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Abstract—Private blockchain networks are used by en-
terprises to manage decentralized processes without trusted
mediators and without exposing their assets publicly on an
open network like Ethereum. Yet external parties that cannot
join such networks may have a compelling need to be informed
about certain data items on their shared ledgers along with
certifications of data authenticity; e.g., a mortgage bank may
need to know about the sale of a mortgaged property from a
network managing property deeds. These parties are willing
to compensate the networks in exchange for privately sharing
information with proof of authenticity and authorization for
external use. We have devised a novel and cryptographically
secure protocol to effect a fair exchange between rational
network members and information recipients using a public
blockchain and atomic swap techniques. Using our protocol,
any member of a private blockchain can atomically reveal
private blockchain data with proofs in exchange for a monetary
reward to an external party if and only if the external party is
a valid recipient. The protocol preserves confidentiality of data
for the recipient, and in addition, allows it to mount a challenge
if the data turns out to be inauthentic. We also formally analyze
the security and privacy of this protocol, which can be used in
a wide array of practical scenarios.

I. INTRODUCTION

The recent past has seen the emergence of private

blockchain platforms as viable decentralized transaction-

processing systems for businesses and consortia [1]–[4].

Similar to public blockchain platforms like Ethereum [5],

private blockchain platforms support smart contracts running

on networks of peers, updating and recording data on a

shared replicated ledger through a distributed consensus pro-

tocol. However, network membership and access to ledger

information is governed by designated network authorities,

enabling such networks to guarantee higher privacy and ac-

countability that are critical for enterprise scenarios. Further-

more, a private network can use a consensus protocol suited

to the applications running on the network (e.g., PBFT [6],

Raft [7]) rather than expensive ones like PoW [8], deliver-

ing higher performance. This enables consortia to balance

performance and scalability for their specific applications

by picking and choosing the right configuration and policy

parameters. It is this customizability that makes private

blockchains amenable to large scale industry adoption.

Motivated by the aforementioned benefits, a number

of businesses and consortia have invested significantly to

create and manage private blockchains, running a wide

# Authors are listed in alphabetical order.

range of applications including trade and supply chains [9],

finance [10], [11], regulatory compliance [12], prove-

nance [13], and real estate [14], [15]. Network participants,

typically members of a consortium, collectively control

network membership and access to ledger information. As a

result, private blockchain networks have turned into “walled

gardens”, and the data and assets managed by them lie

within silos. But this presents a challenge to real world

business processes, which typically involve far more parties

that have an interest in a private blockchain network’s data

than that network can accommodate either due to scalability

or privacy constraints. Clearly there is a need for trusted

data notifications of private blockchain data to an extended

set of interested parties while still respecting the privacy

concerns of the private blockchain members.

To elucidate, we refer to Figure 1 depicting a real-estate

blockchain network tracking the lifecycle and ownership

of property titles. The network can be constituted with

membership restricted to property owners and government

regulators. We note that properties registered in the network

can be involved in transactions outside the scope of this

network. Land can be mortgaged or used as collateral

in a business transaction, where the bank or counterparty

involved is not a member of the real estate network. A bank,

for example, has no visibility into the network’s ledger and

does not know whether the property has changed ownership

or undergone transformation of any kind such as division

amongst inheritors. Given the bank’s lack of visibility into

the network, a dishonest property owner has the opportunity

to defraud the bank by re-mortgaging the land to another

bank. In fact, in a blockchain ecosystem, the bank cannot

rely on information from any single member of the network

because ledger data is collectively agreed upon, and a

blockchain’s trust emanates from this collective endorsement

of data. Property owners who have no connection with the

bank may not want to expose their assets and transactions

to it for privacy and business reasons. The right approach to

solve this problem is to enable the network to collectively

share just the necessary data with the bank, on a need to

know basis, in a secure manner, without leaking ledger data

to unintended recipients.

It is important to note that the value of the ledger data

stems from it being collectively agreed upon by the members

of the network. We term this as extrinsic value as opposed to

intrinsic value, where the data content is valuable to external

participants regardless of who supplied it. Blockchain data
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Figure 1. Private Blockchain network for real-estate ownership

sans evidence of collective agreement by network members

has no extrinsic value to an external recipient, say as

evidence in a court of law. Further, in business processes

where data with extrinsic value is required, it is crucial that

the data is known to have been procured through legitimate

means; i.e., the data carries information clearly indicating

that the network members collectively authorize a particular

non-member to use it. This is necessary to protect the privacy

and business interests of the network, and is evident in

our property mortgage use case: registry network members

sharing records with unauthorized banks may face audits and

penalties. This condition becomes important in our solution

design as described in later sections.

Note that usage of trusted data notifications is well-

entrenched and legally accepted in modern economic and

commercial processes. Examples include getting electronic

signatures endorsed by respective agencies [16], credit-

worthiness statements endorsed by ratings agencies [17],

warrants of physical presence of goods endorsed by ware-

houses [18], and documents of ownership of real estate (or

other assets) endorsed by respective agencies [19].

Unfortunately, no methods currently exist for private net-

works to supply trusted notifications of extrinsically valuable

data to outsiders. Members of private blockchains as a group

can themselves act as trusted sources of data and provide no-

tary services to external members in specific scenarios [20],

[21]. As an added incentive, supplying data in exchange for

money may also enable a consortium’s members to monetize

and recoup their investments in maintaining a blockchain

network.

Therefore, we set out to create trusted mechanisms to

enable a private blockchain network to share private ledger

data authorized for a non-member by the network securely

and confidentially in exchange for a monetary reward. In our

model, protecting the privacy and business interests of the

network is crucial: the consortia members should collectively

endorse not only the veracity of data but also the set of

external members with whom that data can be shared in

an authorized manner. The solution we will propose relies

on existing mechanisms to generate collective endorsements,

typically using digital signatures [1].

Our problem is essentially a variant of Fair Exchange [22]

between two untrusting parties: private blockchain network

members (as a collective) and an external data recipient.

Each party faces the risk of being cheated by its counterparty

unless precautions are taken. For example, a naive solution in

our property scenario would involve the interested bank peri-

odically querying peers (owned by members) of the private

network (at least a majority) to get updates on properties

of interest. But this solution is neither scalable (because

of polling overhead) nor lucrative (lack of incentives for

members to share data). An alternate solution, where the

bank is notified by any member of the private network in

return for a reward, is no better as the member may supply

fake data or the bank may renege on making a payment.

Two-party fair exchange is known to be infeasible in the

absence of a trusted third party [23]. The solution that we

will present uses a public blockchain with programmable

money constructs as a trusted arbitrator to guarantee fairness

for both the external recipient (like a bank) and the private

network member group. In our solution model, a transaction

(data in exchange for money) is executed by a Notifier, a role

that can be assumed by any member of the private network to

supply data and earn a pre-determined reward (for itself and

members of the private blockchain) if the data is authentic

(see Figure 1). At the heart of our solution lies a pair of

interlocking contracts to ensure that the receiver gets au-

thentic information (containing private blockchain network

endorsements) if and only if all private network members

get their reward. Our protocol, while inspired by Hashed

Time Lock Contracts(HTLC) [24], ensures authenticity with

confidentiality by leveraging zero knowledge and encryption

mechanisms.

Key contributions: In this paper, we make the following

contributions 1) We motivate and present the design of our

solution for trusted data notification, Evidence Time Locked

Contracts (ETLC) which uses zero knowledge proofs and

standard cryptographic techniques to guarantee fairness in

the exchange of private blockchain data with external autho-

rized recipients. 2) We formally define the claims made by

our solution and present a security analysis of our protocol.

In particular, our solution guarantees fair exchange between

the private network members’ group and the receiver, and

confidentiality of blockchain data 3) Our solution further

guarantees that the network’s privacy policies are always

enforced and even a rogue notifier cannot exfiltrate valid

notifications to unauthorized recipients.

We organize the rest of the paper as follows. First, we

discuss our problem setting and list the building blocks for

our solution in Section II. We describe our protocol ETLC

in detail in Section III. We formally analyze the correctness,

security, and privacy features of the protocol in Section IV,

survey related work in Section V, and conclude with our

ideas for future research in Section VI.



II. PROBLEM SETTING AND PRELIMINARIES

In this section, we model the problem and describe the

building blocks of our proposed solution.

A. Problem Setting

A private blockchain network, denoted by PrivBC, is col-

lectively governed by a group of entities (sometimes called

consortium) that need to cooperate for business reasons but

do not completely trust each other. Though the technologies

they are built on vary widely in structure and function [1]–

[4], we can model them commonly as <Peers,SC,C,L,M>,

where:

• Peers denotes the peers belonging to different business

entities (sometimes called organizations)

• SC denotes the smart contracts running business logic

• C denotes the consensus protocol to achieve finality

and ordering of transactions

• L denotes the ledgers maintaining chains of blocks and

state snapshots

• M denotes membership policy, governing entry and

access to PrivBC

A transaction is typically submitted by an application client,

pre-authorized using M, to the network. Signatures (endorse-

ments) are collected from a subset of Peers (the list is

determined by consensus policy) running appropriate SC

functions. Subsequently, the transaction is validated using

pre-configured consensus policies before it is committed

independently by each peer to its replica of a ledger. Such

a commitment consists of a given ledger data LD item with

an updated value, and this is stored in the ledger along with

peers’ endorsements.

The consensus protocol C ensures that data committed to

the blockchain represents the consortium’s collective will,

the proof of which lies in the endorsements associated with

ledger data (LD). To an external entity, LD coupled with

endorsements may possess extrinsic value (see Section I),

however, the membership policy M ensures that PrivBC

ledger data is accessible only to the consortium’s members.

One approach to make LD available outside the network

is for PrivBC to expose a Verifiable Read Service (VRS) [25]

API that allows external members to query for a given LD.

In response, PrivBC will return LD along with endorsements

and other metadata if the requestor passes an access control

check enforced collectively by Peers. However, the use of

a VRS raises two challenges: (i) the peers lack incentive to

offer such a service freely to external members, and (ii) the

pull model requires the external member to continuously poll

for updates from PrivBC. In our solution ETLC, we address

(i) using an incentive mechanism for network members,

and (ii) using a notification based push model. In this push

based model, any member of PrivBC may assume the role

of notifier N, sharing updates to LD with a designated

external receiver R. In return, R pays a reward to the

members of PrivBC after verifying the authenticity of the

data. This now reduces to a fair exchange problem [22]

between the N and R requiring the use of a trusted third

party arbitrator to guarantee fairness [23]. In ETLC, we

leverage a public blockchain network (accessible to R and

members of PrivBC) as a trusted arbitrator, exploiting its

programmable money constructs to guarantee fairness of the

ledger data-reward exchange.

The core exchange mechanism we will use in ETLC is

inspired by Hashed Time Lock Contracts (HTLC) [24], a

mechanism that allows two parties on two different public

blockchains to swap assets with each other. In an HTLC

instance, one of the parties deploys a contract on one net-

work promising to transfer an asset to the other party when

a secret preimage x, known only to it and corresponding

to a hash H(s) encoded in the contract, is supplied (H(·)
is a standard hash function like SHA-256). The other party

deploys a similar contract encoded with the identical hash

on the other network, promising to transfer another asset to

the first party. Upon production of a secret s, the hash of

which matches x, transfer of assets happen in both directions

without either party getting an opportunity to renege on

its pledge (hence hash lock). These contracts are also time

locked i.e. if either party fails to submit a transaction with

the right preimage within a given time t, the escrowed asset

is returned to its owner.

B. Trusted Data Notification Model

We now formally describe the PrivBC trusted data noti-

fication problem and assumptions of our threat model.

We consider the problem of enabling an external receiver

R (that is not a member of PrivBC) to be notified of a

blockchain event e of interest in return for paying a reward.

In our current model e represents the creation, updation, or

deletion of a specific ledger data LD item that R is interested

in. We define Notifiers {N} (consisting of PrivBC members)

to be any set of entities that notify e to R in exchange for

a reward a. PubBC is a public blockchain such that R, N

and all members of PrivBC (including Peers and clients)

own accounts and can transfer money (native assets, like

cryptocurrency) to others on the network. Importantly, we

assume that e holds extrinsic value for R and hence carries

utility only if it can be proven to (i) emanate from PrivBC

and (ii) authorized by PrivBC for R.

1) Threat Model: We make the following assumptions:

• R is rational: Receiver R has a genuine interest (economic

or otherwise) in receiving event e and has no incentive to

broadcast private blockchain data to others.

• N is rational: Notifier N is incentivized to notify R about

e if reward is guaranteed in return.

• PrivBC is trustworthy: The private blockchain is viewed

as a collection of peers trusted to finalize transactions and

record data on the ledger using an advertised consensus

protocol, even if some peers may act dishonestly. We assume

that the members of PrivBC will not collectively collude to



cheat R by supplying fake data or endorsements. We also

assume the membership service of the network is trustworthy

and issues valid certificates to the PrivBC members.

• PubBC is trustworthy: The public blockchain’s consen-

sus protocol is trusted to accurately execute smart contracts

and record transactions. We also assume that PrivBC mem-

bers cannot collude and corrupt the consistency of PubBC.

2) Goals: Our protocol must ensure the following:

• Fair Exchange : Each member of PrivBC (including N)

must obtain a reward in PubBC for every valid e that is

successfully delivered to R. This protects N from a malicious

R that receives an endorsed LD but later denies payment to

N by claiming non-delivery. Similarly, R is protected against

a malicious N that delivers an e that either (i) does not

represent ledger data or (ii) has no associated endorsements

from peers proving validity or authorization.

• Confidentiality: A notification can be delivered only to

an R that is authorized by PrivBC to receive notifications.

This prevents unintended recipients from receiving an LD

carrying endorsements proving both its validity and the

network’s authorization for R. Since we are using a public

blockchain as an arbitrator, this is a salient concern.

III. SOLUTION: TRUSTED DATA NOTIFICATION

PROTOCOL

In this section, we will describe our protocol ETLC for

the notification of valid ledger data from a private blockchain

(PrivBC) to an intended external recipient (R) in exchange

for a reward.

A. Smart Contracts

ETLC utilizes a set of smart contracts deployed on

PrivBC and the PubBC. These contracts embed logic to

record and verify various artifacts of hashes, ciphertext, keys,

signatures etc. to enable the guarantees provided by our

solution. For instance, some of these contracts utilize hash

and time locks as discussed in Section II-A, supported by

public blockchains like Ethereum [5] to guarantee liveness

of the protocol. The list of contracts and their functions are

listed in Table I. We will now describe how the contracts

are used in our protocol construction.

B. ETLC Protocol

In ETLC, every unique external recipient of a private

ledger data element goes through four sequential stages, as

illustrated in Figures 2–5.

Note that in each stage diagram, we use P to denote all

members of PrivBC, excluding N; C (Co-Owner) is any

member in P that creates or updates ledger data (LD) of

interest to R. Any member of PrivBC can assume the role

of N in any given instance without requiring changes to the

protocol. For rewarding purposes, we will assume that every

member in P has an identity and crypto-currency account in

PubBC for conducting transactions. We now describe each

process in more detail.

Table I
SYSTEM CONTRACTS

Name Network Description Operations

SC-ACL PrivBC

Maintains access control list: sub-

jects are external recipients (iden-
tified by their public keys) and
objects are ledger data elements.
Encrypts updated ledger data for
external notifications.

PermitAccess,
RevokeAccess, Recor-

dEncDataHashProof

SC-Reward PubBC

Guarantees rewards to notifiers af-
ter due verification of the recipient
having received authentic data, uti-
lizing HTLC techniques.

RecordPubKey,
RecordCipher-

TextHashProof,
RecordSignature,
VerifySignature,
Validate

SC-R-Sign PubBC
Guarantees amount in exchange for
authentic signature submitted be-
fore timeout.

RecordSignature

SC-N-Key PubBC

Guarantees amount (identical to
SC-R-Sign) in exchange for valid
decryption key (symmetric) sub-
mitted before timeout.

RecordKey

Figure 2. End-to-End Protocol: Bootstrap Stage

1) Bootstrap Stage: The Bootstrap stage need only be

done once for a given 〈recipient, LD〉 pair. In Figure 2 first,

the SC-ACL contract must be installed in PrivBC through

the network’s consensus process. This needs to be done

just once in the lifecycle of the network. This contract sup-

ports the registration of external recipients’ public keys (or

certificates) for identification and cryptographic purposes.

We assume that recipient R can communicate its public

key (pkR) separately to every member of the network as

indicated in Figure 2, and that the key is committed through

consensus to ledger using SC-ACL’s PermitAccess operation.

Optionally, R may submit pkR within a certificate signed by

authorities that can be validated in this operation. As the

figure also indicates, we assume the data item that R has

been given access to (LD) is already recorded on the ledger.

R can confirm through a VRS (see Section II-A) that (i)

pkR has been associated with LD on PrivBC’s ledger, and

(ii) that PrivBChas authorized Rto receive any future updates

made to LD.

2) Generation Stage: The goal of the generation step is

for N to commit to the contents of the notification while also

proving (using a zero knowledge proof) that the notification

contains valid updates from the ledger. When LD is updated

on PrivBC’s ledger by any C, a call to SC-ACL is triggered

using PrivBC’s transaction submission mechanism. At this

point, LD already has signatures endorsing it on the chain

(ledger), so this call can package LD with the signatures



Figure 3. End-to-End Protocol: Generation Stage

into ELD (or endorsed LD). The following are produced and

recorded on the ledger using the RecordEncDataHashProof

operation, as illustrated in Figure 3:

• ELDR: a deterministic public-key encryption of ELD

using pkR ensuring only R can decrypt the notification

• HELDR
: a hash of ELDR as a commitment1

• πELDR
: a zero-knowledge proof that can be used to ver-

ify, without knowing ELDR, that ELDR was produced

by encrypting some plaintext under pkR.

We will use the Encrypt-with-Hash construction in Bellare

et al. [26] as our deterministic encryption scheme with

the ElGamal encryption scheme [27] as the underlying

randomized public-key encryption scheme. This determin-

istic encryption provides PRIV-CCA security [26] and it’s

good enough to provide confidentiality to ELD since the

underlying unforgeable signatures are ‘unpredictable’. For

this encryption, the zero-knowledge proof πELDR
is generated

using a pair of discrete-log exponent checks followed by a

hash check.

N now privately generates a symmetric key k (we use

AES-CTR2) and further encrypts ELDR into ELDR,k. This

second layer of encryption is to prevent R from learning

ELDR (and hence ELD) before the next step. On PubBC,

N records the following through the RecordCipherTextHash-

Proof operation on the SC-Reward contract:

• Doubly encrypted data (ELDR,k)

• Hash HELDR
of the singly encrypted ELDR, which is

recorded on PrivBC’s ledger after consensus among its

members

• Zero-knowledge proof πELDR

• Signatures validating PrivBC’s collective endorsement

of R’s authorization to access LD: Sigs-R-ELD; gener-

ated on the private chain upon successful conclusion of

the RecordEncDataHashProof operation

The proof πELDR
is now verified using pkR, which was

recorded on the ledger in the bootstrap stage, and HELDR
.

If the verification succeeds, i.e., the proof and the hash are

1a randomized commitment scheme is used, with the random-
ness/opening to the commitment recorded on PrivBC and later recorded
on PubBC during the KeyTransfer stage.

2IND-CPA security provided by AES-CTR is sufficient as we show in
section IV

Figure 4. End-to-End Protocol: Key Transfer Stage

authentic, it implies that the hash was produced from data

which itself was generated by encrypting a different data

element using pkR. (We will see why this is useful when

the preimage of the hash is revealed in the next stage.) If

the verification fails, the protocol terminates at this stage.

The remaining steps of the protocol occur on PubBC and

do not involve PrivBC.

3) Key Transfer Stage: The goal of the key transfer stage

is to enable N to share the symmetric key k with R in

exchange for collecting a signature from R that allows N to

collect its reward in later stages of the protocol. The main

innovative feature of our protocol, illustrated in Figure 4,

is a pair of interlocking contracts, inspired by the HTLC

mechanism, that allow N to share its symmetric key (k) in

exchange for R’s signature on the resulting decrypted data.

First, N must install contract SC-R-Sign, which obligates N

to transfer an amount A to R if the latter submits a verifiable

signature over data generated by decrypting ELDR,k using

k. Once R can see this contract installed, it must install SC-

N-Key, which promises to transfer the same amount A to N

if the latter provides a valid key k.

Let us assume N supplies k to SC-N-Key. Decryption

of ELDR,k produces ELD
′

R
, which ought to be identical

to ELDR produced in the generation stage.Verification of

this involves checking that the hash HELDR
is indeed a

hash of ELD
′

R
. If this check succeeds, it also proves that

the preimage ELD
′

R is ciphertext that was generated by

encrypting some plaintext using pkR; this follows from the

successful verification of the zero-knowledge proof πELDR

at the end of the Generation Stage. A is transferred to N as

promised if verification succeeds; otherwise, no amount is

transferred and the protocol terminates.3

Now R must play its part by supplying a receipt in the

form of a signature over the decrypted data ELD
′

R to SC-

R-Sign: σR,ELD′

R
. If it provides a valid signature that can be

verified using pkR, amount A is transferred back from R to

3Stopping the protocol if N produces an ELDR encrypted under a
different public key is not mandatory. As an alternative, we can delay the
validity check on ELDR till the final verification stage. This will make
R proceed till the final step even if ELDR is invalid. But, the collision
resistance property of the hash function will be enough to ensure honest
behaviour of R and N without the need for zero-knowledge proofs.



Figure 5. End-to-End Protocol: Verification and Reward Stage

N, and the net monetary exchange is zero. If R does not

supply a signature within a given time period or supplies an

invalid signature, it ends up forfeiting A.

Last but not least, both SC-R-Sign and SC-N-Key contain

embedded timeouts (similar but not identical to time locks).

SC-N-Key has a timeout t just to ensure that R does not wait

indefinitely for N to provide k. If t expires, the protocol

terminates without anyone losing money. But if N does

supply a valid k within t, R is obliged to provide its receipt

signature within a timeout t′ encoded in SC-R-Sign. t′ must

be chosen to be significantly greater than t so that R gets

ample opportunity to supply a signature after N supplies k.

4) Verification and Reward Stage: In the final stage, our

protocol verifies the validity of the notification received by R

and rewards PrivBC members for a successful notification.

To claim the reward (a) for itself and all members of PrivBC,

N can now submit R’s signature σR,ELD′

R
, obtained in the

previous stage as evidence to SC-Reward (see Figure 5).

A timer starts upon this submission, and R is given the

opportunity to challenge the veracity of the received data

within a given time period (call it Timeout). R now has

ELD
′

R
, which can be decrypted using skR, the private key

corresponding to the public pkR.

The produced Dec-LD ought to be well-formed, contain

LD and enough signatures from PrivBC members to prove

consensus. The set of enclosed signatures should have been

created by members whose public keys were recorded to

PubBC in the Bootstrap Stage, and the set of signatories

should match those of Sigs-R-ELD, supplied in the Gener-

ation Stage to prove that R was authorized to get access to

LD. Signatures in Sigs-R-ELD should be validated as well,

given that ELD (LD plus signatures) has been decrypted.

The value of LD should be fresh and not an older version

(a form of replay attack mounted by N).

If any of these conditions are unsatisfied, R can choose

to record Dec-LD on the ledger and SC-Reward can verify

whether R’s claims about receiving invalid data are correct.

If that is the case, no reward is transferred to members of

PrivBC, an amount is transferred from N to R as penalty

for spurious information, and the protocol terminates. Other-

wise, when Timeout occurs, R’s receipt signature σR,ELD′

R
is

verified. Upon success, reward amount a is transferred from

R to PrivBC’s members, with N getting an extra amount

to cover its transaction costs in PubBC. Upon failure, R

pays no reward and N pays an amount in penalty to R. The

protocol now terminates.

C. Discussion

We now discuss some specific aspects of ETLC in more

detail.

• Handling Multiple Concurrent Notifiers: It is possible

that multiple N concurrently try to run our protocol for

the same LD. To protect against this, we suggest that an

additional version attribute be attached to each LD (to

reject older updates to LD) and the smart contracts follow

a first-come-first-serve policy to select and designate an N.

• Collective Authorizations: We encode access control

rules in a smart contract SC-ACL to ensure that a decision

to allow a given R access to a given LDpasses through

network consensus, hence expressing collective consent of

the network members rather than a decision made by a

single authority.

• Incentive Structure: A central enabler for our protocol

is a cryptocurrency-based public blockchain with contracts

deployed on it that incentivize participants to be honest. In

ETLC, the intent is to ensure that PrivBC members get

their rewards only when they fulfill their commitments.

We lock the reward in the form of crypto-currency in the

SC-Reward contract during the bootstrap phase, which

can only be claimed by members of PrivBC possessing

accounts in PubBC when they provide evidence of fulfilling

their tasks. This is done by (i) submitting valid data in

the Generation Stage, and (ii) submitting a valid signature

from R in the Verification and Reward Stage. Needless to

say, the reward amount should be commensurate with the

perceived value of information being acquired (including

any additional costs e.g. transaction fees on PubBC) and

hence left as a use case-specific configurable parameter.

IV. ANALYSIS

We will now analyze ETLC and show that it satisfies the

goals listed in SectionII-B while relying on the assumptions

listed in that section. Cryptographic primitives are expected

to provide standard security properties, which we will spec-

ify as needed. Additionally, we assume that the public-key

encryption scheme is robust [28].

A. Protecting against a malicious member of PrivBC

We now show the guarantees ETLC provides in the

presence of a malicious co-owner C and/or notifier N.

1) Notification authenticity: ETLC ensures that the noti-

fication received by R accurately represents LD after it has

been updated in PrivBC.

Claim IV.1. A rational R accepts a notification as valid

only if it corresponds to a valid LD in PrivBC.



Proof sketch. The members of PrivBC obtain a reward

from SC-Reward at the end of a successful run of the

protocol. This happens when R does not submit an invalid

Dec-ELD to SC-Reward. At a high level, the proof of this

claim will follow the following outline: the unforgeability

of signatures and the soundness of zero-knowledge proofs

will ensure that a rational R will not submit Dec-ELD only

if it corresponds to a valid LD in PrivBC.

To notify R, N submits two transactions to PubBC:

• N first submits ELDR,k, HELDR
, π, Sigs-R-ELD to SC-

Reward.

• Then, N records a key k.

These actions lead to the following automatic actions by the

smart contracts which cannot be altered by N or the members

of PrivBC after they are installed:

• SC-Reward verifies the zero-knowledge proof π –

ensures that N knows of an entry (i) which is an

encryption of a message under the public key pkR and

(ii) whose hash is HELDR

• SC-N-Key decrypts ELDR,k with k, verifies its hash

with ELDR and finally transfers the amount A from R to

N if hash is valid – given the above zk proof, collision

resistance of H ensures that ELDR is an encryption

of some message under pkR; note that the secret key

encryption scheme need not be robust [28], even if N

has the opportunity to provide a different key k′ to

decrypt to a different ELD
′

R post the submission of

ELDR,k, since the hash collision-resistance and proof’s

soundness ensure that the resulting ciphertext is an

encryption under pkR.

The above construct ensures that ELDR encrypts a message

that can be decrypted using R’s secret key. Here, R can

decrypt and check the validity of the message, confirming

that that it is a valid LD with signatures from PrivBC. Even

after R acknowledges receipt of k from N by submitting its

signature on ELDR, as a rational actor, it can subsequently

submit a decrypted ELD if it turns out to be invalid. This

will ensure that N does not get the reward, and additionally

is penalized.

2) Information assurance: This property of ETLC en-

sures that R gets notified of any update to LD.

Claim IV.2. ETLC ensures the delivery of a notification to

R for each of its subscribed updates in PrivBC.

Proof sketch. This is ensured by the rationality of the

members of PrivBC, who are incentivized to claim a reward

from R through the smart contract SC-Reward upon sending

an endorsed LD.

B. Protecting against a malicious receiver R

We now discuss the security properties of ETLC to protect

against a malicious R.

1) Reward fairness: Members of PrivBC and R decide on

a reward to be paid by R when R receives a valid notification

on LD from N. ETLC ensures that they obtain the agreed

upon reward when the notification is received by R.

Claim IV.3. Members of PrivBC obtain the agreed upon

reward if a rational R accepts a notification as valid.

Proof sketch. R receives the ciphertext ELDR containing

the notification only after N records the key k on PubBC.

Even though N commits ELDR,k, HELDR
, π and Sigs-R-ELD

to PubBC, R does not learn any information about ELDR,

and hence about ELD, before N records k due to the seman-

tic security of the secret key encryption scheme, hiding of

the commitment scheme and the zero-knowledge property

of the proof system. After N records k, SC-N-Key transfers

the amount A from R to N. Since this amount A is higher

than the reward that it would send to members of PrivBC,

a rational R would send its signature on ELD
′

R
to confirm

its receipt. Unless R submits decryption of an invalid Dec-

ELD before the pre-decided challenge timeout, the reward

is automatically transferred to the PrivBC members just on

R’s confirmation of receipt of ELD
′

R. If the ELD
′

R sent by

N is valid, to prevent the reward from being transferred,

R should submit a Dec-ELD which upon encryption should

yield ELD
′

R
, since we use a deterministic encryption scheme.

But it is not possible for R to submit a different Dec-ELD

which results in the same ELD
′

R due to the robustness of

the public-key encryption scheme.

2) Notification-receipt undeniability: This property pre-

vents a malicious R from denying knowledge of ELD after

it has obtained ELD through ETLC.

Claim IV.4. A malicious R will not be able to obtain

knowledge of ELD while simultaneously denying receipt of

the notification leading to that knowledge.

Proof sketch. As mentioned in Claim IV.3, R does not

learn any information about ELD, and hence about LD,

before N records k due to the semantic security of the secret

key encryption scheme and the zero-knowledge property of

the proof system. Hence, R has to wait for N to record k on

PubBC. But a rational R has to send a signature confirming

its receipt of ELDR since we set A >> a. This signature

along with the hash and zero-knowledge proof (that HELDR

is an encryption under pkR) serve as a proof recorded on

PubBC that R has received a message from N that only it

can decrypt.

C. Fair exchange

Now, we are ready to prove that ETLC ensures a fair

exchange between R and the members of PrivBC.

Claim IV.5. R receives a valid notification if and only if the

members of PrivBC obtain their reward for the notification.

Proof sketch. Claim IV.3 covers the only if part of this



claim. We will argue the if part of the claim now. If

the members of PrivBC receive their reward, it means

that R did not provide an invalid Dec-ELD to PubBC

in the Verification and Reward Stage. This implies either

that R accepted the notification as valid or that SC-Reward

rejected a challenge from R. The unforgeability of signatures

and Claim IV.1 ensure that a rational R received a valid

notification.

D. Validity of all exchanges in ETLC

We now prove an interesting and powerful claim: ETLC

ensures that only authorized recipients of ELD end up

possessing it.

Claim IV.6. Only authorized Rs can receive notifications

through ETLC.

Proof sketch. If PermitAccess(pkR, LD) (in SC-ACL) had

not been completed, there will not be signatures on PrivBC

to prove the consensus among PrivBC members that pkR is

permitted to access LD. The unforgeability of the signature

scheme ensures that N cannot generate valid signatures on

its own. Now, if N does proceed with our protocol to obtain

a fair exchange of reward for the data ELD, a rational R after

it decrypts ELD
′

R
to obtain ELD can still proceed to show the

absence or the invalidity of the signatures to PubBC to deny

N a reward and additionally claim a penalty from it. This

prevents a rational N from even initiating the transaction

through our protocol if R is not permitted access to LD.

Additionally, the PRIV-CCA security of the deterministic

encryption scheme ensures that ELD remains confidential

from any observer of ETLC messages other than members

of PrivBC and R.

V. RELATED WORK

Fair Exchange: As we stated in Section I, trusted data

notification, or the exchange of a reward for authentic

private network data can be modeled as a form of Fair Ex-

change [22] between the notifier and receiver, where PubBC

acts as the trusted third party mediating the exchange.

The exchange supported by our protocol has a few salient

differences from the classic fair exchange problem that are

not covered in literature: (i) one of the counterparties is a

decentralized group collectively agreeing to do an exchange

and allowing a single spokesperson (N) to execute that

exchange in a way that gives both receiver and all group

members their due, (ii) the item being exchanged for a

reward must be kept confidential from the trusted third party,

which in our protocol is a public blockchain.

Atomic Transactions across Networks: HTLC [24] and

Atomic Swaps [29] have been proposed as techniques to

swap assets between multiple parties across blockchain

networks. The InterLedger Protocol (ILP) [30] was proposed

to transfer assets between entities across multiple network

hops, using HTLC to transfer an asset across each hop.

These mechanisms rely on counterparties having visibility

into the participating network ledgers, and therefore cannot

be directly applied to the trusted data notification scenario

where one network is private and the counterparty (R) has

no visibility into the that network’s ledger.

Blockchain Interoperability Frameworks: Relay net-

works like Cosmos [31] and PolkaDot [32] enable inter-

blockchain network transactions of a similar flavor to our

scenario, using central blockchain as mediators. Abebe et

al. [25] support similar interoperation, at least for data

transfer, without relying on a mediating network (serving

as a candidate for our VRS building block). However,

while these protocols enable interoperation, none of these

frameworks provide out-of-the-box support for the kind of

novel trusted data notification between a private blockchain

and an external party which our protocol enables.

Cross Blockchain Data Transfer With Proofs: Numer-

ous mechanism have been proposed to prove the authenticity

of data shared from one blockchain to another. In public

blockchains, various off-chain proof mechanisms are used to

verify the validity of one public blockchain’s transactions in

another [33]–[36]. In private blockchains, proof-of-authority,

or a quorum of signatures, are typically used to attest to the

authenticity of network data [2], [25], [31], [32]. However,

these techniques were not designed to handle trusted data

notifications, and can at best act as supporting features for

our novel protocol.

VI. CONCLUSION AND FUTURE WORK

We have presented the design of a trusted data notification

protocol for a private blockchain network to shared valid

notifications of updates to its ledger data with authorized

external entities. Our solution introduces incentives for pri-

vate blockchain members to participate in, and comply with

the rules of, such a protocol. Using a public blockchain

as trusted arbitrator, standard cryptographic mechanisms for

data confidentiality and integrity, and blockchain patterns

like HTLC, our protocol guarantees fairness for both net-

work and recipient. We formally defined the ideal properties

of this protocol and proved that our solution satisfies those

properties. We believe our protocol is practically usable

and serves as a mechanism for private blockchain network

processes to interoperate with external processes, the lack of

which has inhibited wider adoption of private blockchains

in industry and government. In the future, we plan to build

a prototype to further validate our design and evaluate its

performance for practical needs. We will also extend the

protocol to allow other business networks (built on block-

chain or other technology) to be receivers, thereby enhancing

the abilities of networks built on diverse technology stacks

to interoperate with each other.
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