

Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the

published version when available.

Downloaded 2024-04-28T12:10:44Z

Some rights reserved. For more information, please see the item record link above.

Title Enrichment of blockchain transaction management with
semantic triples

Author(s) Yapa Bandara, Kosala; Thakur, Subhasis; Breslin, John

Publication
Date 2020-11-02

Publication
Information

Yapa Bandara, Kosala, Thakur, Subhasis, & Breslin, John.
(2020). Enrichment of blockchain transaction management
with semantic triples. Paper presented at the 3rd IEEE
International Conference on Blockchain (Blockchain - 2020)
online conference, Rhodes Island, Greece, 02-06 November,
doi: 10.13025/4t0c-e925

Publisher National University of Ireland Galway

Link to
publisher's

version
https://doi.org/10.13025/4t0c-e925

Item record http://hdl.handle.net/10379/16209

DOI http://dx.doi.org/10.13025/4t0c-e925

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/

Enrichment of Blockchain Transaction Management
with Semantic Triples

Kosala Yapa Bandara
The Insight Centre for Data Analytics
National University of Ireland Galway

Galway, Ireland
kosala.yapa@nuigalway.ie

Subhasis Thakur
The Insight Centre for Data Analytics
National University of Ireland Galway

Galway, Ireland
Subhasis.thakur@nuigalway.ie

John Breslin
The Insight Centre for Data Analytics
National University of Ireland Galway

Galway, Ireland
john.breslin@nuigalway.ie

Abstract—Enterprise business transactions have both public
and private information; hence blockchain adaptation to an
enterprise business application needs current blockchain plat-
forms to support both public and private information. Public
blockchains (permissionless) are optimized for transparency;
hence the sharing of private and sensitive information is chal-
lenging. On the other hand, private blockchains (permissioned)
separate information about a transaction by generating a pub-
lic transaction and a set of private transactions and treat
them separately. This separation weakens the cohesiveness of
transaction information and develops an extra burden when it
is necessary to connect both public and private information
which is not duly addressed in the literature. For example,
auditing, regulatory activities, certifications, and traceability
need both the public and private information about transactions.
This paper uses semantic triples and introduces the Triples
for Transactions(T4T) model to define blockchain transactions,
improve cohesiveness and resolve the extra burden of connecting
both private and public transactions. This paper presents a
user-driven transaction analysis, transaction modelling using
the T4T model, semantic querying, and REST endpoints to
enrich transaction management. Sets of semantic triples can
define both public and private information about a transaction
while preserving cohesiveness of the information. This approach
supports point-to-point sharing of sensitive information while
preserving implicit relationships between both private and public
information. We have implemented an auditing scenario in the
proposed approach adopting Hyperledger Fabric and compared
for performance with Hyperledger Fabric. The results showed
that the proposed approach reduces the number of transaction
cycles by 66% compared to Hyperledger Fabric and the per-
formance of information retrieval is in O(N). This result is a
significant improvement compared to Hyperledger Fabric.

Index Terms—Blockchain, Traceability, Semantic Triples, Hy-
perledger Fabric

I. INTRODUCTION

Public blockchain platforms create public, immutable and
transparent transactions while protecting the user’s anonymity,
for example, Ethereum [1], Bitcoin [2], and Litecoin [3]. They
are permissionless decentralized blockchains where anyone
can join, read and write transactions but no one has control
over the network. On the other hand, private blockchain
platforms place restrictions on who can participate and in
what transactions, for example, Hyperledger Fabric [4], and
Quorum [5]. They are permissioned blockchains which sepa-
rate transactions as public and private transactions.

In enterprise business applications, a transaction has both
private and public information [6]. For example, informa-
tion shared between wholesale buyers and sellers can have
sensitive pricing details and none-sensitive types of goods
and quantity details. However, decentralised ledgers in a
blockchain maintain the same state by storing a transaction in
all the ledgers. In Hyperledger Fabric, hashes of both private
and public transactions are recorded on the public ledger
while keeping private records on the participants’ private data
stores. Hyperledger Fabric introduces private channels and
private data collections to manage private transactions.

Permissioned blockchain platforms are mainly used for
enterprise business applications [7]–[9]. However, current
permissioned blockchain platforms separate transactions into
private transactions and public transactions, and treat them
separately, for example, Hyperledger Fabric [4] and Quorum
[5]. There is no guarantee that public and private transactions
are placed in blocks preserving cohesiveness of the informa-
tion. The privacy of private transactions is preserved since
hashes of them are kept on the public ledger. However, this
separation destroys the cohesiveness of transaction informa-
tion and adds an extra overhead when searching and querying
of both public and private information of a transaction. This
limitation is not duly addressed in the literature so far, and
that is the main focus of this paper. For example, analytics for
predictions, regulatory activities, auditing, certifications, and
traceability need both private and public information about
transactions hence destroying cohesiveness is adding an extra
overhead for searching and querying transactions in a very
large blockchain ledger.

On the other hand, semantic triples enable building both
implicit and explicit relationships between subjects and ob-
jects [10]. The semantic triples also support rich seman-
tic queries and semantic reasoning for information retrieval
and validation of relationships [11]. This is a promising
technology to model transactions as semantic triples while
preserving cohesiveness of private and public information.
Moreover, information retrieval and transactions validations
can be further supported by semantic queries and semantic
reasoning, respectively.

We introduced the T4T model to define a transaction as a

Fig. 1. Private data store in Hyperledger Fabric

collection of semantic triples while preserving cohesiveness
of both public and private information about a transaction.
This approach supports point-to-point sharing of sensitive
information while preserving implicit relationships between
both private and public information. In the proposed approach,
both private and public information about a transaction is
analysed, modelled, encrypted and transferred to public ledger
using blockchain network and private data collections using
gossip protocol as in Hyperledger Fabric [4]. The transport-
level security is governed by public-key cryptography and
security certificates [12]. However, the proposed approach
does not need one organisation to maintain more than one
private data stores as private data collections in Hyperledger
[13].

In the remainder of this paper, Section II discusses state
of the art regarding private and sensitive data management in
blockchains while identifying challenges. Section III presents
our proposed model for transaction modelling while detailing
the realization in subsection A. Section IV illustrates the
transaction flow of the proposed approach, which is near to
Hyperledger Fabric. Section V describes the implementation
and evaluation of the proposed approach for an auditing
scenario. Section VI concludes while discussing contributions
and directions for future research.

II. LITERATURE REVIEW

The public (permissionless) blockchain platforms are opti-
mised for transparency, and transactions are public and trans-
parent. For example, Bitcoin [2], Ethereum [1], and Litecoin
[3]. However, the permissioned blockchain platforms separate
transactions into public transactions and private transactions,
for example, Hyperledger Fabric [4] and Quorum [5]. The
private transactions share private and sensitive data between
participants in a network [14]. The permissioned blockchain
platforms are mainly used for enterprise business applications
[7]–[9].

Ethereum is a secure decentralised ledger which is opti-
mised for transparency; hence it is challenging to share secrets
on the platform [1]. The notion of private transactions and

public transactions are introduced in Quorum [5]. Quorum
extends the transaction model of Ethereum [1] to include an
optional privateFor parameter and a new IsPrivate method to
deal with such transactions. On the other hand, Hyperledger
Fabric introduces private data collections, which allow a
defined subset of organisations on a channel the ability to
endorse, commit, or query the private data [13]. The private
data is sent peer-to-peer via gossip protocol to only the
organisations authorised to see it. The ordering service is not
involved here, and orderer does not see the private data. The
hash of the private data is endorsed, ordered and written to
the ledgers of every peer on the channel as in figure 1 [13].

The hashes of private data go through the orderer to public
ledgers and preserve privacy. The hash can be used for
state validation and audit purposes. In this approach, if a
transaction has both private and public information, it will
be decomposed into a public transaction and a set of private
transactions, which create several records in the public ledger
and private data stores. Moreover, different hashes are created
for each transaction. This leads to complicate transaction-
specific querying from both public ledger and private data
collections because an extra effort is needed to search and
join query related information.

Authors in [15] propose a secure-MPC (multi-party compu-
tation) protocol to support private data on Hyperledger Fabric.
The participants in the network store their private data on the
ledger that are encrypted with their own secret key. When
private data is needed in a smart contract, the party who has
the key decrypts it and uses the decrypted value. However,
private data is stored in the distributed ledger enabling access
if the secret key is stolen.

A set of successful use cases of blockchain implementa-
tions is summarized in [16], for example, Danish shipping
company Maersk – a blockchain application for international
logistics, Provenance – a pilot project in Indonesia to enable
traceability in the fishing industry, Alibaba – a blockchain to
fight for food fraud, Walmart – tracking produce from Latin
America to the USA, and Intel’s solution to track seafood sup-
ply chain. The traceability in a supply chain is a challenging

Fig. 2. T4T Model (Triples for Transactions Model)

area to explore [17]. The use of semantics in a blockchain
to improve the scalability of IoT is discussed in [18]. In
current blockchain architecture, distributed ledgers provide
transaction information accessible to all the participants in
a blockchain network providing a greater transparency [19].
However, organizations are reluctant to expose sensitive in-
formation in a public ledger. The privacy, scalability and lack
of governance are still significant concerns for large scale
industrial adaptation of blockchain paradigms [20].

The separation of transactions as private and public trans-
actions weakens cohesiveness of the transaction information
and adds an extra overhead on searching and querying when
both the public and private information about a transaction
is needed. For example, analytics for predictions, regulatory
activities, traceability, and auditing need both the private
and public information about transactions. This separation
of concerns and weakening the cohesiveness are not duly
addressed in the literature, and further research is needed
to resolve these limitations for large enterprise blockchain
applications.

III. TRIPLES FOR TRANSACTIONS (T4T MODEL)

In an enterprise application, a single transaction should be
capable of holding both public and private information. We
combined the concepts separation of concerns [21] in software
engineering, principles of public-key cryptography [12] in
cybersecurity and RDF triples in semantic web [11], and
introduced a T4T model to define transactions in enterprise
blockchain applications.

definition 1: The T4T Model is a collection of triples which
defines public and private information of a transaction. Triples
are made from classes: Transaction, TransactionHash, Private,
PrivateHash and Ledger, and object properties: publicInfo,
privateInfo, privateInfoHash and transactionHash.

As in definition 1, the T4T model has five main classes
connected through four object properties. The classes, domain
and range of object properties are illustrated in figure 2. We
used OWL functional syntax [10] to present the formalization
of the T4T model. The core components of the T4T model
are formalized and presented in OWL syntax as follows:

:Transaction rdf:type owl:Class

:TransactionHash rdf:type owl:Class
:Private rdf:type owl:Class
:PrivateHash rdf:type owl:Class
:Ledger rdf:type owl:Class

The Transaction class instantiates transactions. The Transac-
tionHash class is to define a hash for a transaction. The hash
for a transaction is created using both public information and
hashes of private information. The hash of the transaction,
the hashes of private information and public information are
always stored in the public ledger. The Private class is to
define private information between participants. The Ledger
class is to define public information of a transaction which is
visible to all the participants in a network. The PrivateHash
class contains hashes of private information.

The object properties of the T4T model are formalized and
presented in OWL syntax as follows:

:transactionHash
rdf:type owl:ObjectProperty,

owl:FunctionalProperty;
rdfs:domain :Transaction ;
rdfs:range :TransactionHash .

:publicInfo
rdf:type owl:ObjectProperty ,

owl:FunctionalProperty;
rdfs:domain :Transaction ;
rdfs:range :Ledger .

:privateInfo
rdf:type owl:ObjectProperty,

owl:FunctionalProperty;
rdfs:domain :Transaction;
rdfs:range :Private .

:privateInfoHash
rdf:type owl:ObjectProperty,

owl:FunctionalProperty;
rdfs:domain :Private;
rdfs:range :PrivateHash .

Fig. 3. T4T Realization for Transaction T1

The object property, transactionHash connects a transaction
with the hash of the transaction. The object property, pub-
licInfo connects a transaction with the public information of
the transaction. The object property, privateInfo connects a
transaction with the private information of the transaction.
This private information is confidential information of the
transaction between participants in the network. The object
property, privateInfoHash connects instances of Private and
PrivateHash.

User-driven separation of concerns is applied to separate
public and private information about a transaction. A collec-
tion of triples which define public and private information is
auto-generated based on the transaction specification. Public
key certificates and private keys will be used to manage
transport-level security of sensitive information between par-
ticipants.

A. Realization of T4T Model for Transactions

For the illustration purpose, we realize the T4T model for
transaction T1 in a blockchain network of three participants.
The transaction T1 has both public and private information.
The P1, P2 and P3 are participants in the blockchain network.
In transaction T1, P1 needs to send the commodity C1 to P3
through P2. The P1T1P3 is private information between P1
and P3. The P1T1L is public information shared among all
the participants. The P1T1P2 is private information between
P1 and P2. The P1T1H is the hash value of the transaction T1
having both public and private information. The P1T1P2H is
the hash value of private information between P1 and P2 of
the transaction T1. The P1T1P3H is the hash value of private
information between P1 and P3 of the transaction T1.

The realization of T4T model for transaction T1 is illus-
trated in figure 3. When the transaction T1 is committed,
Triples [T1, P1T1H, P1T1L, P1T1P2H, P1T1P3H] are stored
on the public ledgers of all the participants. The triples [T1,
P1T1H, P1T1P2] are stored on the private data store of P2.
The triples [T1, P1T1H, P1T1P3] are stored on the private
data store of P3. The triples [T1, P1T1H, P1T1P2, P1T1P3]
are stored on the private data store of P1. This approach
supports point to point sharing of sensitive information while
preserving implicit relationships between the private and
public information.

The transport-level security is managed by public-key cryp-
tography on the transaction flow. The triples [T1, P1T1H,
P1T1P2] are encrypted using P2’s security certificate, and
the triples [T1, P1T1H, P1T1P3] are encrypted using P3’s
security certificate. The triples of private information can be
decrypted and stored on private data stores of P2 and P3. We
introduced triple stores to keep private data at participants.

The type Participant defines a member of a blockchain
network. The realisation of T4T model for the transaction
T1 is formalised and presented in OWL functional syntax as
follows:

:P1 rdf:type owl:NamedIndividual,
:Participant.

:P2 rdf:type owl:NamedIndividual,
:Participant.

:P3 rdf:type owl:NamedIndividual,
:Participant.

:P1T1H rdf:type owl:NamedIndividual,
:TransactionHash .

Fig. 4. Transactions Flow

:P1T1L rdf:type owl:NamedIndividual,
:Ledger.

:P1T1P2 rdf:type owl:NamedIndividual.
:Private.

:P1T1P3 rdf:type owl:NamedIndividual,
:Private.

:T1 rdf:type owl:NamedIndividual,
:Transaction;

:privateInfo :P1T1P2,
:P1T1P3;

:publicInfo :P1T1L;
:transactionHash :P1T1H.

This proposed approach provides scalability in terms of
sharing private information between participants and sup-
ports semantically rich, efficient querying using collections
of triples. The efficiency was assessed based on the per-
formance. This approach improves the cohesiveness of both
public and private information of a transaction since they are
connected implicitly. Moreover, when the private data needs
verification, the relevant hash can be queried from the public
ledger. Semantic queries can be applied to private data stores
maintained at the participants to query the transaction hash
and private data. The necessary validations can be done on
the hash generated from the private data, and the hash queried
from the public ledger.

IV. TRANSACTION FLOW

We extended the transaction flow of Hyperledger Fabric1

to support our T4T model. In our approach, a transaction
is a collection of triples which defines both private and
public information. A common hash is generated using public

1https://hyperledger-fabric.readthedocs.io/en/release-1.4/arch-deep-
dive.html

information and hashes of private information about the
transaction. The common hash is verified before committing
both public and private information about the transaction.
The triple stores were introduced for private data stores in
Hyperledger Fabric, and the transaction flow was extended to
support triple stores. Hyperledger Fabric is using key-value
data stores to record private and confidential data. Also, the
hash of the private information is stored in the public ledger
as a separate transaction weakening cohesiveness of public
and private information about a single transaction. The main
activities of the extended transaction flow are illustrated in
figure 4.

The flow of transactions is nearly similar to Hyperledger
Fabric. However, Hyperledger fabric separates public and
private information about a transaction as a public transaction
and private transactions and stores them on the public ledger.
The hash of the private transaction is stored on the leader
while private data is stored on private data stores.

We used the transaction defined in figure 3 to illustrate the
extended transaction flow in figure 4. The main activities of
the extended transaction flow are as follows:

1). The participant P1 sends public triples of the transaction
to all the peers. Peers simulate and endorse the transaction as
in Hyperledger Fabric.

2). The endorsed transactions are sent to the client. The
client verifies the endorsement with the agreed endorsement
policy as in Hyperledger Fabric.

3). The endorsed transaction (public triples of the trans-
action) is broadcasted to ordering service. The private data
(private triples of the transaction) is shared with authorized
peers upon endorsement and stored in a transient store of
each peer. The private triples will not go through the ordering
service as in Hyperledger Fabric. The private triples have the
transactions ID, transaction hash and private data so that it
can connect with ledger information when it is needed for

verification and querying. The transaction hash maintains the
integrity of both public and private information.

4). The ordering service verifies endorsement, orders trans-
actions into a block and delivers the block to all the com-
mitting peers. The ordering service, which is made up of a
cluster of orderers, does not process transactions or maintain
the shared ledger. It only accepts the endorsed transactions
and specifies the order in which those transactions will be
committed to the ledger. The committing peer validates the
transaction by checking the current world state. That is
endorsers’ simulated state is identical to the current world
state. After the committing peer validates the transaction, the
transaction is written to the ledger, and the world state is
updated.

5). While committing a transaction, private records will
be committed to private data stores of authorized members
from the transient stores. The transaction hash, private hashes
and private triples can be verified before committing private
information to triple stores. There is no need for a separate
transaction on the public ledger to record the hash of private
data as in Hyperledger Fabric. This is one of the crucial
contributions of this proposed work.

The private transactions in the Hyperledger Fabric execute
through the transaction flow to record hashes of the private
information. However, our approach does not need extra
transactions for private information and reduces unnecessary
cycles in the transaction flow, for example, the transaction T1
defined in subsection III-A needs two private transactions in
Hyperledger Fabric costing two extra cycles in the transaction
flow to record hashes of private information. That is, the
proposed approach reduces 66% of transaction cycles for the
T1 type transactions. T1 is a simple and the most common
type of transactions in enterprise applications; hence this is a
significant improvement.

V. IMPLEMENTATION AND EVALUATION

A. Transaction Flow

We implemented the transaction flow for T1 type transac-
tions, as explained in section 4 and simulated our proposed
approach for advanced transactions while increasing the num-
ber of participants. For advanced transactions, we used the
binomial coefficient to find the distinct combinations of a
group of two members for private transactions. The binomial
coefficient (

n

k

)
=

n!

k!(n− k)!

where n is number of participants and k is 2. We simulated
our proposed approach and Hyperledger Fabric for advanced
transactions and compared the results in figure 5. Hyperledger
Fabric separates public information and private information
of a transaction and creates separate transactions. The re-
sult shows that for one business transaction, the proposed
approach has only one blockchain transaction processing
through the transaction flow. However, Hyperledger Fabric
needs more than one blockchain transactions (one transaction

Fig. 5. Compare the number of transactions in the Transaction Flow

for public information and a set of transactions for private
information between participants connected through channels
and collections) processing through the transaction flow, and
that is proportional to the binomial coefficient where n is the
number of participants, and k is 2. The result shows that the
proposed approach reduces at least 66% of transaction cycles,
and that is a significant improvement.

B. Querying Transactions for Traceability

We implemented traceability using an auditing scenario that
needs both public and private information of transactions. We
implemented the scenario using our proposed approach and
Hyperledger Fabric and compared them for performance.

Scenario: An auditor needs both public and private in-
formation of the transaction T1. Transaction T1 is initiated
by P1 to send goods to P3 through P2. T1 has public
information, private information between P1 and P2, and
private information between P1 and P3.

In our application, a user-driven analysis of the transaction
T1 generates a specification and a collection of triples are
auto-generated. The underlying implementation uses Ontol-
ogy Web Language (OWL)2.

The transaction model has 6 main classes (:Transaction,
:TransactionHash, :Ledger, :Private, :PrivateHash, :Participant
of rdf:type owl:Class) and 4 object properties (:transaction-
Hash, :privateInfoHash, :privateInfo, :publicInfo of rdf:type
owl:ObjectProperty).

The necessary instances for the transaction T1 are
created based on the user-driven analysis of transaction
T1. For example, (:T1 rdf:type owl:Transaction,
:P1,P2,P3 rdf:type owl:Participant, :P1T1P2, P1T1P3
rdf:type owl:Private :P1T1L rdf:type owl:Ledger,:P1T1H
rdf:type owl:TransactionHash, :P1T1P2H, P1T1P3H
rdf:type owl:PrivateHash). Then instances are
connected using object properties. For example,
(:T1 rdf:type owl:Transaction;:privateInfo :P1T1P2,
P1T1P3;:publicInfo :P1T1L;:transactionHash :P1T1H).
Similarly, private information has private hashes.
P1T1P2 has private hash P1T1P2H (:P1T1P2 rdf:type
owl:Private; :privateInfoHash:P1T1P2H) and P1T1P3 has

2https://www.w3.org/OWL/

Fig. 6. Ledger and private data stores in Hyperledger Fabric

private hash P1T1P3H (:P1T1P3 rdf:type owl:Private;
:privateInfoHash:P1T1P3H).

The private data store of p2 has the record [T1, P1T1H,
P1T1P2] and p3 has the record [T1, P1T1H, P1T1P3]. Audi-
tors can use semantic queries on private data stores to retrieve
necessary information. We implemented SPARQL3 queries to
retrieve T1 related private information from P2 as follows:

PREFIX ab: <http://www.semanticweb.org/
c5282513/ontologies/2019/4/CoTOntology#>
SELECT ?privateInfomation ?TransHash
WHERE {
ab:T1 ab:privateInfo ?privateInfomation.
ab:T1 ab:transactionHash ?TransHash
}
Results:
PrivateInformation | TransHash
P1T1P2 P1T1H

The same query was applied to P3 to retrieve T1 related
private information as follows:

Results:
PrivateInformation | TransHash
P1T1P3 P1T1H

Now auditors have private information about the transaction
T1 as P1T1P2 and P1T1P3. Since there is a common hash
for public information and private information, it is a single
direct call to query transaction-specific public information
from the public ledger. For example, the REST end-point
to P1T1H is a single invocation on the public ledger to
retrieve P1T1L, P1T1P2H, and P1T1P3H. The performance is
in O(1). Now the auditor can verify private information using
private hashes - for example, P1T1P2H to verify P1T1P2 and
P1T1P3H to verify P1T1P3. This ensures the immutability
of private information. Moreover, private information is not
exposed to other participants. Auditing Transaction T1 needs
the following tasks in the proposed approach:

1) Query private information from a triple store using a
semantic query. For P2, private information is [P1T1P2,

3https://www.w3.org/TR/rdf-sparql-query/

P1T1H].
2) Retrieve transaction-specific information from the

ledger using the REST end-point of P1T1H. Informa-
tion is [T1: P1T1H, P1T1L, P1T1P2H, P1T1P3H] and
performance is in O(1).

3) Verify private information using hashes [P1T1P2-
P1T1P2H, P1T1P3-P1T1P3H].

4) All the transaction-specific verified information is ready
for auditing [P1T1L, P1T1P2, P1T1P3].

We compared our approach with Hyperledger Fabric [4].
Starting in v 1.2, Hyperledger Fabric offers private data
collections. A collection offers two elements, the actual
private data, and the hash of that data. Hyperledger Fabric
creates three transactions for T1 (P1T1L, P1T1P2, P1T1P3)
as illustrated in figure 6 while weakening cohesiveness of the
transaction information. There is no guarantee that transac-
tions are in a predefined order in the public ledger.

[P1T1L] needs a public transaction. Similarly, [P1T1P2]
and [P1T1P3] need two separate private transactions to record
hashes of them. The private store of P2 keeps [P1T1P2] and
the hash of [P1T1P2] will be in the public ledger. Similarly,
the private store of P3 keeps [P1T1P3] and the hash of
[P1T1P3] will be in the public ledger. Auditing Transaction
T1 needs the following tasks in Hyperledger Fabric:

1) Querying private information from private data stores
[T1: P1T1P2, P1T1P3].

2) Retrieve transaction-specific information from the
ledger using the REST end-point of T1 [T1: P1T1L].

3) Generate hashes for private information [P1T1P2,
P1T1P3].

4) Retrieve hashes of private information from the public
ledger [P1T1P2H, P1T1P3H] and do the necessary
verification. A separate invocation is needed for each
private data record. The performance is O(N).

5) All the transaction-specific verified information is ready
for auditing.

The proposed approach has cohesive information and a
common hash. A semantic query can extract the common
hash and private information from triples stores. Since the
common has is extracted, it is a single REST end-point call

to extract all public information from the ledger. However,
in Hyperledger Fabric, each private transaction maintains a
different hash hence a separate call on the public ledger is
needed for each private information as in step 4. Auditing
involves thousands of transactions hence making several calls
on the public ledger for one transaction is a costly process
that can lead to a performance hit of O(N)2.

Similarly, Quorum separates transactions into two cate-
gories, called public and private transactions. In enterprise
business applications, most of the transactions have both pub-
lic and private information. Separating transactions makes the
information retrieval and auditing process expensive. Several
searching, querying and joining are hitting the performance.

VI. DISCUSSION AND FUTURE WORK

The private blockchains separate information about a trans-
action by generating a public transaction and a set of private
transactions and treat them separately. This separation of
concerns weakens the cohesiveness of transaction information
and adds an extra overhead for enterprise applications when
necessary to consider both public and private transactions. On
the other hand, semantic triples enable building both implicit
and explicit relationships between subjects and objects and
also support rich semantic queries and semantic reasoning
for validations.

We used the semantic triples and introduced the T4T
model to define blockchain transactions. The T4T model and
triple stores for private data persistence enrich cohesiveness
of the private and public information about a transaction
stored in private data stores and the public ledger and further
supports information retrieval and traceability for enterprise
blockchains. This approach supports point-to-point sharing of
sensitive information while preserving implicit relationships
between the private and public information. The privacy and
transparency of transactions are preserved while providing
scalability for private transactions.

The proposed approach reduces unnecessary cycles in the
transaction flow compared to Hyperledger Fabric. The pro-
posed approach reduces at least 66% of transaction cycles
which is a significant improvement. Moreover, the proposed
approach shows better performance [O(N)] on information
retrieval compared to Hyperledger Fabric [O(N)2] which
is a significant improvement for much-needed traceability
applications.

The proposed approach can be adapted to other blockchain
frameworks since the transaction modelling, and private data
stores stay outside the blockchain framework. We are working
in extending the proposed approach for traceability and item
recall in supply chain systems and modelling tokens in token-
based blockchains to yield improved performance, scalability
and semantically enriched features.

VII. ACKNOWLEDGEMENT

This publication has emanated from research supported
by Science Foundation Ireland (SFI) under Grant Number
SFI/12/RC/2289 P2 (Insight).

REFERENCES

[1] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” [Online; Accessed: 2019-05-23]. [Online]. Available:
https://gavwood.com/paper.pdf

[2] bitcoin.org, “Open source p2p money,” [Online; Accessed: 2019-05-
23]. [Online]. Available: https://bitcoin.org/en/

[3] litecoin.org, “Open source p2p digital currency,” [Online; Accessed:
2019-05-23]. [Online]. Available: https://litecoin.org/

[4] Hyperledger.org, “Hyperledger fabric,” 2019, [Online; Ac-
cessed: 2019-05-15]. [Online]. Available: https://hyperledger-
fabric.readthedocs.io/en/latest/index.html

[5] J. P. Morgan, “Quorum - transaction processing,”
2018, [Online; Accessed: 2019-04-23]. [Online]. Available:
https://github.com/jpmorganchase/quorum/wiki/Transaction-Processing

[6] J. Holbrook, Architecting Enterprise Blockchain Solutions. WILEY,
2020.

[7] F. Yiannas, “A new era of food transparency powered by blockchain,”
Innovations: Technology, Governance, Globalization, vol. 12, no. 1-2,
pp. 46–56, 2018.

[8] B. Tan, J. Yan, S. Chen, and X. Liu, “The impact of blockchain on food
supply chain: The case of walmart,” in Smart Blockchain, M. Qiu, Ed.
Springer International Publishing, 2018, pp. 167–177.

[9] N. Emmadi, R. Vigneswaran, S. Kanchanapalli, L. Maddali, and
H. Narumanchi, “Practical deployability of permissioned blockchains,”
in Business Information Systems Workshops, W. Abramowicz and
A. Paschke, Eds. Springer International Publishing, 2019, pp. 229–243.

[10] B. Motik, P. Patel-Schneider, and B. Parsia”, “Owl 2 web ontology
language: Structural specification and functional-style syntax (second
edition),” 2012, [Online; Accessed: 2019-05-14]. [Online]. Available:
https://www.w3.org/TR/owl2-syntax/#Functional-Style Syntax

[11] M. Sintek and S. Decker, “Triple - a query, inference, and transfor-
mation language for the semantic web,” in Proceedings of the First
International Semantic Web Conference on The Semantic Web, ser.
ISWC ’02. Berlin, Heidelberg: Springer-Verlag, 2002, pp. 364–378.

[12] S. Halevi and H. Krawczyk, “Public-key cryptography and password
protocols,” ACM Trans. Inf. Syst. Secur., vol. 2, no. 3, pp. 230–268,
Aug. 1999.

[13] Hyperledger.org, “Private data – hyperledger fabric,” 2019, [Online;
Accessed: 2019-04-23]. [Online]. Available: https://hyperledger-
fabric.readthedocs.io/en/release-1.4/private-data/private-data.html

[14] E. Androulaki, S. Cocco, and C. Ferris, “Pri-
vate and confidential transactions with hyper-
ledger fabric,” [Online; Accessed: 2019-05-22]. [Online].
Available: https://developer.ibm.com/tutorials/cl-blockchain-private-
confidential-transactions-hyperledger-fabric-zero-knowledge-proof/

[15] F. Benhamouda, S. Halevi, and T. Halevi, “Supporting private data on
hyperledger fabric with secure multiparty computation,” in 2018 IEEE
International Conference on Cloud Engineering (IC2E), April 2018,
pp. 357–363.

[16] N. Kshetri, “Blockchain’s roles in meeting key supply chain manage-
ment objectives,” International Journal of Information Management,
vol. 39, pp. 80–89, apr 2018.

[17] W. Martin, V. Friedhelm, and K. Axel, “Blockchain-based supply
chain traceability: Token recipes model manufacturing processes,” in
Proceedings of 2018 IEEE International Conference on Blockchain.
IEEE, 2018.

[18] M. Ruta, F. Scioscia, S. Ieva, G. Capurso, and E. D. Sciascio, “Semantic
blockchain to improve scalability in the internet of things,” Open
Journal of Internet Of Things (OJIOT), vol. 3, pp. 46–61, 2017.

[19] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, “An overview of
blockchain technology: Architecture, consensus, and future trends,” in
2017 IEEE International Congress on Big Data (BigData Congress),
2017, pp. 557–564.

[20] W. Li, A. Sforzin, S. Fedorov, and G. O. Karame, “Towards scalable and
private industrial blockchains,” in Proceedings of the ACM Workshop on
Blockchain, Cryptocurrencies and Contracts. ACM, 2017, pp. 9–14.

[21] H. S. Hamza, “Separation of concerns for evolving systems: A stability-
driven approach,” SIGSOFT Softw. Eng. Notes, vol. 30, no. 4, pp. 1–5,
May 2005.

