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Abstract—Early hardware limitations of GPU (lack of
synchronization primitives and limited memory caching
mechanisms) can make GPU-based computation inefficient.
Now Bio-technologies bring more chances to Bioinformatics and
Biological Engineering. Our paper introduces a way to solve the
longest overlap region of non-coding DNA sequences on using
the Compute Unified Device Architecture (CUDA) platform
Intel(R) Core(TM) i3- 3110m quad-core. Compared to standard
CPU implementation, CUDA performance proves the method
of the longest overlap region recognition of noncoding DNA
is an efficient approach to high-performance bioinformatics
applications. Studies show the fact that efficiency of GPU
performance is more than 20 times speedup than that of
CPU serial implementation. We believe our method gives a
cost-efficient solution to the bioinformatics community for
solving longest overlap region recognition problem and other
related fields.

keywords: CUDA, GPUs, RMQ, suffix array, DC3, LCP,
Noncoding DNA,

I. INTRODUCTION

In the early years, many science researcher held that a large
amount of non-coding DNA had not biological functions and
viewed non-coding DNA as junk DNA. But, recent studies
show many non-coding DNA are functional and beneficial to
human beings. For example, many biological scientists found
the RNA sequences of telomeres have special function which
was ignored by previous research. Sequence alignment is an
important problem in computational biology and sequence
comparison is an important tool for researchers in molecular
biology [1]. Computational recognition of genes is one of
challenges in the analysis of newly sequenced genomes filed,
which is fundamental for modern functional genomics [2].

In recent years, modern multi-core and many-core
architectures are revolutionary high-performance computing
(HPC). Now CPU microprocessors, based on a single central
processing, promote the performance of computer application
to make floating point arithmetic achieved 11 times per second
single chip, the era of many-core processor has begun [3].
The emergence of many-core architectures, such as compute
unified device architecture (CUDA)-enabled GPUs and other
accelerator technologies, these emerging technologies open
more opportunities to optimize many biological algorithms
and to provide industries with more advanced and powerful

computing hardware.

Due to exponentially growing of DNA bases and awareness
of function of non-coding DNA, computational recognition
of genes became a time-consuming and challenging job.
The development of bioinformatics need to have a better
performance. Several efforts have been made to optimize
the biological algorithm and reach more accurate results.
Life science have emerged as a primary application area
for use of GPU computing. Now a method to recognize the
longest overlap region of DNA is on two different platforms:
multi-core( CPUs) and many-core(GPU). GPU performance
grows faster than development of CPU in many fields of
bioinformatics. In this paper, we present a modified and
efficient parallel algorithm with CUDA to solve the longest
overlap region problem. Based on DC3 algorithm which is
used to construct suffix array and RMQ algorithm, we change
series programming into computation of the problem in
parallel. Here DC3 algorithm is more than 20 times speedup
than that of CPU serial implementation and the fact shows
solving the longest overlap region with CUDA is a perfect
method.

II. GENERAL INTRODUCTION OF GPU AND CUDA
PROGRAMMING MODEL

Recently, more and more application developers pay
much attention to GPUs. The new products of GPUs are
dramatically increasing programmability and generality but
still providing developers with huge memory bandwidth and
powerful computational ability [4]. In order to meet growing
requirements of programming developers, many industries
have been engaging into designing processors such like
NVIDIA used a large amount of processors cores to built
programming processor [5]. Culminating in NVIDIAs first
GPU in 1999. After one year when NVIDIA have been
developing GPU terms, many software and computer games
were not only filed which made remarkable breakthroughs
with technology. The General Purpose GPU (GPGPU)
movement had dawned [6].

CUDA is a parallel computing platform and programming
model invented by NVIDIA. [3] [6]. Since yielded in 2007,
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Fig. 1. GPU CPU architecture

hundreds of millions of computers equipped with CUDA
processing capability of GPU is widely used. GPU parallel
technology is now widely used in various fields, GPU
high-speed parallel processing capabilities could be used
in digital image processing algorithms, discrete simulation,
general computing, greatly improving computational speed,
because GPU performance characteristics can be applied to
numerical calculation and matrix processing [7].

CUDA programming model is very well suited to parallel
capabilities of GPUs. CUDA devices collect a plenty of data
parallelism to accelerate data process. Two control circuits
are relatively simple to GPU, and demand for Cache is small,
so you can put most of transistors in the cell. 40% of GPU
is ALU. Illustrate in Figure.1 .

It is a common CUDA programming model that sequential
host program processes organize an application and parallel
device can process at least one host programme. Typically,
parts of host programme are implemented on CPU and GPU
take responsibility of the others parallelized parts. Threads
are rationally divided into each thread block by programmer;
kernel that we used thus is made up with a grid which
consist of at least one thread block. A cluster of threads
synchronously work through barrier synchronization in a
thread block which shared a same memory space [8].

III. LCP AND RELATED ALGORITHM

In this paper, we present the longest overlap region
problem that is to compute the longest common prefix(LCP)
non-coding DNA sequences and its Pos array in suffix arrays.
Given a reference sequence S = a1a2a3a4a5..an. For i =
1 , 2 , 3..n, every S(i,n) is a suffix of S, also every S(1,i)
is the prefix of S. For convenience, we define LCP(S,i,j) as
the longest common prefix between SA[i,n] (SA is the suffix
array of S) and SA[j,n].

Suffix array is a space-efficient data structure that guarantee
accurate and quick searching of a subsequence from pattern.
Pos of all suffixes of a sequences are stored basically in Suffix
array [9]. Compared with suffix trees, We naturally viewed
Suffix arrays as a more efficient and convenient method data

structure. This structure can be served as an array of integers
representing the start position of every lexicographically or-
dered suffix of a string. In the table, we can use SA of S or
SAS to indicate suffix array of S. It is easy to find the rules
of suffix array of S that an array SA[0..n] which contains a
permutation of the integers 0..n so, we can make a conclusion
that S[SA[0]..n] < S[SA[1]..n] < .... < S[SA[n]..n],
meanwhile we can give a rule: SA[m] = k iff S[k..l] is the
mth suffix of S [10] [11]. Given example S = ATTGCTAC
, we can build a sort suffix table of S in the Table 1

TABLE I
SUFFIX INDEX TABLE OF S{ATTGCTAC}

S A T T G C T A C
INDEX 0 1 2 3 4 5 6 7

SA 6 0 7 4 3 5 2 1

Traditional method build suffix array can be in O(n*log(n)).
In this paper, we give a linear-time algorithm called DC3
which is a special case of a another cover sample. in this
situation, the sample must meet the requirements: 1 : The
sample itself can be sorted efficiently. 2 : Sorted sequence of
all suffixed is helped by of the sorted sample. sorting suffixes
in DC3 method is beginning at location in a difference
cover sample modulo 3, after the process utilize index to
find all suffixes [10]. It takes the following 2=3-recursive
divide-and-conquer approach :
Definition :

A set D⊆[0, v)is difference cover module v if

{(i− j) mod v | i, j∈D} = [0, v] (1)

A v-periodic sample C of [0,n] with the period D, that is,

C = {i ∈ [0, n] | i mod v ∈ D} (2)

is a difference cover sample if D is a difference cover modulo
v.

For k[0,..3), define :

Bk = {i∈[0, n] | i mod 3 = k} (3)

the set of cover position is C = ∪k∈1,2Bk, Ĉ = [0, 3]\C

Step 1 : Built suffix array of the suffixes starting at
position i (i mod 3 6= 0) and sort sample suffixed

So we can see B2∪B1 = C to be the set of the
sample of positions. We can easily find C = {1, 2, 4, 5, 7} ,
B2 = {2, 5}and B1 = {1, 4, 7}. For k = 1, 2, make a string

Rk = [titi+1tt+2][ti+3ti+4tt+5]...[tmaxBk
tmaxBk+1

tmaxBk+2
]

whose characters are triples [titi+1ti+2]. Let
R = R1

⊙
R2 be the concatenation of R1



and R2. R1 = {(C00), (CTA), (TTG)},R2 =
{(TAC), (TGC)} refer to table 1, and we can get
R = {(CTA), (TTG), (TGC), (C00), (TAC)}. For i
∈ C, let rank(Si) denote rank of Si in the sample set of
SC . For i ∈ B0,rank(Si) is undefined. illustrate in Table.2 [9]

TABLE II
RANK OF SORTED SAMPLE SUFFIX

S A T T G C T A C
i 0 1 2 3 4 5 6 7

RANKi ⊥ 5 4 ⊥ 2 3 ⊥ 1

STEP 2 search Non-sample Suffixes
Given each Nonsample suffix Si ∈ SB0

with the pair
(ti ,rank(Si + 1). It is so obvious that : for i, j ∈ B0,
Si ≤ S(j) � (ti, rank(Si+1)) ≤ (tj , rank(Sj+1)). For
example, S6≤S0≤S3, because(A, 1) ≤ (A, 5) ≤ (G, 2))

STEP 3 merge those of the two segments
Combining two segments into one string should be obey the
rules :
Let Si ∈ SC with Sj ∈ SB0

,

i ∈ B1 : Si ≤ S(j) � (ti, rank(Si+1)) ≤ (tj , rank(Sj+1))

i ∈ B2 : Si ≤ S(j) � (ti, ti+1, rank(Si+1)) ≤
(tj , tj+1, rank(Sj+1)). Finally we can obtain sorted
sequence in Table 3.

TABLE III
RANK OF SORTED SAMPLE SUFFIX

S A T T G C T A C
i 0 1 2 3 4 5 6 7

rankSi
2 8 7 5 4 6 1 3

After construction of suffix array, we should find the
longest overlap prefix of two sequences we assigned. The lcp
between two suffixes is the minimum of the lcps of all pairs
of adjacent suffixes between them on the Pos array [9]. That
is :

lcp(Sposi , Sposy ) = mini<k≤j{lcp(Sposk , Sposk+1
)}.

Range-Minimum-Query-Problem is to preprocess an array
so that the position of the minimum element between two
specified indices can be obtained efficiently [12] [13]. First
we give a definition to the Range Minimum Query (RMQ) :

Given an array S[1...n] of elements from a totally
ordered set (with order relation ”≤”, RMQS(i, j)
returns the index of a smallest element in A[i, j], i.e.,
RMQSi,j

=argmink∈(i,..j){S[k]}. Illustrate in table.

So LCP problem can be successfully transformed into
RMQ problem. The method was first proposed and presented
by Bender and Farach-Colton. we present in this paper that
Berkman and Vishkin algorithm which is combined with
±1RMQ is other case of RMQ problem. Disadvantages of
the algorithm is waste of the large space, but it maintains
efficiency of query process in < O(n), O(1) > to complete.

TABLE IV
SUFFIX INDEX TABLE OF S{ATTGCTAC}

S A T T G C T A C
INDEX 0 1 2 3 4 5 6 7

SA 6 0 7 4 3 5 2 1
lcp 0 1 0 1 0 0 1 1

This algorithm can be divided into two parts :

STEP 1 RMQ problem can be converted to LCA
problem(least common ancestor): first build cartesian tree
store the input sequence of A , build the complexity of the
cartesian tree is O (n).

STEP 2 Transform LCA problems into ±1RMQ : based
on DFS search of the tree by Euler path (Euler Tour), set up
three arrays E, L and R. The E and L size are 2 ∗ n − 1,
elements of E is label value for each node of the cartesian
tree (is actually index of A), elements of L is corresponding
to the depth of the node of euler path. R stores the positions
of the each node queried for the first time.

If want to query LCA(u,v), it is actually equivalent to
solving RMQ problem of the array of L. Due to do RMQ
can be transformed into ±RMQ, it also can use the ±1RMQ
algorithm in < (n), O(1) > time.

IV. ACCELERATE CONTRUCTION OF LCP TABLE AND SOLVE
LARGEST OVERLAP REGION PROBLEM WITH CUDA

Sorting is a common problem in bioinformatics, like quick
sort. Merge sort etc. Quick sort algorithm not only guarantee
the computing process on hardware which is shortage of
atomic operations but also utilize geometry shaders, however
is generally slightly slower and quick sort is testified as
efficiency algorithm. In DC3 algorithm, the construction
process of the sample suffix array and the non-sample suffix
both use radix sort to built array. To many a certain keys
problem solving by comparison-base algorithm, Radix sort
is relatively an efficient and low-cost method. This sorting
algorithm contains b processes which process j-th digits of
the keys in order from the least to the most digit. Previously,
many compute scientists have developed many variant
algorithm, especially using bitonic sort (Govindaraju et al.



2006, Zachmann 2006). In our paper, we present a efficient
radix sort to implement DC3 [14] [15].

This algorithm presents each chunk of subsequence is sorted
by radix sort. a grid of thread blocks cooperatively sort
chunks in a parallel way. Due to a lack of enough size of
shared memory, it makes difficult for single multiprocessors
to allocate more space to chunks of input array. Given a string
S = {s1s2s3..sn}, divide S into every single chunk like
chunk1 = {s1s2..si}, chunk2 = {si+1si+2..sd}, ..chunk.. =
{s.., .., sn}.illustrate in Figure.2.

Fig. 2. chunks of divided S

Taka a number which has m-bits keys as an example, it need
to take m steps to finish radix sort algorithm. Thus every step
of process requires us to do scan the bit table. It is notable that
split primitive is significant for all parallel process to achieve
an efficient and satisfied performance. After that we should
organize each sort keys which are gained by split into a certain
keys list, and each value represent the least significant bit that
is either ”1” or ”0”. But there are some tricks to produce new
reversed the table list that all ”0” sorted key are replaced by
”1” and vice versa. Finally we need to formulate a rule to
compute the destination address of each input number. For
example, chunk1 = {001, 100, 111, 101, 110}, let array L
store the least significant bit b, so L = {1, 0, 1, 1, 0}. Define E
is a array, and for i in{0 ≤ i ≤ n}, E[i] = L[i]⊗ 1. And we
can obtain the E = {0, 1, 0, 0, 1}. Scan E to obtain F. Illustrate
in Figure.3.

Fig. 3. scan process

F = {0, 1, 1, 2, 3}. Process illustrate in the Figure.3. Using
array F[n-1] and E[n-1] to obtain totalFalse, totalfalse =
E[n− 1]+F [n− 1]. Final index of each element in S can be
computed by formula : index = b?(i− f + totalFalse) : F .
All the process follow Figure.4 [16].

Fig. 4. DC3 process

Algorithm 1 KERNEL FUNCTION FOR PARALLEL
RADIX SORT IN DC3 ALGORITHM

1: while each i < 32 do
2: row = blockIdx.x ∗ twidth+ threadIdx.x;
3: col = blockIdx.y ∗ twidth+ threadIdx.y;
4: id = row ∗ width+ col;
5: settheindexforeachthreads
6: b[id] = (S[id]� i)&1;
7: // record i th bit of each element
8: syncthreads();
9: e[id] = b[id]⊗ 1;

10: syncthreads();
11: temp[id] = e[id];
12: syncthreads();
13: for all oFF = 1 , and,oFF < n do
14: //scan the 1s table to calculate prefix sum of each

element
15: oFF � 1;
16: if id ≤ oFF then
17: temp[id] = temp[id− oFF ] + temp[id];
18: else
19: temp[id] = temp[id];
20: end if
21: synctreads();
22: end for
23: f [id] = temp[id];
24: syncthreads();
25: tof = e[n− 1] + f [n− 1]
26: t[id] = id− f [id] + tof ;
27: syncthreads();
28: d[id] = b[id]?t[id] : f [id];
29: //array d store the index of the sorted S
30: syncthreads();
31: OutS[d[id]] = S[id];
32: S = OutS;
33: end while

When all assigned thread blocks chunks finished, each
chunk of sorted numbers should be repeatedly combined into
a new sorted list and each new sorted list is allocated to a



coalescent chunk until all chunks finish merge sort process.
The pseudocode is depicted in Alg.1 in the kernel function
cudaDC3RS. In the kernel function id is a private register
with respect to a thread respectively, which denote as thread
index.

Before the process depicted as Alg.1, we should divide
whole elements of S into sample suffix and Nonsample suffix.
here we just present a single process of sample suffix. Let
S to be sample suffix. Follow the Alg.1 all single block
of subsequence are organized into a string array S ,so that
the exclusive thread can be mapped into S[id]. Then each
subsequence is executed respectively so as to the indexed
structure enable all threads to string matching simultaneously
by means of radix sort algorithm supported by GPU.

V. RESULT

In this section we compare the sequential performance
with parallel performance of CUDA implementation. Both
algorithms are implemented using Microsoft Visual Studio
2010 combined with CUDA version 5.5 for the parallel
implementation. The proposed algorithms are carried out
in a Intel(R) Core(TM) i3-3110K quad-core running at
2.40GHZ with 2.0GB RAM. The used CUDA driver and
runtime version are both 5.0, NVIDIA GeForce 610M
GPU(kepler architecture) which has a total of 48 streaming
multiprocessors operating at a clock rate of 900 MHZ.

Noncoding DNA sequences from NCBI Nucleotide are
to evaluate the performance of the previously described
algorithms. The reference sequences corresponds to 3 groups:
Homo sapiens chromosome Y noncoding region downstream
from the DAZ gene of which accession is AH011747.1
GI: 21929706, Caenorhabditis elegans Bristol N2 genomic
chromosome of which accession is BX284603.4 GI:
449020129 and Homo sapiens isolate NA19204 noncoding
region T1419 genomic sequence of which accession is
GQ846167.1 GI: 260538176. Several groups of query
sequences were used to experimental test, each one consists
of a different number of query sequences, ranging from 512
to 2097152 query sequences. It is worth noticing that the
programmer writes a kernel and organize its execution in a
grid of thread blocks, Each block is assigned to a Streaming
Multiprocessor (SM). Once assigned it cannot migrate to
another SM. Each SM splits its own blocks into Warps
(currently with a maximum size of 32 threads). All the
threads in a warp executes concurrently on the resources of
the SM. The actual execution of a thread is performed by
the CUDA Cores contained in the SM. It is a very important
process for mapping noncoding DNA sequences into the grid.
Illustrate in Table.5.

Accept for implementation of finding the longest overlap
region of noncoding DNA on CUDA, CPU programme of
the algorithm also is executed for sake of evaluating the

different efficiency between the series programme and parallel
programme. And the series parts execute on Intel(R) Core(TM)
i3-3110M CPU. The results is illustrated in Figure.5. The
result shows DC3 radix sort algorithm on GPU in O(n) time
to construct suffix array compared with execution on CPU.
And it is easy to find that the performance on GPU is not
better than CPU execution when the number of the noncoding
DNA sequences are lower than 65536. After more the number
of noncoding DNA sequences, performance improvement on
the GPU of algorithm is much satisfied. It also observed
that efficiency of performance is growing with significantly
growing the numbers of sequences. Illustrate in Figure.6. Un-
like what happened in CPU implementations, tile optimization
partition local data into shared memory, due to the achieved
performance in accordance with memory accesses, reduce the
access of global memory.

TABLE V
DC3 RADIX SORT BASED ON CPU AND GPU

TYPE / NUMBER 256 1024 4096 16384 65536 262144 1048576
G1CPU 0.001 0.0062 0.047 1.425 5.325 19.375 98.253

G1GPU!32n 0.002 0.015 0.085 0.741 2.012 4.524 9.1012
G1GPU = 32n 0.002 0.014 0.072 0.531 1.842 3.254 8.335

G2CPU 0.001 0.0068 0.0051 1.615 5.827 22.941 98.453
G2GPU!32n 0.002 0.016 0.087 0.6981 1.962 5.014 8.232
G2GPU = 32n 0.002 0.014 0.088 0.513 1.901 3.044 7.963

G3CPU 0.001 0.0067 0.049 1.577 5.553 21.531 95.616
G3GPU!32n 0.002 0.019 0.087 0.720 2.232 5.271 7.816
G3GPU = 32n 0.002 0.015 0.081 0.681 1.822 3.116 6.735

TABLE VI
SPEEDUP RATING OF DIFFERENT EXECUTION

TYPE / SPEED RATIO 256 1024 4096 16384 65536 262144 1048576
G1GPU!32n -0.5 -0.75 -0.47 2.25 2.61 4.28 10.79
G1GPU = 32n -0.48 -0.67 -0.31 2.32 2.89 5.96 11.79
G2GPU!32n -0.5 -0.71 -0.49 2.75 2.96 4.57 11.85
G2GPU = 32n -0.48 -0.61 -0.28 3.15 3.07 7.52 12.37
G3GPU!32n -0.5 -0.69 -0.47 2.25 2.39 4.08 12.24
G3GPU = 32n -0.48 -0.67 -0.31 2.32 3.04 6.91 14.20

From the obtained results, it can be observed that runtime
of CPU were consistently higher than implemented DC3 radix
sort, it shows solving the longest overlap region problem with
respect to suffix array construction using GPU even is efficient
method to high performance bioinformatics applications.

VI. CONCLUSION

This paper presents a new method to solve problem of the
longest overlap region of Noncoding DNA sequence using
GPU hardware and modified algorithm. Related experiment
were thoroughly compared using two different executional
ways: multicore (i3-3110M) and many-core (NVIDIA
GeForce GTX610M GPU).

These observations reveal that massive data applied to the
longest overlap problem is time-consuming job. Nevertheless,
parallel programming on GPU achieves the improvement in
rate accelerating making solving DNA sequence more precise
and more faster so that can meet our requirement in more
important projects.



Fig. 5. performance of CPU and kernel execution of GPU

Fig. 6. average speedup ratio between GPU and CPU
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