi et.al. [43] propose a distributed access control on IoT
ledger-based architecture. Due to limited storage on the gateway, the
authors propose to parameterize and define the amount of information
to be stored in the local IoT ledger, which only stores the new
information in the block ledger. However, the authors did not mention
the solution to store old information to the external storage, and the
way to achieve that. Sharma et.al. [44] propose a blockchain-based
distributed architecture with Software-Defined Networking (SDN)
enabled controller fog nodes at the edge of the network. By leveraging
a distributed fog node architecture that uses SDN and blockchain,
the proposed model tries to bring computing resource to the edge of
the IoT network. This structure reduces the access latency to large
amounts of data in a secure manner, however, it does not deal with
the blockchain storage issues.

Wilkinson et.al [45] propose a P2P cloud storage network, Storj,
allowing users to transfer and share data without reliance on a third-
party data provider. The storage network periodically cryptographi-
cally checks the integrity and availability of the file. In Storj, it uses
MetaDisk [46], a blockchain for decentralization metadata storage, to
keep the consistency among the clouds. Similar to Storj, Sia [47] also
is a platform for decentralized storage, which enables the formation
of storage contracts between peers. In Sia, it requires the storage
providers to prove, at regular intervals, that they are still storing
their client’s data. In our proposed scheme, we use Storj to manage
the cloud storage to maintain the consistency of blockchain among
clouds.

Although a large amount of work has been contributed to inte-
grating the blockchain technology to IoT systems and applications,
to the best of our knowledge, none of them has dealt with the storage
issue which is purely based on the blockchain structure. Our work is
the first attempt to mitigate this issue on the chain level.

IX. CONCLUSION AND FUTURE WORK

Blockchain technology and the application of the technologies
in IoT systems have gained a great deal of attentions from both
academia and industry. However, it is a challenging problem to store
and manage blockchain in IoT networks, due to the massive data
generated from IoT applications and the limited resources in the IoT
infrastructures. This paper proposed a hierarchical storage structure
to store the majority of the blockchain in clouds, and maintain the
most recently generated blocks in a blockchain overlay network.
We further present a blockchain-based IoT architecture to maintain
both blocks and transactions generated by the IoT networks. Two
software interfaces, a blockchain connector and a cloud connector,
are defined to construct the blocks and synchronize them to the
clouds. As a future work, we plan to work on the implementation
of the proposed blockchain-based IoT architecture in more real IoT
applications and thoroughly evaluate its other performances, such as
latency and throughput.



REFERENCES

[1] Q. Xu, K. M. M. Aung, Y. Zhu, and K. L. Yong, “A blockchain-based
storage system for data analytics in the internet of things,” in New
Advances in the Internet of Things. Springer, 2018, pp. 119–138.

[2] L. Da Xu, W. He, and S. Li, “Internet of things in industries: A survey,”
IEEE Transactions on industrial informatics, vol. 10, no. 4, pp. 2233–
2243, 2014.

[3] A. Botta, W. De Donato, V. Persico, and A. Pescapé, “Integration of
cloud computing and internet of things: a survey,” Future Generation
Computer Systems, vol. 56, pp. 684–700, 2016.

[4] Z.-K. Zhang, M. C. Y. Cho, C.-W. Wang, C.-W. Hsu, C.-K. Chen, and
S. Shieh, “Iot security: ongoing challenges and research opportunities,”
in Service-Oriented Computing and Applications (SOCA), 2014 IEEE
7th International Conference on. IEEE, 2014, pp. 230–234.

[5] M. Swan, Blockchain: Blueprint for a new economy. ” O’Reilly Media,
Inc.”, 2015.

[6] K. Christidis and M. Devetsikiotis, “Blockchains and smart contracts
for the internet of things,” IEEE Access, vol. 4, pp. 2292–2303, 2016.

[7] “Smartthings,” http://www.smartthings.com/.
[8] “Wink,” http://www.wink.com/.
[9] P. Johannesson and E. Perjons, “Design principles for process modelling

in enterprise application integration,” information systems, vol. 26, no. 3,
pp. 165–184, 2001.

[10] A. Sehgal, V. Perelman, S. Kuryla, and J. Schonwalder, “Management
of resource constrained devices in the internet of things,” IEEE Com-
munications Magazine, vol. 50, no. 12, 2012.

[11] G. Xiao, J. Guo, L. Da Xu, and Z. Gong, “User interoperability with
heterogeneous iot devices through transformation,” IEEE Transactions
on Industrial Informatics, vol. 10, no. 2, pp. 1486–1496, 2014.

[12] N. Ishikawa, T. Kato, H. Sumino, J. Hjelm, K. Miyatsu, and S. Mu-
rakami, “Jupiter: Peer-to-peer networking platform over heterogeneous
networks,” in The 3rd International Conference on Computing, Com-
munications and Control Technologies (CCCT2005), 2005.

[13] K. Shaik, “Why blockchain and iot are best friends,” https://www.ibm.
com/.

[14] M. Bartoletti, A. Bracciali, S. Lande, and L. Pompianu, “A general
framework for bitcoin analytics,” arXiv preprint arXiv:1707.01021,
2017.

[15] Y. Velner, J. Teutsch, and L. Luu, “Smart contracts make bitcoin mining
pools vulnerable.” IACR Cryptology ePrint Archive, vol. 2017, p. 230,
2017.

[16] A. Tomescu and S. Devadas, “Catena: Efficient non-equivocation via
bitcoin,” in IEEE Symp. on Security and Privacy, 2017.

[17] “Blockchain size,” https://blockchain.info/charts/blocks-size.
[18] “Histrical data of trade block,” https://tradeblock.com/bitcoin/historical/.
[19] J. Song, S. Han, A. Mok, D. Chen, M. Lucas, M. Nixon, and W. Pratt,

“Wirelesshart: Applying wireless technology in real-time industrial pro-
cess control,” in Real-Time and Embedded Technology and Applications
Symposium, 2008. RTAS’08. IEEE. IEEE, 2008, pp. 377–386.

[20] “Comprehensive iot cybersecurity system,” https://www.mocana.com/.
[21] S. Cirani, L. Davoli, G. Ferrari, R. Léone, P. Medagliani, M. Picone,

and L. Veltri, “A scalable and self-configuring architecture for service
discovery in the internet of things,” IEEE Internet of Things Journal,
vol. 1, no. 5, pp. 508–521, 2014.

[22] D. Mingxiao, M. Xiaofeng, Z. Zhe, W. Xiangwei, and C. Qijun, “A
review on consensus algorithm of blockchain,” in Systems, Man, and
Cybernetics (SMC), 2017 IEEE International Conference on. IEEE,
2017, pp. 2567–2572.

[23] M. Castro, B. Liskov et al., “Practical byzantine fault tolerance,” in
OSDI, vol. 99, 1999, pp. 173–186.

[24] L. Tseng, “Recent results on fault-tolerant consensus in message-
passing networks,” in International Colloquium on Structural Informa-
tion and Communication Complexity. Springer, 2016, pp. 92–108.

[25] G. Wang, Z. J. Shi, M. Nixon, and S. Han, “Smchain: a scalable
blockchain protocol for secure metering systems in distributed industrial
plants,” in Proceedings of the International Conference on Internet of
Things Design and Implementation. ACM, 2019, pp. 249–254.

[26] “Storj white paper v3.0,” https://storj.io/storj.pdf.
[27] A. Dorri, S. S. Kanhere, R. Jurdak, and P. Gauravaram, “Blockchain

for iot security and privacy: The case study of a smart home,” in Perva-
sive Computing and Communications Workshops (PerCom Workshops),
2017 IEEE International Conference on. IEEE, 2017, pp. 618–623.

[28] J. Benet, “Ipfs-content addressed, versioned, p2p file system,” arXiv
preprint arXiv:1407.3561, 2014.

[29] C. Cachin, “Architecture of the hyperledger blockchain fabric,” in
Workshop on Distributed Cryptocurrencies and Consensus Ledgers,
2016.

[30] B. N. Levine, C. Shields, and N. B. Margolin, “A survey of solutions to
the sybil attack,” University of Massachusetts Amherst, Amherst, MA,
vol. 7, p. 224, 2006.

[31] L. A. Linn and M. B. Koo, “Blockchain for health data and its potential
use in health it and health care related research,” in ONC/NIST Use
of Blockchain for Healthcare and Research Workshop. Gaithersburg,
Maryland, United States: ONC/NIST, 2016.

[32] G. Zyskind and Nathan, “Decentralizing privacy: Using blockchain to
protect personal data,” in Security and Privacy Workshops (SPW), 2015
IEEE. IEEE, 2015, pp. 180–184.

[33] T. Hardjono and N. Smith, “Cloud-based commissioning of constrained
devices using permissioned blockchains,” in Proceedings of the 2nd
ACM International Workshop on IoT Privacy, Trust, and Security.
ACM, 2016, pp. 29–36.

[34] A. M. Antonopoulos, Mastering Bitcoin: unlocking digital cryptocur-
rencies. ” O’Reilly Media, Inc.”, 2014.

[35] D. Johnson, A. Menezes, and S. Vanstone, “The elliptic curve digi-
tal signature algorithm (ecdsa),” International journal of information
security, vol. 1, no. 1, pp. 36–63, 2001.

[36] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk:
The blockchain model of cryptography and privacy-preserving smart
contracts,” in 2016 IEEE symposium on security and privacy (SP).
IEEE, 2016, pp. 839–858.

[37] S. Han, H. Shen, T. Kim, A. Krishnamurthy, T. E. Anderson, and
D. Wetherall, “Metasync: File synchronization across multiple untrusted
storage services.” in USENIX Annual Technical Conference, 2015, pp.
83–95.

[38] H. Tang, F. Liu, G. Shen, Y. Jin, and C. Guo, “Unidrive: Synergize
multiple consumer cloud storage services,” in Proceedings of the 16th
Annual Middleware Conference. ACM, 2015, pp. 137–148.

[39] G. Wang, M. Nixon, and M. Boudreaux, “Toward cloud-assisted in-
dustrial iot platform for large-scale continuous condition monitoring,”
Proceedings of the IEEE, vol. 107, no. 6, pp. 1193–1205, June 2019.

[40] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[41] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the weil

pairing,” in International Conference on the Theory and Application of
Cryptology and Information Security. Springer, 2001, pp. 514–532.

[42] N. Gura, A. Patel, A. Wander, H. Eberle, and S. C. Shantz, “Comparing
elliptic curve cryptography and rsa on 8-bit cpus,” in International
workshop on cryptographic hardware and embedded systems. Springer,
2004, pp. 119–132.

[43] R. C. Lunardi, R. A. Michelin, C. V. Neu, and A. F. Zorzo, “Distributed
access control on iot ledger-based architecture,” in NOMS 2018-2018
IEEE/IFIP Network Operations and Management Symposium. IEEE,
2018, pp. 1–7.

[44] P. K. Sharma, M.-Y. Chen, and J. H. Park, “A software defined fog node
based distributed blockchain cloud architecture for iot,” IEEE Access,
vol. 6, pp. 115–124, 2018.

[45] S. Wilkinson, T. Boshevski, J. Brandoff, and V. Buterin, “Storj a peer-
to-peer cloud storage network,” 2014.

[46] S. Wilkinson, J. Lowry, and T. Boshevski, “Metadisk a blockchain-based
decentralized file storage application,” Technical Report. Technical
Report, 2014.

[47] D. Vorick and L. Champine, “Sia: Simple decentralized storage,”
Retrieved May, vol. 8, p. 2018, 2014.

http://www.smartthings.com/
http://www.wink.com/
https://www.ibm.com/
https://www.ibm.com/
https://blockchain.info/charts/blocks-size
https://tradeblock.com/bitcoin/historical/
https://www.mocana.com/
https://storj.io/storj.pdf

	I Introduction
	II Cloud-based IIoT Infrastructure
	III Opportunities and Challenges to Integrate Blockchain into IoT
	IV Blockchain-Based IoT Architecture
	IV-A System Architecture
	IV-A1 IoT Network
	IV-A2 Overlay Network
	IV-A3 Clouds

	IV-B Hierarchical Storage Structure of Blockchain

	V Design of the Blockchain Connector
	V-A Permission Management
	V-B Access Control
	V-C Transaction Validation and Data Signature
	V-D Block and Chain Forming

	VI Design of the Cloud Connector
	VI-A Overview of the Cloud Connector
	VI-B Request Handler
	VI-C Synchronization Process
	VI-D Exception Handler

	VII Case Study
	VII-A Data Structure
	VII-A1 Industrial Transactions
	VII-A2 Industrial Block

	VII-B Analysis

	VIII Related Work
	IX Conclusion and Future Work
	References

