
On Blockchain Metatransactions

István András Seres
Department of Computer Algebra, Eötvös Loránd University

Email: istvanseres@caesar.elte.hu

Abstract—In cryptocurrencies, transaction fees are typically
exclusively paid in the native platform currency. This restric-
tion causes a wide range of challenges, such as deteriorated
user experience, mandatory rent payments by decentralized
applications, and blockchain community rivalries (e.g., coin-
ism). Ideally, in a truly permissionless blockchain, trans-
action fees should be payable in any other cryptocurrency
via so-called metatransactions. In this paper, we formalize
metatransactions, review existing ideas, and describe novel
metatransaction design approaches. Under the assumption
of sufficient market liquidity, we argue that metatransac-
tions do not lower the security of cryptocurrency platforms.
However, without changing the underlying blockchain, meta-
transaction designs typically increase transaction costs and
reduce the blockchain transaction throughput.

1. Introduction
Cryptocurrencies have attracted significant attention,

in part due to their ability to promote neutrality through
disintermediation. Their neutrality stems from their typ-
ically permissionless nature: anyone is allowed to join
and leave the network at any time, while their cen-
sorship resilience protects individuals from potentially
overreaching entities. Another aspect of neutrality is the
inherent ability to fork an open-source blockchain, i.e.
to clone one blockchain into two independent versions,
if e.g. the blockchain community’s vision diverges. This
freedom, however, comes at a price. Instead of unifying
efforts, we have witnessed an explosion in the number
of blockchains and cryptocurrency tokens that compete
rather than collaborate. This competition naturally arises
as many blockchains have the same objective; to become
the predominant decentralised platform for asset transfers
and decentralised application hosting.

While competition in open-source projects and their
ability to fork are not new phenomena (see e.g. Linux),
in the context of blockchains, financial incentives exacer-
bate competition. We count historically about 900 Linux
distributions1 within the last 28 years, and the last 10
years have brought to fruition circa 900 blockchain coins
and about 1400 blockchain tokens2 deployed on existing
blockchains.

All blockchains we are aware of rely on one native
currency C. C e.g. serves as the currency to pay transaction
fees to miners and may be minted when creating a block.
Typically, no other currency C∗ is eligible to replace C
in this special function. Indeed some blockchain creators
openly criticise the use of alternative currencies3. We

1. Source: https://distrowatch.com/
2. Source: https://coinmarketcap.com/coins/views/all/
3. https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1559.md

observe that this exclusivity leads to several challenges:
Deteriorated User Experience A user that wishes to

perform a transaction that does not involve C, e.g.
a stablecoin transaction4, such as Tether or DAI [4],
is required to purchase and use C to perform the
transaction. This results in additional usability fric-
tions and UI complexities, which could be avoided
if transaction fees could be paid directly via another
currency C∗.

Mandatory Rent Every project P that builds upon an ex-
isting blockchain is forced to adopt C and implicitly
pays rent to the holder of C. That is because users of
P are required to purchase C whenever they want to
interact with P .

Social Coinism A few vocal owners of C publicly be-
come the advocates of this coin, despite the avail-
ability of other potentially more suitable technolo-
gies and blockchains. Coinism is likely to alienate
communities, preventing healthy, productive collab-
orations and could ultimately stifle innovation.

To remedy these problems, in this work, we study
the options available to replace the currency C of an
already deployed blockchain with one or several alterna-
tive currencies, and consider the implications. We adopt
the blockchain community jargon metatranscations as
denoting transactions that pay fees to miners or other
intermediaries in a currency other than C. Summarizing,
we provide the following contributions within this work:
• We review an existing fee delegation scheme that

supports the payment of transaction fees in currencies
other than a native blockchain currency C.

• We formalize the notion of metatransactions and
present two novel designs, one miner-based and one
off the chain scheme.

• We discuss the implications of metatransactions and
show how an adversary may perform a hostile
blockchain takeover with metatransactions. We argue
that metatransactions do not affect the blockchain’s
security under assumptions of market liquidity.

The rest of the paper is organized as follows. Section 2
presents pertinent background on smart contract enabled
blockchains. In Section 3 we formally define metatrans-
actions and present an existing fee delegation design,
while Section 4 shows two new metatransaction schemes.
Section 5 compares these two metatransaction protocols.
Section 6 analyses the economic and security implications
of introducing metatransactions into a blockchain system.
We highlight related work in Section 7 and point out
possible extensions as future directions in Section 8.

4. Stablecoins are typically less volatile coins that are, for example,
pegged to a fiat currency.

ar
X

iv
:2

00
4.

08
09

4v
1

 [
cs

.C
Y

]
 1

7
A

pr
 2

02
0

https://distrowatch.com/
https://coinmarketcap.com/coins/views/all/
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1559.md

2. Background

Blockchains enable the construction of append-only
immutable ledger maintained by a distributed network of
nodes [33]. The majority of current systems [33], [42]
rely on a random leader election process as part of their
consensus mechanism. An elected participant decides on
the current state transition: a set of transactions altering
the ledger state, arranged in a so called block. For ex-
ample, in Proof-of-Work (PoW) blockchains, the leader is
the first participant to solve a computationally expensive
puzzle [33]. For a thorough background on Bitcoin and
blockchain, we refer the reader to a systematization of
knowledge [7]. Smart contract enabled blockchains allow
to encode programmable logic which may execute trans-
actions and manipulate cryptocurrency amounts. Contract
code is typically executed in a Virtual Machine (VM),
which is a quasi-Turing complete execution environment
executing bytecode. The number of computational steps
a transaction can perform in the VM is bounded to deter
denial-of-service (DoS) attacks [34].

A crucial aspect of a smart contract VM is the fee
mechanism. Every VM opcode costs a certain fee which
should ideally be proportional to the computational com-
plexity of that opcode. There typically exist a “base”
transaction fee representing the minimum transaction fee5.
Note that due to the halting problem [40] one cannot
anticipate the required fees of smart contract execution
and therefore typically define a maximum fee. Once this
maximum is reached, the execution is terminated. To the
best of our knowledge, we are not aware of a blockchain
that natively supports the payment of transaction fees in
a different currency than the native blockchain currency.

Off-Chain Transactions For use cases such as micro-
payments, on-chain transaction fees and confirmation time
latencies represent significant practical obstacles. Payment
channels allow parties to exchange transactions locally, i.e.
not broadcasting them to the network, and rather update a
local balance sheet. The blockchain is only utilized as a re-
course for channel initiations, disputes and closures. This
permits payment channel participants to send payments
without on-chain fees and short confirmation times. We
refer the reader to a systematization of knowledge [22]
for an overview of off-chain constructions.

2.1. Notation

In the following, we denote H as a cryptographically
secure hash function. Let sk and pk denote secret and
private keys respectively of an asymmetric cryptographic
protocol. The corresponding blockchain address is ob-
tained by addr(pk). We refer to a specific tuple element
by its name in the subscript. Transactions, defined in
Section 3.2, can be broadcast on-chain or sent off-chain.
To capture this, we introduce the functions broadcast(·)
and sendOffChain(·). If necessary we indicate in the
superscript of these functions the blockchain platform,
where the said transaction is issued.

5. The base fee in Ethereum is e.g., 21,000 gas (10,000 in Tezos [21]),
and not applicable to internal transactions.

3. Metatransactions

In this section, we provide a system model and for-
malize metatransactions. We also review existing fee del-
egation schemes. Informally, a metatransaction is a (set
of) transaction(s) that allows paying transaction fees in a
currency other than the native blockchain currency C.

3.1. System Model

In the following, we describe our system model, func-
tionalities and threat model for metatransactions.

3.1.1. Actors. The following actors may be involved in a
metatransaction:
• Sender: a blockchain user with an asymmetric key pair

which issues metatransactions.
• Receiver: a receiver of a metatransaction.
• Relayer: a metatransaction design might involve one

or more non-trusted intermediaries that assist in the
transaction processing.

• Smart contract: a contract to enforce the metatrans-
action protocol logic, e.g., to reimburse miners and/or
intermediaries for their services.

• Miner: choose to accept (meta)transactions within a
mined block.

3.1.2. Informal Functionality. A metatransaction pro-
tocol enables a sender to issue and pay for blockchain
transactions without using C, the native currency of the
blockchain.

3.1.3. Communication model. We assume broadcast
transactions in the P2P network are delivered with a
maximum delay under the bounded synchronous commu-
nication setting [2]. Furthermore, we assume all actors
can access and read the current head of the blockchain
to verify if transactions are appended to the blockchain.
We remark that these are standard assumptions in the
blockchain literature [3], [18].

3.1.4. Threat model. We assume that the cryptographic
primitives of the blockchain hosting the smart contract
are secure. Furthermore, we assume the adversary cannot
corrupt more than x% of consensus participants of the
blockchain (i.e. 50% of the computational power in case
of a PoW blockchain). Note that under the presence of
selfish mining attacks, this threshold may be lowered [17],
[19]. The adversary may corrupt or perform DoS attacks
on intermediaries. Lastly, we assume that senders are not
eclipsed, i.e. they are capable of broadcasting transac-
tions [31], [43], [20].

3.1.5. Security goals. Designing a practical and trust-
minimising metatransaction protocol is non-trivial. For
example, one cannot know a priori which miner is going
to include a transaction within a blockchain block. This
might require to allow anyone that mines a metatransac-
tion to claim the corresponding transaction fee in a non-
native currency C∗. Moreover, for security purposes, trans-
actions composing a metatransaction must be executed
atomically, i.e. either all transactions execute, or none.
Atomicity ensures that the sender has to pay fees, and

2

miners must perform their service if they collect fees. Fi-
nally, compared to ordinary transactions, metatransactions
should not incur additional delays when being included
in a blockchain and in particular should be resilient to
censorship. These observations lead us to the following
informal security goals that metatransactions should ide-
ally satisfy:
Atomicity: A metatransaction may be composed of mul-

tiple transactions (cf. Definition 3.1). To execute a
metatransaction successfully, any sub-transaction of
a metatransaction must be executed atomically, i.e.,
within the same block.

Censorship Resistance: Metatransactions should be as
difficult to censor as regular transactions.

3.2. Formal Definition

We provide the following formalism building on re-
lated work [3], [18] to capture metatransactions.

Definition 3.1. Transaction A transaction is a tuple
tx = (s, r, txFeeC , txFeeC∗ , δ), where s is the sender
and r is the receiver of the transaction. The transaction fee
offered in the native currency is denoted as txFeeC and
txFeeC∗ denotes the transaction fee offered in another
currency C∗ than the native currency C . δ represents a
reference to another transaction. In particular, δ is the
id of a transaction tx′ which should be included in the
blockchain before tx can be appended. We define the id
of a transaction to be idtx = H(tx). Let mined(tx) be a
predicate which is true if tx is appended to the blockchain
and false otherwise. For the time being, we assume that
all transactions are issued on the same blockchain.

Our Definition 3.1 captures the fact that in most
cryptocurrencies, paying transaction fees in C∗ can only
be achieved implicitly through the side-effects of an ad-
ditional transaction on the same blockchain (we discuss
cross-chain metatransactions in Section 8). Intuitively one
can think of a metatransaction as one transaction which
pays no transaction fees in C, coupled with another trans-
action which pays the equivalent fees in C∗. δ allows us to
capture dependency relations between transactions issued
on the same or different blockchains to construct atomic
transactions. Atomicity is required to e.g., prevent an
adversarial miner from stealing sender funds and similarly
to prevent the sender from issuing transactions without
paying due fees. We remark that Definition 3.1 omits
several subtleties of real-world cryptocurrency transac-
tions: for instance, we assume but do not indicate that
transactions are signed by the sender. We are not aware
of any blockchain design that explicitly allows paying
transaction fees in a currency different than the native
currency.

Definition 3.2. Metatransaction A metatransaction
txmeta is a pair of transactions (tx0, tx1), where
tx0,txFeeC = tx0,txFeeC∗ = tx1,txFeeC = 0,
tx1,txFeeC∗ 6= 0 and tx1,δ = idtx0 . We allow tx0 = ∅, if
a single transaction is sufficient to perform a metatrans-
action.

On the avenue towards the first metatransaction de-
signs, we review an existing fee delegation scheme.

Sender Relayer Receiver

(1) Signed message (2) txC

(3) txC*

Figure 1: A relayer fee delegation scheme (not a meta-
transaction design). The dotted arrow (1) represents a
signed off-chain message, while continuous lines represent
regular on-chain transactions. The relayer issues a regular
on-chain transaction on behalf of the sender, and the
relayer is compensated in a non-native currency C∗. Note
that in this example the transaction fees in C∗ is borne by
the receiver, i.e. the sender delegates the transaction fee
payment to the receiver.

3.3. Relayer-based Fee Delegation Scheme

A fee delegation scheme allows a sender to delegate
the payment of transaction fees in C to a non-trusted party,
while receiver reimburses the non-trusted party in C∗. In
this scheme, ultimately, miners receive C for mining the
sender’s transaction [10]. While such a scheme may im-
prove usability, it does not solve the other aforementioned
obstacles that motivate our work (e.g., mandatory rent,
coinism).

A fee delegation scheme involves a non-trusted in-
termediary, referred to as relayer, which performs the
conversion between C∗ and C on behalf of the sender. On
the blockchain, transactions, therefore, appear to be paid
in C. A possible scheme operates as follows (cf. Figure 1).
(1) A sender transmits a signed message to the relayer
off the blockchain. The signed message contains the to-
be-invoked smart contract (or target address), function,
corresponding arguments, etc. (2) The relayer then creates
an on-chain transaction txC which contains this signed
message. txC pays transaction fees in C. The execution of
txC triggers the execution of the second transaction txC∗ ,
which reimburses the relayer for its services in C∗. This
reimbursement is paid by the receiver, cf. Figure 1. The
relayer, therefore, acts as an implicit exchange between C∗
and C. The sender may additionally incentivise the relayer
for its services by paying a small fee. Note that such
fee delegation schemes do not fall under metatransaction
designs (cf. Definition 3.2), because currency C remains
required.

Positively, the execution of txC and txC∗ is atomi-
cally enforced due to their explicit dependence. A major
disadvantage of such fee delegation scheme, however, is
that the relayer can censor a sender or become unavailable
(e.g., due to a crash or a DoS attack). One avenue to
mitigate such weaknesses could be the establishment of
a network of relayers, we, however, leave this to future
work.

4. Metatransaction Designs

In the following section we outline our metatransac-
tion design proposals.

3

Sender

Receiver

Miner

Spendable

(1) tx0

(2) tx1 (3) Claims txFeeC*

Figure 2: The order of transactions involved in the miner-
based metatransaction scheme. Sender transfers transac-
tion fees in C∗ to an anyone-can-spend address. Miners
subsequently collect accrued fees at that address. Note, in
this construction all transactions occur on-chain.

4.1. Miner-based Metatransaction

Our first metatransaction design enables a sender S
to pay transaction fees directly in C∗ to a miner M,
without resorting to an intermediary (cf. Algorithm 1).
The protocol proceeds as follows:

1) S creates a transaction, tx0 = (s0, r0, 0, 0, ∅) which
executes a desired action (e.g. a cryptocurrency trans-
fer or a smart contract invocation), and pays no
transaction fees.

2) A second transaction tx1 =
(s0,A(M), 0, txFeeC∗ , idtx0) triggered by S
or tx0 pays transaction fees for both tx0 and tx1

in C∗ to a miner-can-spend address A(M).
3) M can claim accrued transaction fees in C∗ from the

miner-can-spend address.

Algorithm 1: A miner-based metatransaction con-
struction. A sender creates two transactions, one
which executes an action and doesn’t pay fees, while
the other pays fees in C∗.
1 txmeta = (tx0, tx1) =

((s0, r0, 0, 0, ∅), (s0, addr(G), 0, txFeeC∗ , idtx0);
2 broadcast(txmeta);
3 broadcast((addr(G), rminer, 0, txFeeC∗ , idtx1));

The challenge here is that a sender does not know
beforehand which miner will mine the next block. A
solution is to send the transaction fee to an anyone-can-
spend address, which is likely to be claimed by the next
miner. We could envision that the community agrees on
an address for the sake of clarity and uniformity6. We
remark that in some cryptocurrencies, one might be able
to send fees directly to miners without knowing a priori
who will mine said transaction (the Ethereum Virtual Ma-
chine provides a corresponding endpoint). This minimizes
the added complexity of metatransactions, eliminating the
need for an anyone-can-spend address.

Note that transaction tx0 and tx1 must be atomic,
otherwise sender and miner could steal coins respectively.
The atomicity of these transactions can be guaranteed, for
instance, with a transaction counter.

6. For instance, the address corresponding to the base point G of
the secp256k1 curve. The corresponding secret key is publicly known,
sk = 1, meaning that any miner can easily claim accrued transaction
fees in any given block.

Interestingly, to reduce on-chain costs, multiple tx0

can be batched, while one tx1 rewards the miner for
their atomic inclusion. The upper bound for batching
corresponds to the number of transactions that fit within
a block.

4.2. Payment-channel-based Metatransaction

One bottleneck of the miner-based scheme introduced
in Section 4.1 is the necessity to reimburse miners with
tx1 following each on-chain transaction tx0. This over-
head inflates the blockchain and increases fees. To amor-
tize on-chain costs, a sender might want to pay transaction
fees off-chain (e.g. via payment channels) directly to
miners.

In the following, we show how payment channels can
facilitate metatransactions. One might think of a payment
channel as a balance sheet between the sender S and the
miner M. By updating the balances of the two sides, S
is able to reimburse M without touching the blockchain.
Interestingly, transaction fees are unidirectional (i.e. from
S to M), hence, we make use of simple Spilman-style
payment channels [38]. Considering a channel CS→M,
our proposed payment channel metatransaction scheme
operates as follows:
Channel Establishment To establish CS→M, S neces-

sarily needs to deposit upfront a sufficient amount of
transaction fee collateral in C∗. The initial channel
balance can be described as a function defined as
[S → B0

S ,M → B0
M], where B0

S = BCS→M which
equals the total funds locked in the channel and
B0
M = 0.

Metatransaction Issuing For every on-chain transaction
txi0, S pays the transaction fee txi1,txFeeC∗ to
M through an off-chain transaction txi1.7 To is-
sue txi1, S signs an aggregation transaction tx∑

i

which accumulates all the valid off-chain payments.
In other words, tx∑

i
reflects the latest balance

of CS→M, i.e. [S → Bi−1S − txi1,txFeeC∗ ,M →
Bi−1M + txi1,txFeeC∗]. In such manner, a metatrans-
action txmeta = (txi0, tx

i
1) only requires a single

on-chain transaction.
Channel Closure Whenever the balance of S is depleted

or M decides to finalize all the off-chain payments
on-chain,M can close CS→M by publishing the last
aggregation transaction tx∑

N
. To avoid the funds

locked forever because of an unresponsive miner, a
lifetime is set for CS→M. IfM doesn’t close CS→M
before it expires, S can then close the channel and
takes back all the funds.

The benefit of this scheme is that it allows miners to
amortize the cost of claiming transaction fees by not col-
lecting them after each mined tx0, rather they can claim
those accrued fees whenever they wish to collect them
by simply closing the unidirectional payment channels. In
the payment-channel-based scheme, two extra on-chain
transactions (for channel establishment and closure) are
required for an arbitrary number of metatransactions. On
the contrary, in the miner-based scheme, for N number of
tx0, the miner has to issue N on-chain tx1 accordingly
to gather transaction fees.

7. We denote an transaction that is off-chain by underlining it (i.e.
tx).

4

4.2.1. Satisfying the Security Goals. To satisfy the secu-
rity goals of metatransactions specified in Section 3.1.5,
we emphasize the following atomicity conditions of our
payment-channel-based scheme:
Condition 4.1. M will include txi0 in a block iff the
transaction fee txi1,txFeeC∗ is secured onceM mines txi0.
Condition 4.2. An off-chain transaction txi1 in CS→M is
valid iff txi0 has been mined by M.
Condition 4.3. tx∑

i
can be finanlized on-chain iff every

contained off-chain transaction txi1 is valid, i.e. every on-
chain transaction txi0 has been mined by M.

ThusM may be asked to proof on-chain that txi0 has
been mined by M to make tx∑

N
legitimate. In most

blockchains, transactions in a block are constructed in a
Merkle tree (or a similar structure) with the Merkle root
included in the block header. As the miner of each block is
verifiable,M can perform the proof by presenting Merkle
tree inclusion proofs8 and indicating which block contains
this Merkle root. However, in light of the expensive com-
putation cost of on-chain Merkle tree proofs, we also allow
M to provide the acknowledgement signed by S as the
proof if S is cooperative.

In contrast to other payment channel designs (e.g.
Lightning channels [36], Duplex Micropayment Chan-
nels [12]), Spilman unidirectional channels allow the
sender to stay offline without the risk of losing funds [22].
Because of the unidirection, a rational miner only pub-
lishes the last aggregation transaction which pays the
highest amount. A miner must remain online to detect
a timeout expiration for fraudulent channel closure. In
practice, we can expect a miner to remain online for the
mining process.

Before such scheme is practical, we must solve the
problem that the sender is not aware of which miner
will mine tx0, which means the sender does not know a
priori which miner to pay. Hence, the sender may uphold
concurrently multiple open channels with different miners.
Note, that when a sender issues off-chain payments to
multiple miners, only one of these payments will be valid
and redeemable by a miner. This is guaranteed by the
transaction inclusion proof, the miner needs to provide
when they redeem their earned metatransaction fees.

A miner adopting this scheme must monitor signed
off-chain channel updates. Miners include transactions
from the mempool iff they received a newly updated
channel balance referencing the transaction.

5. Evaluation

In this section, we present our evaluation, compare
the introduced metatransaction proposals qualitatively and
assess quantitatively their induced overhead.

5.1. Current Transaction Usage

We empirically study the distribution of how trans-
actions make use of the native currency in Ethereum.
In Figure 3, we plot the gathered statistics taken from
the Ethereum blockchain, from the genesis block up to

8. By verifying Merkle tree or Merkle–Patricia trie inclusion proofs,
depending what cryptographic accumulator scheme is implemented in
the blockchain. See https://github.com/lorenzb/proveth

2015-07
2016-01

2016-07
2017-01

2017-07
2018-01

2018-07
2019-01

2019-07
0

250000

500000

750000

1000000

1250000

1500000

Tr
an

sa
ct

io
ns

 p
er

 d
ay

ERC20 token transfers
Transactions not transmitting Ether
Ether-only transfers
Transactions transmitting Ether

Figure 3: We observe a gradual increase in the number
of Ethereum transactions that involve the native currency
only for paying transaction fees.

2015-07
2016-01

2016-07
2017-01

2017-07
2018-01

2018-07
2019-01

2019-07
0

20000

40000

60000

80000
Co

un
t o

f 0
-g

as
 p

ric
e

TX
 p

er
 m

on
th

0

1000000

2000000

3000000

4000000
Transaction fee (USD)

Figure 4: The number of 0-gasprice transactions per month
on the Ethereum blockchain correlates well with transac-
tion fees.

block 8,325,000. We differentiate between 4 classes of
transactions:
Transactions transmitting Ether: transactions that

transfer Ether between accounts and may additionally
perform other smart contract calls.

Ether-only transfers: a subset of the previous transac-
tion class, in which transactions only transfer Ether
and do not perform additional smart contract calls.

Transactions not transmitting Ether: transactions that
do not transfer Ether.

ERC20 token transfers: a subset of the previous trans-
action class, in which ERC20 tokens are transferred.

We observe that on the 10th of August 2019,
46.9% (286,736/611,467) of transactions performed were
ERC20 transactions. The majority of transactions, 57.9%
(354,273/611,467), do not transfer Ether; they only in-
volve Ether for paying transaction fees. Based on the
findings in Figure 3, we conclude that in Ethereum, most
transactions use the native currency exclusively to pay
transaction fees. We empirically evaluate the number of
transaction in Ethereum that do not pay any transaction
fees. We do this to quantify the current adoption of
metatransaction schemes.

We found that the number of 0-gasprice transactions
correlates well with transaction fees, i.e., the Spearman
correlation [29] amounts to ρ = 0.5259. This correlation
indicates that whenever transaction fees are relatively
high, miners seem to include their own transactions in

5

https://github.com/lorenzb/proveth

their mined blocks to avoid paying high transaction fees.
We note that 0-gasprice transactions are unlikely to orig-
inate from regular users because 0-gasprice transactions
are not forwarded on the network layer.

Algorithm 2: A payment-channel-based metatrans-
action construction. A sender creates a unidirec-
tional payment channel with a miner locking up
collateralchannel. Sender issues off-chain balance
updates paying transaction fees in C∗. Miner in-
cludes the referenced transaction in a subsequent
block. They can keep open the channel until col-
lateral is depleted or until a pre-determined timeout
expires. For ease of exposition for each transaction
we account a constant transaction fee txFeeC∗ .
1 broadcast((s0, rchannel, 0, collateralchannel, ∅));
2 senderBalance = collateralchannel , counter = 0;
3 while

senderBalance ≥ txFeeC∗andnow ≤ timeout
do

4 sendOffChain((schannel, rminer, 0, (counter+
1) · txFeeC∗ , txcounter

0));
5 txcounter

0 = (s0, r0, 0, 0, ∅);
6 broadcast(txcounter

0);
7 if mined(txcounter

0) then
8 senderBalance =

senderBalance− txFeeC∗ ;
9 counter ++;

10 end
11 end
12 broadcast((schannel, rminer, 0, collateralchannel−

senderBalance, ∅));

5.2. Miner-based Metatransaction

Account-based cryptocurrencies typically apply
nonces to deter replaying transactions [42]. Each
account’s nonce is incremented by one after every
issued transaction. Transactions with invalid account
nonces cannot be mined. Hence, in the context of
metatransactions, account nonces can be used to
facilitate the atomicity of miner-based metatransactions.
Specifically, senders first issue tx0 and subsequently
tx1 with an incremented nonce. Although tx1 pays
the metatransaction fees to miner, solely tx1 cannot
be mined. The tx1 transaction is invalid without the
inclusion of tx0 due to the applied nonce mechanism.
The metatransaction fee in tx1 can be transferred to an
anyone-can-spend address, which is later redeemed by
the miner of the block.

However, for example in Ethereum, one can access the
miner’s address of the current block due to the scripting
language of the platform. Therefore there is no need to
establish an anyone-can-spend address, i.e. senders can
directly transfer metatransaction fees to miners in tx1.
Therefore, in case of Ethereum, each issued miner-based
metatransaction induces the overhead of an additional in-
ternal transaction. The gas overhead of tx0, the additional
transaction, in case of Ethereum, amounts to a 15,188 gas
overhead, cf. Table 2.

We remark that unspent transaction output (UTXO)-
based cryptocurrencies, like Bitcoin, can adopt the miner-
based metatransaction scheme with minimal overhead.

Such metatransaction only contains one additional UTXO,
which essentially implements tx1. Namely, tx1 sends
the metatransaction fee to an anyone-can-spend address,
which can be redeemed by the miner of the block.

5.3. Payment-channel-based Metatransaction

Payment-channel-based metatransactions could poten-
tially incur minimal overhead for the blockchain. Practi-
cally speaking, thousands of metatransactions can be sent
only by issuing two on-chain transactions. Nevertheless,
the on-chain footprint of this construction seems minimal
as two on-chain transactions are necessary to establish and
close the payment channel with the miner, cf. Algorithm 2.

To show the practicability of this scheme we conduct
several measurements. First, we note that as of 2020
March 22, in Ethereum, there are dozens of active mining
pools (cca. 70) 9. We observe that the hashrate distribution
of mining pools follow an exponential distribution with
λ = 2.4045 (χ2 = 6.0053, p = 0.7393). This already
suggests that a handful of established payment channels
with miners might suffice to provide sufficiently fast trans-
action inclusion, cf. Figure 6. Indeed, five mining pools
control as large as 75% of the network’s hashrate. Hence,
as few as five established payment channels per user to
these largest mining pools guarantees approximately 75%
transaction inclusion probability. The incurred gas cost
of opening payment channels is linear in the number of
established channels. Therefore, more opened payment
channels yield only marginal gains in transaction inclusion
probability as the hashrate of miners follow an exponential
distribution.

Repeated usage of metatransactions would render the
payment-channel based construction more practical than
the miner-based construction, cf. Figure 7. In the miner-
based construction, each issued metatransaction produces
a constant, 15, 188 gas overhead (cf. Table 2), while
the payment-channel based construction incurs no addi-
tional gas overhead. Hence, repeated metatransaction us-
age amortizes the cost of opening channels with miners. In
case of Ethereum, the cost of opening a payment channel
is 92, 392 gas. Therefore, if a user issues at least 7, 61, 122
metatransactions, then they can amortize the cost of open-
ing 1, 10 and 20 payment channels with miners, respec-
tively. Nonetheless, whenever a user wants to send cnt
transactions and assuming constant metatransaction fees,
txFee , then the initial deposit amounts to cnt · txFee ·N ,
where N is the number of opened payment channels
to mining pools. Accordingly, requiring initial deposits
from users generates opportunity cost, hence constitutes
a drawback of the payment-channel based construction.
However, we remark that if we assume a dense payment
channel network between users and miners, then users
might reduce their initial deposit costs as they could route
and rebalance their discharged payment channels using
others’ non-discharged channels [25]. Consequently, an
in-depth practicability and utility analysis of the payment-
channel based scheme is a complex problem, which we
leave for future work.

The closure of the payment channel may be compu-
tationally lightweight in the graceful case, i.e. when there
is no dispute between miner and sender. Although in the

9. Source: https://etherscan.io/stat/miner?blocktype=blocks

6

https://etherscan.io/stat/miner?blocktype=blocks

Blockchain Sender Miner

Opens Channel

Channel creation confirmed

Issues txi0

Signs updated channel balance tx∑
i

Mines txi0

N metatransactionsN metatransactions i ∈ [1, N]

Closes Channel by publishing tx∑
N

Figure 5: Sequence diagram of the payment-channel-based metatransaction construction. Sender opens a unidirectional
payment channel with miner. Subsequently, a sender can issue multiple on-chain zero-fee transactions, while paying the
corresponding transaction fee off-chain to a miner. Once the collateral of the channel is depleted or a miner chooses to
collect fees, the miner closes the channel by signing and broadcasting the latest channel balance tx1.

0 20 40
Established payment channels

0.4

0.6

0.8

1.0

In
clu

sio
n

pr
ob

ab
ilit

y

Inclusion Probability
Channel Opening Gas Costs

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

Ga
s

Figure 6: Metatransaction inclusion probability as the
function of established payment channels in the payment-
channel-based metatransaction scheme.

worst case, miners need to include transaction inclusion
proofs, whose added overhead may vary quite widely
from 850,000 to millions of gas, in case of Ethereum,
cf. Table 2.

5.4. Fee Delegation vs. Metatransactions

We compare the presented metatransaction and fee
delegation scheme considering the following properties:
Non-custodial Do senders remain the custodians of their

assets?
Liveness Do sender rely on an online third party besides

the underlying blockchain?

0 50 100 150 200
Issued metatransactions

0

1000

2000

3000

Ga
s (

10
00

 g
as

)

Miner-based costs
1 channel
10 channels
20 channels

Figure 7: Break-even points for the payment-channel-
based metatransaction construction in comparison with the
miner-based construction.

Multiple Delegators Does the solution support multiple
delegators/relayers?

Integration Can a smart contract application adopt the
metatransaction protocol without code changes?

Censorship resistance Can transactions be censored?

To quantitatively evaluate the practicality of metatrans-
actions we measure the incurred overhead of the discussed
proposals in terms of gas costs and the number of addi-
tional transactions in Table 2. Our experimental setup is
structured as follows. On a local Ethereum private network
(geth v1.8.22.), we deployed an ERC20 token contract
with extended functionalities to enable metatransactions.

7

Miner
Section 4.1

Relayer
Section 3.3

Channel
Section 4.2

Non-custodial yes yes yes

Liveness no yes no

Multiple delegators yes no yes

Integration no no no

Censorship resistance yes no yes

Table 1: Comparing qualitatively two metatransaction and
one fee delegation scheme.

Miner Relayer Channel

Tx per Block k internal tx k internal tx 0∗

Gas per Tx 15,188 47,241 0∗

Table 2: Added overhead to regular Ethereum transac-
tions in terms of incurred gas costs and additional issued
transactions for the various metatransaction proposals. We
denote the number of metatransactions included in a block
with k. All metatransaction schemes require k additional
internal transactions, except the channel-based construc-
tion. Note that we omit the channel-opening (250,000 gas)
and closing (850,000 gas) costs, since they are amortized
over the course of numerous issued metatransactions. Us-
ing the channel construction does not incur on-chain fees
since they are paid off-chain.

For the miner and channel-based metatransactions we
created a separate function on the ERC20 token contract
(Solidity version 0.5) that performs the reimbursement of
a miner. We quantify the overhead of issuing a metatrans-
action with the execution of these functions. Therefore
we measured the gas costs of calling these functions10.
We observe that the miner-based scheme is the most
lightweight followed by the relayer-based.

We measure the caused impact on Bitcoin’s,
Ethereum’s and Tezos’ throughput to assess the economic
viability of metatransaction proposals. When the fraction
of metatransactions increases, throughput monotonically

10. EIP-1108, https://github.com/ethereum/EIPs/blob/master/EIPS/
eip-1108.md is expected to render the private (meta)transaction
proposals [8], [41] significantly cheaper.

0.00 0.25 0.50 0.75
Fraction of metatransactions

4

6

8

10

12

Tr
an

sa
ct

io
ns

 p
er

 se
co

nd Miner (ETH)
Relayer (ETH)
Miner (Tezos)
Miner (BTC)

Figure 8: Throughput analysis of various metatransaction
and fee delegation proposals. Miner-based construction
yields the highest throughput, followed by the relayer-
based metatransaction scheme. For each blockchain and
proposal we calculated the system’s throughput as a func-
tion of the fraction of metatransactions among all issued
transactions on the blockchain.

decreases.
In case of Bitcoin, one can implement the miner-

based protocol using a recent proposal11. Any transaction
can implement token transfers in Bitcoin by adding a
single 0-value coin (unspent transaction output) to the
transaction data. The average size of an unspent trans-
action output (UTXO) amounts to 93.45 bytes [13]. On
October 21, 2019, 351,791 transactions were appended to
the blockchain with an average 1637 byte size per transac-
tion. We observe that if all transactions in Bitcoin would
apply the miner-based metatransaction scheme, then the
throughput of the blockchain would decrease from 4.07
transaction per second to 3.86 transaction per second, cf.
Figure 8.

For Ethereum and Tezos, we calculated with a
8,003,131 and 4,000,000 block gas limit12 and with a
11.62 and 6.67 transaction per second for Ethereum and
Tezos respectively, as observed on July 16, 2019. Added
gas overheads per metatransaction were taken from Ta-
ble 2. Ethereum’s throughput decreases by 48.13% and
22.97% if all transactions in a block adapt the relayer
fee delegation and miner metatransaction schemes respec-
tively, cf. Figure 8. In case of Ethereum, the miner-based
scheme in a non-backward compatible way only requires
a single token transfer to the miner’s address. On the other
hand, Tezos currently only supports this metatransaction
protocol (10,000 gas per transaction) with the difference
that there one needs to apply an anyone-can-spend address
as the miner’s address of a block is not available in
the scripting language. The relayer-based fee delegation
scheme is slightly more computationally involved. Overall
we found that miner-based metatransactions incur the least
overhead.
Deploying metatransactions In most blockchain P2P
networks, 0-fee transactions are considered as a DoS
attack and are not forwarded among peers. Therefore, we
believe that the majority of 0-gasprice transactions we
have witnessed in Figure 4 are originating from miners.
To facilitate metatransactions peers could allow those
0-gasprice transactions which reimburse miners in non-
native currencies. This added verification would yield in-
significant overhead both for miners and other full nodes.
Furthermore, obstacles to deploying metatransactions are
that miners might not accept tokens used for metatrans-
actions as legal tender. Negotiating a suitable token as a
payment method can be cumbersome and challenging.

6. Economic and security implications of
metatransactions

Here we discuss the economic and security impact
of metatransactions. We describe one possible avenue to
perform a malicious takeover of a blockchain’s native
currency.

6.1. Discussing the economic impact of meta-
transactions

In traditional macroeconomics, participants of an
economy typically look for substitutes of their own cur-

11. See: https://simpleledger.cash
12. Source: https://etherscan.io/chart/gaslimit

8

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1108.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1108.md
https://simpleledger.cash
https://etherscan.io/chart/gaslimit

0.2 0.4
Adversarial hashrate α

0

2

4

6

8

10

12
N

u
m

b
er

of
co

n
fir

m
at

io
n

s
k

10−1

101

103

105

107

D
iff

er
en

ce
of

d
ou

b
le

sp
en

d
va

lu
es
v
m
et
a

d
an

d
v
n
a
ti
v
e

d

Figure 9: Difference of the security values vd of Ethereum,
when it is equipped with metatransactions, vmeta

d , and
when it is not, vnatived . Security is expressed as the mini-
mal double-spending value vd, which is strictly larger than
the honest mining reward. Longer confirmations and less
potent malicious miners increase security.

rency when it is sharply devalued or inflated. Most com-
monly these substitutes are more stable currencies of
other countries [35]. On the other hand, in cryptoeco-
nomics, most of the cryptocurrencies exhibit immense
volatility [15], while there are also available deployed
stablecoins [39]. Therefore cryptocurrencies seem like an
ideal setting for traditional currency substitution, in our
jargon metatransactions. Hence by applying the theory of
currency substitution to the field of cryptoeconomics, one
can expect cryptocurrency users to substitute their volatile,
unstable native cryptocurrencies (e.g. ether) with stable-
coins (e.g. DAI) issued on top of their used cryptocurrency
platform.

Metatransactions would decrease the demand for a
native currency while likely increasing demand for other
currency C∗. For instance, if all transactions are meta-
transactions and paid in the stablecoin DAI [39], then
metatransaction fees paid in DAI would have increased
DAI daily volume13 by a minimum of 1.02% up to 3.26%
as observed on August 13, 2019, and February 19, 2019,
respectively. Additionally, senders are more likely to use
other currencies if their native currency’s inflation rate
increases [14].

6.2. Quantifying the security impact of meta-
transactions

To measure the security of blockchains equipped with
metatransactions, we apply the quantitative framework
introduced in [19]. Namely, we adopt the value of double-
spending, vd, as a generic metric for the security of
blockchains. More precisely, vd denotes the minimal
double-spending value, which is strictly larger than the
honest mining reward:

vd = min{vd|∃π ∈ A : R(π, P, vd) > R(honest mining, P)},
(1)

where R is the reward matrix, A is the action space, P
is the stochastic transition matrix and π is a policy. To
find the optimal policy π we use the Markov-Decision
Processes (MDP).

13. Source: https://coinmarketcap.com/currencies/dai/historical-data/

1 hour 1 day 1 week

51% attack $360,114 $8,642,736 $60,499,152

Currency takeover $8290 $198,963 $1,392,740

Table 3: The financial costs of launching a 51% attack
and a currency takeover on the Ethereum blockchain.

We assume a rational adversary that is interested in
maximizing his benefits, measured in financial gains, in
the network. We extend the MDP of [19], to model (meta)-
transaction fees as well. We model (meta)-transaction fees
as added constants on top of block rewards. For instance,
as of writing, in case of Ethereum approximately 5%
of the full block reward comes from transaction fees.
Furthermore, we assume that the metatransaction token
is as liquid as the native currency. We leave it as a
fascinating future work to model dynamically changing
(meta)transaction fees as well. We observe that there is
no major difference between the security of blockchains
either they apply metatransactions or not in the constant
transaction fee model, see Figure 9. Therefore the intro-
duction of metatransactions does not negatively impact the
security of a PoW blockchain. Another interesting avenue
for future work would be to extend the MDP to allow
modelling of bribing attacks. Double-spender adversaries
might incentivise miners to mine on top of their branch
by offering large (meta)transaction fees to them [30].

6.3. Blockchain currency takeover

One possible application of metatransactions is the
potential replacement of the native-currency C for pay-
ing transaction fees. An attacker motivated by making
a certain currency C∗ dominant can displace the native
currency of any blockchain by subsidizing transactions
offering transaction fees in C∗. For each transaction tx
offering metatransaction fee txFeeC∗ , the attacker reim-
burses transaction sender with an equal amount in C∗.
From a sender perspective, the attack essentially results
in feeless transactions. Such a currency takeover can be
launched trustlessly by a token contract and it incentivises
sender to no longer use C as a transaction fee currency.

A blockchain currency takeover may be executed as
follows:

1) The attacker deploys the CurrencyTakeover smart
contract and advertises its address. The contract is-
sues a non-native currency C∗, which may be used
to pay transaction fees.

2) Sender can issue metatransactions txmeta =
(tx0, tx1), where tx1 calls the CurrencyTakeover
contract and transfers transaction fees tx1,txFeeC∗ in
C∗ to miners.

3) Whenever sender issue metatransactions and tx1 is
executed, senders are automatically and trustlessly
reimbursed. Particularly, sender are refunded with the
same amount, they have just sent to miners in trans-
action fees, i.e. tx1,txFeeC∗ in C∗. Thereby, due to
the attacker, sender effectively spend no transaction
fees if they use the currency C∗ to pay the transaction
fees.

To put the financial costs of a currency takeover into
perspective we compare it with a rental 51% attack, where
the attacker rents mining hardware, cf. Table 3. Renting an

9

https://coinmarketcap.com/currencies/dai/historical-data/

NVIDIA K80 GPU Ethereum miner on Amazon’s Elastic
Compute Cloud (EC2) platform costs US$0.20 per hour
and it is able to perform 24MH/s [5]. As of 16 September
2019 the Ethereum network hashrate was approximately
2.2TH/s 14. On the same day, we observed a US$197.11
Ether price and that 1009.4 Ether was paid for transaction
fees.

We remark that similar to the rental 51% attack, also
the currency takeover is temporary unless wallets and full
nodes support metatransactions. The attack stops once
the attacker does not hold funds to reimburse transaction
sender. Furthermore, note, that currency takeover is a
milder attack as it does not allow double-spending.

6.3.1. Subsidy pool maintenance. As mentioned above,
a crucial aspect of the currency takeover is to maintain
and sustain the subsidy pool. This is essential for the
adversary in order to uphold their currency takeover. If
the subsidy pool was depleted, the attacker could not
subsidise users anymore to send metatransactions, hence
users would not have additional financial incentives to
issue metatransactions. Let X denote the metatransaction
fee of a transaction issued by a user and let f(X) be
the subsidy offered by the attacker after every issued
metatransaction. In the following, we consider two cases.
• f(X) = X . Naively, an adversary might set f(·) to be

the identity function. In this case, a counter-attacker,
e.g. a miner or a wealthy entity, could rapidly deplete
the subsidy pool just by issuing metatransactions with
large fees. Note, that in this case, the counter-attack
is essentially free. In summary, the problem with the
identity function is that transaction senders are not in-
centivised to issue transactions with their true valuation
of the transaction fee. However, this can be amended.

• f(X) =
√
X . To avoid warped incentives in the trans-

action fee valuation, one could apply another family
of monotonically increasing functions. We propose the√· function since there exists a well-known incentive-
compatibility theorem from the quadratic voting litera-
ture [28]. One might think of f(X) as the number of
votes and X as the cost of acquiring f(X) votes. It was
shown by Lalley and Weyl [28] that the equilibrium is
when users put their true valuation of X , as they only
have a marginal increase in their acquired votes (in our
case metatransaction fee subsidy). Put differently, this
reward function achieves that users will be incentivised
to apply transaction fees they would use under regular
circumstances. Hence, they will not be incentivised to
counter-attack and deplete the subsidy pool.

7. Related Work

We build upon a rich body of literature understanding
how transaction fees affect the security provisions of
cryptocurrencies. Whale transactions are transactions with
an anomalously large transaction fee to convince miners
to fork the current chain [30]. Bonneau et al. introduce
the notion of bribery attacks [6], which are conceptually
related as in a bribery attack an attacker incentivises other
miners to mine on a fork preferred by the attacker. In
hostile blockchain takeovers, an attacker with an extrinsic

14. Source: https://etherscan.io/chart/hashrate

motivation disrupts the consensus process [5]. Similar in
spirit, we devise a blockchain currency takeover attack
to replace the native currency of a blockchain as trans-
action fee currency. Möser and Böhme were the first to
empirically analyse Bitcoin’s nascent transaction fee mar-
ket [32]. Kroll et al. [27], Houy [23], and Kaskaloglu [24]
consider the economics of Bitcoin transaction fees in
the presence of adversaries. Additionally, they discuss
potential changes to transaction fees and their policies.
Easley et al. assert that Bitcoin without transaction fees
is not viable [16]. Even though Bitcoin block rewards
steadily decrease and the transaction fee market became
more efficient and mature, Carlsten et al. show that
no cryptocurrency remain stable in a block reward-free
regime [11]. We remark that all these works studied a
single-currency setting. To the best of our knowledge, we
are the first to study metatransactions and assess their
security provisions.

Furthermore, we also consider the economic literature
about currency substitution and multi-currency economies
as related work as they also investigate and model the
impact of introducing multiple currencies as legal tender
in a potentially open economy [1], [14]. More volatile
exchange rates are predicted in multi-currency settings and
sender are anticipated to adopt less inflated currencies.
Nonetheless, these results might be applicable only partly
as economic literature assumes the existence of developed
economies behind currencies, while cryptocurrencies gen-
erally lack fully-fledged economies, most of them are still
only considered as speculative assets.

8. Future directions

Metacoinbase So far, we only considered metatransac-
tions to pay for transaction fees. With the flexibility of
smart contract based blockchains, however, one could
design a new block reward atop an existing blockchain,
which is paid out in a currency C∗. Such metacoinbase
reward could be paid out to a miner under specific con-
ditions (e.g., the reward is only paid if the miner did not
accept C as a currency to pay transaction fees). Carlsten
et al. [11] show that cryptocurrencies do not remain stable
in a block reward-free regime, further motivating the
introduction of new block rewards.

Cross-chain Metatransactions A sender on blockchain
B0 might want to pay transaction fees to miners in cur-
rency C1 of blockchain B1. This would require for a
miner in B0 to be aware of B1, and prove to B1 that
the sender’s transaction in B0 was indeed included in the
blockchain. Different techniques might allow performing
such constructions [9], [26], [37], we, however, leave
further details for future work.

Private Fee Auction Current blockchain transaction fee
designs correspond to a public auction format. The trans-
actions of a sender that pays the most fees are likely
included first in a blockchain. Our payment-channel based
metatransaction proposal (cf. Section 4.2) is to our knowl-
edge the first scheme which allows hiding transaction fees
from competing sender. The consequences of such private
auction mechanism would be interesting to study in future
work.

10

https://etherscan.io/chart/hashrate

References

[1] Akçay, O.C., Alper, C.E., Karasulu, M.: Currency substitution and
exchange rate instability: The turkish case. European Economic
Review 41(3-5), 827–835 (1997)

[2] Attiya, H., Welch, J.: Distributed computing: fundamentals, simu-
lations, and advanced topics, vol. 19. John Wiley & Sons (2004)

[3] Badertscher, C., Maurer, U., Tschudi, D., Zikas, V.: Bitcoin as a
transaction ledger: A composable treatment. In: Annual Interna-
tional Cryptology Conference. pp. 324–356. Springer (2017)

[4] Berentsen, A., Schär, F.: Stablecoins: The quest for a low-volatility
cryptocurrency (2019)

[5] Bonneau, J.: Hostile blockchain takeovers (short paper). In: Inter-
national Conference on Financial Cryptography and Data Security.
pp. 92–100. Springer (2018)

[6] Bonneau, J., Felten, E.W., Goldfeder, S., Kroll, J.A., Narayanan,
A.: Why buy when you can rent? bribery attacks on bitcoin
consensus (2016)

[7] Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J.A.,
Felten, E.W.: Sok: Research perspectives and challenges for bitcoin
and cryptocurrencies. In: 2015 IEEE Symposium on Security and
Privacy. pp. 104–121. IEEE (2015)

[8] Bünz, B., Agrawal, S., Zamani, M., Boneh, D.: Zether: Towards
privacy in a smart contract world. IACR Cryptology ePrint Archive
2019, 191 (2019)

[9] Bünz, B., Kiffer, L., Luu, L., Zamani, M.: Flyclient: Super-light
clients for cryptocurrencies. IACR Cryptology ePrint Archive 2019,
226 (2019)

[10] Buterin, V.: Layer 2 gas payment abstraction (2018), https://
ethresear.ch/t/layer-2-gas-payment-abstraction/4513

[11] Carlsten, M., Kalodner, H., Weinberg, S.M., Narayanan, A.: On
the instability of bitcoin without the block reward. In: Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Commu-
nications Security. pp. 154–167. ACM (2016)

[12] Decker, C., Wattenhofer, R.: A fast and scalable payment network
with bitcoin duplex micropayment channels. In: Symposium on
Self-Stabilizing Systems. pp. 3–18. Springer (2015)

[13] Delgado-Segura, S., Pérez-Sola, C., Navarro-Arribas, G., Herrera-
Joancomartı́, J.: Analysis of the bitcoin utxo set. In: International
Conference on Financial Cryptography and Data Security. pp. 78–
91. Springer (2018)

[14] Drenik, A., PEREZ, D.J.: Pricing in multiple currencies in domestic
markets. Manuscript, Columbia University (2017)

[15] Dyhrberg, A.H.: Bitcoin, gold and the dollar–a garch volatility
analysis. Finance Research Letters 16, 85–92 (2016)

[16] Easley, D., O’Hara, M., Basu, S.: From mining to markets: The
evolution of bitcoin transaction fees. Journal of Financial Eco-
nomics (2019)

[17] Eyal, I., Sirer, E.G.: Majority is not enough: Bitcoin mining is
vulnerable. Communications of the ACM 61(7), 95–102 (2018)

[18] Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone proto-
col: Analysis and applications. In: Annual International Conference
on the Theory and Applications of Cryptographic Techniques. pp.
281–310. Springer (2015)

[19] Gervais, A., Karame, G.O., Wüst, K., Glykantzis, V., Ritzdorf,
H., Capkun, S.: On the security and performance of proof of
work blockchains. In: Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security. pp. 3–16.
ACM (2016)

[20] Gervais, A., Ritzdorf, H., Karame, G.O., Capkun, S.: Tampering
with the delivery of blocks and transactions in bitcoin. In: Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security. pp. 692–705. ACM (2015)

[21] Goodman, L.: Tezos: A self-amending crypto-ledger position paper.
Aug 3, 2014 (2014)

[22] Gudgeon, L., Moreno-Sanchez, P., Roos, S., McCorry, P., Ger-
vais, A.: Sok: Off the chain transactions. IACR Cryptology ePrint
Archive 2019, 360 (2019)

[23] Houy, N.: The economics of bitcoin transaction fees. GATE WP
1407 (2014)

[24] Kaskaloglu, K.: Near zero bitcoin transaction fees cannot last
forever (2014)

[25] Khalil, R., Gervais, A.: Revive: Rebalancing off-blockchain pay-
ment networks. In: Proceedings of the 2017 ACM SIGSAC Con-
ference on Computer and Communications Security. pp. 439–453
(2017)

[26] Kiayias, A., Miller, A., Zindros, D.: Non-interactive proofs of
proof-of-work. IACR Cryptology ePrint Archive 2017(963), 1–42
(2017)

[27] Kroll, J.A., Davey, I.C., Felten, E.W.: The economics of bitcoin
mining, or bitcoin in the presence of adversaries. In: Proceedings
of WEIS. vol. 2013, p. 11 (2013)

[28] Lalley, S.P., Weyl, E.G.: Quadratic voting: How mechanism de-
sign can radicalize democracy. In: AEA Papers and Proceedings.
vol. 108, pp. 33–37 (2018)

[29] Lehman, A.: JMP for basic univariate and multivariate statistics: a
step-by-step guide. SAS Institute (2005)

[30] Liao, K., Katz, J.: Incentivizing blockchain forks via whale trans-
actions. In: International Conference on Financial Cryptography
and Data Security. pp. 264–279. Springer (2017)

[31] Marcus, Y., Heilman, E., Goldberg, S.: Low-resource eclipse at-
tacks on ethereum’s peer-to-peer network. IACR Cryptology ePrint
Archive 2018, 236 (2018)

[32] Möser, M., Böhme, R.: Trends, tips, tolls: A longitudinal study of
bitcoin transaction fees. In: International Conference on Financial
Cryptography and Data Security. pp. 19–33. Springer (2015)

[33] Nakamoto, S., et al.: Bitcoin: A peer-to-peer electronic cash system
(2008)

[34] Perez, D., Livshits, B.: Broken metre: Attacking resource metering
in evm. arXiv preprint arXiv:1909.07220 (2019)

[35] Piontkovsky, R., et al.: Dollarization, inflation volatility and un-
derdeveloped financial markets in transition economies. Economics
Education and Research Consortium Working Paper 3(02) (2003)

[36] Poon, J., Dryja, T.: The bitcoin lightning network: Scalable off-
chain instant payments (2016)

[37] Prestwich, J.: How to validate bitcoin payments in ethereum (for
only 700k gas!) (2018)

[38] Spilman, J.: Anti dos for tx replacement (2013)

[39] Team, M.: The dai stablecoin system. URl: https://makerdao.
com/whitepaper/DaiDec17WP. pdf (2017)

[40] Turing, A.M.: On computable numbers, with an application to the
entscheidungsproblem. Proceedings of the London mathematical
society 2(1), 230–265 (1937)

[41] Williamson, Z.: The anonymous zero-knowledge transactions with
efficient communication (aztec) protocol (2018), https://github.
com/AztecProtocol/AZTEC/blob/master/AZTEC.pdf

[42] Wood, G., et al.: Ethereum: A secure decentralised generalised
transaction ledger. Ethereum project yellow paper 151(2014), 1–
32 (2014)

[43] Wüst, K., Gervais, A.: Ethereum eclipse attacks. Tech. rep., ETH
Zurich (2016)

11

https://ethresear.ch/t/layer-2-gas-payment-abstraction/4513
https://ethresear.ch/t/layer-2-gas-payment-abstraction/4513
https://github.com/AztecProtocol/AZTEC/blob/master/AZTEC.pdf
https://github.com/AztecProtocol/AZTEC/blob/master/AZTEC.pdf

	1 Introduction
	2 Background
	2.1 Notation

	3 Metatransactions
	3.1 System Model
	3.1.1 Actors
	3.1.2 Informal Functionality
	3.1.3 Communication model
	3.1.4 Threat model
	3.1.5 Security goals

	3.2 Formal Definition
	3.3 Relayer-based Fee Delegation Scheme

	4 Metatransaction Designs
	4.1 Miner-based Metatransaction
	4.2 Payment-channel-based Metatransaction
	4.2.1 Satisfying the Security Goals

	5 Evaluation
	5.1 Current Transaction Usage
	5.2 Miner-based Metatransaction
	5.3 Payment-channel-based Metatransaction
	5.4 Fee Delegation vs. Metatransactions

	6 Economic and security implications of metatransactions
	6.1 Discussing the economic impact of metatransactions
	6.2 Quantifying the security impact of metatransactions
	6.3 Blockchain currency takeover
	6.3.1 Subsidy pool maintenance

	7 Related Work
	8 Future directions
	References

