
ar
X

iv
:1

30
1.

57
93

v1
 [

cs
.M

M
]

24
 J

an
 2

01
3

Video Tester – A multiple-metric framework for
video quality assessment over IP networks

Iñaki Ucar∗, Jorge Navarro-Ortiz†, Pablo Ameigeiras† and Juan M. Lopez-Soler†

∗ Dept. of Automatics and Computer Science
Public University of Navarra, Campus Arrosadia, 31006 Pamplona, Spain

i.ucar@unavarra.es
† Dept. of Signal Theory, Telematics and Communications

University of Granada, C/ Periodista Daniel Saucedo Arandas/n, 18071 Granada, Spain
{jorgenavarro,pameigeiras,juanma}@ugr.es

Abstract—This paper presents an extensible and reusable
framework which addresses the problem of video quality as-
sessment over IP networks. The proposed tool (referred to as
Video-Tester) supports raw uncompressed video encoding and
decoding. It also includes different video over IP transmission
methods (i.e.: RTP over UDP unicast and multicast, as well as
RTP over TCP). In addition, it is furnished with a rich set of
offline analysis capabilities. Video-Tester analysis includes QoS
and bitstream parameters estimation (i.e.: bandwidth, packet
inter-arrival time, jitter and loss rate, as well as GOP sizeand I-
frame loss rate). Our design facilitates the integration ofvirtually
any existing video quality metric thanks to the adopted Python-
based modular approach. Video-Tester currently provides PSNR,
SSIM, ITU-T G.1070 video quality metric, DIV and PSNR-based
MOS estimations. In order to promote its use and extension,
Video-Tester is open and publicly available.

Index Terms—Performance evaluation, objective and subjec-
tive measures, traffic and performance monitoring, networking
and QoS, IPTV & Internet TV.

I. I NTRODUCTION

During the last years, there has been a continuous growth
of video traffic over packet-switched networks [1]. Users’
demand is determinant in the proliferation of a wide range
of video-based services and applications such as video on
demand (VoD), live streaming, video calling, video instant
messaging, video monitoring, webcam traffic, Internet video
to TV, live Internet TV, mobile video, etc. All these hetero-
geneous services are designed to fulfill different purposesand
requirements [2]. In spite of their dissimilarities, they all share
a common need. Namely, to make use of tools for video quality
evaluation.

The issue of video quality assessment (by defining the
proper metrics) is of paramount importance for codec design,

c©2012 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

DOI: 10.1109/BMSB.2012.6264243

different transmission methods evaluation and network plan-
ning among others. Indeed, this problem has generated a lot
of contributive research efforts [3] along with the specification
of several video quality measurement standards [4].

However, public available tools that systematize the video
quality assessment over IP networks are scarce. In this respect,
it is also valuable that the designed assessment tool will
be highly extensible and reusable since it eases the quick
inclusion of any metric.

In this work, we propose Video-Tester, an open-source
modular framework [5] which provides a complete and flexible
solution to the problem of video quality assessment over IP
networks. Video quality evaluation is a multidimensional pro-
blem that requires to take into consideration multiple criteria,
sometimes located at different levels. Our tool works at any
of the three layers involved in any video over IP service —the
bitstream level, the packet level and the upper picture level
[6]—. As a remarkable benefit, Video-Tester is able to support
any existing and future video quality metric.

The rest of the paper is organized as follows. Section II
provides the state of the art of the addressed problem. Section
III summarizes the proposed framework. It explains our Video-
Tester design and also reviews the current supported metrics.
Section IV outlines some experimental results that validate
the proposed framework and, finally, Section V concludes the
paper and discusses future work and extensions.

II. RELATED WORK

Several quality evaluation toolboxes have been recently
proposed, like the implemented by Murthy and Karam [7].
However, in general, these applications are mainly restricted
to codec testing and metric comparisons, because they do not
consider multimedia transmission methods and the degradation
and quality impact derived from this process.

On the other hand, it is also remarkable the seminal work
(EvalVid) proposed by Klaueet al. [8], a widely used tool-
set for video transmission evaluation. This tool-set does ac-
tually include transmission, some quality of service (QoS)
parameter estimation (packet loss, delay and jitter) and some
bitstream parameter evaluations (frame loss rate and frame
jitter). EvalVid video quality evaluation techniques include

http://arxiv.org/abs/1301.5793v1
http://dx.doi.org/10.1109/BMSB.2012.6264243

RTSP server
GStreamer

receiver

sniffer
trace

analyzer

stream

analyzer
RTSP connection

video over RTP

NETWORK

loss + delay

decoded YUV video

coded stream

trace

source

(YUV video)

quality metrics

module

BitStream

parameters

QoS

parameters

RAW video

RAW video

Fig. 1. Operation scheme.

PSNR, Structural Similarity index (SSIM) [9], Mean Opinion
Score (MOS, mapped from PSNR) and Distortion in Inverval
(DIV, mapped from MOS as described in [10]).

However, this is a multi-tool framework that requires 3rd
party tools liketcpdump(packet capture),ffmpeg(video en-
coding and decoding),netcatandMP4Box[11] (video multi-
plexation). This fact makes the automatization of its use a bit
difficult. Furthermore, the use of MP4 multimedia containers
restricts the available codecs. Added to that, the electionof
ISO-C programming language is definitively appropriate for
code efficiency (not so for porting because of the necessary
3rd party tools), but if new quality metrics are needed, the
source code must be modified.

Additionally, a common impairment in video transmission
evaluation is related to frame losses. The decoded RAW video
at the receiver end will have fewer frames than the original
one if packet losses occur. As a consequence, we have to deal
with frame misalignment in order to apply picture metrics like
PSNR. In [8], it is stated that Fix-Video (FV) tool solves this
problem. Nevertheless, to the author’s knowledge the actual
version of this framework [12] does not include the FV tool.

III. PROPOSED FRAMEWORK

Video-Tester comprises a single command-line application
that works with a number of configuration files that ease its
script-based execution. Once Video-Tester is launched at the
two particular end-points, one side acts as the server and the
other one as the client. The client side can optionally be
launched with a user-friendly graphical user interface (GUI)
in order to plot metrics automatically.

Video-Tester is written in Python in order to promote its
extensibility. Video processing (specifically encoding, deco-
ding and transmission) is performed by using the valuable
GStreamer library [13] due to its broad and sustained support
by the research community. As a beneficial consequence, the
codec support is subjected to the GStreamer support and,
hence, it is not constrained to a given container format.

A. Video-Tester design and operation

Figure 1 shows the general operation scheme. The server
side is concurrent and talks to clients using the XML-RPC

protocol. Both the server and the client are able to work behind
a NAT router (with port redirection at the server side). Each
client is able to select the following parameters in order to
start a new test:

• The uncompressed video file to transmit, selected from
a common local database (Video-Tester accepts lossless
encoded videos like [14]).

• The codec (H.263 [15], H.264 [16], MPEG-4 Visual [17]
and Theora [18] are currently available).

• The bitrate (not all bitrates are available with some
codecs).

• The frame rate.
• The transmission method (RTP over UDP unicast or

multicast, and RTP over TCP are supported).

Then, the server side sets up a GStreamer-based RTSP
server (see [19]) instance with the above parameters. At the
client side, a GStreamer-based client receives the video signal.
Remarkably, it is programmed to keep the frame rate constant.
That is, if transmission losses cause the frame rate to fall,the
receiver end duplicates properly the available frames.

At the same time and executed in a separate thread, the
packet-sniffer saves concurrently a network trace. So that
whenever the transmission is completed, the following files
are provided:

• The network trace (PCAP file [20]).
• Received compressed video (probably impaired with

losses).
• Received uncompressed video (probably impaired with

losses).
• Reference video (from the local database).

At this point, the client side performs the offline analysis.
From the RTP trace, we extract the following QoS parameters:

• Packet size.
• RTP sequence number.
• RTP timestamp.
• Packet arrival time.

From the coded stream, we extract the following bitstream
parameters:

• Frame type (I, P, B).

scheme1.eps

QoS meter

QoS metrics

VQ meter

VQ metrics

BS meter

BS metrics

RAW

videos

quality metrics output

BitStream

parameters

QoS

parameters

Fig. 2. Quality metrics module.

• Frame size.

The quality metrics module receives all this information.
Figure2 shows a detailed overview of this module. It contains
three submodules calledmetersthat isolate the implemented
metrics from the rest of the application logic. Meters keep
track of the available metrics and they communicate with those
metrics through a standard interface. Therefore, implementing
a new metric is as easy as writing a new Python class
and registering it at the proper meter, without modifying the
application core.

B. Supported metrics

The QoS submoduleprovides the following metrics:

• Latency (L), averaged from several (N) round-trip time
(RTT) values.

L =
1

N

N∑

n=1

RTT (n)

2
(1)

• Packet inter-arrival time (∆), whereRi is the arrival time
for i-th packet.

∆(i) = Ri −Ri−1 (2)

• Jitter (J), as described in [21], whereRi, Rj are arrival
times andSi, Sj are RTP timestamps for packetsi, j.

D(i, j) = (Rj −Ri)− (Sj − Si)

= (Rj − Sj)− (Ri − Si) (3)

J(i) = J(i− 1) +
|D(i− 1, i)| − J(i− 1)

16
(4)

• Clock skew (T), the relative offset between packet arrival
time and RTP timestamp, whereRi is the arrival time and
Si is the RTP timestamp for packeti.

T (i) = Si −Ri (5)

• Instantaneous bandwidth (B) for packeti, whereSizen
is the size of packetn andN is the number of packets

in the last second.

B(i) =

i∑

n=i−N

Sizen (6)

• Packet loss rate (PLR), whereSeqn is the RTP sequence
number of packetn andN is the total number of packets.

PLR =
1

N

N∑

n=2

Seqn − (Seqn−1 + 1) (7)

• Packet loss distribution (PLD). If we divide the trans-
mission time inK intervals, we can apply (7) to every
intervalk.

PLD(k) =
1

Nk

Nk∑

n=2

Seqn,k − (Seqn−1,k + 1) (8)

The bitstream (BS) submoduleprovides the following me-
trics:

• Video stream framing structure (at the receiver end,
probably impaired with frame losses).

• Reference video stream framing structure (with no
losses).

• Group of pictures (GOP) size, averaged from measured
GOP sizes once atypical values has been discarded.

GOPsize = E[X] (9)

with X = { GOPn :

GOPn ∈ [E[GOP]− σ,E[GOP] + σ]}

• I-frame loss rate. We count an I-frame loss when

GOPn > E[GOP] + σ (10)

The video quality (VQ) submoduleprovides the following
metrics:

• PSNR.
• SSIM index [9].
• MOS, mapped from PSNR [10].
• DIV, mapped from MOS (as proposed in [10]).
• As an illustration, we provide ITU-T G.1070 video qua-

lity metric [22], because it provides an example of gathe-
ring information from other submodules, specifically the
packet loss rate.

IV. EXPERIMENTAL RESULTS

A. Frame misalignment

To test the effectiveness of the Video-Tester frame rate
sustainer procedure, a particular scenario with 2 % of packet
loss probability was chosen. The videoakiyo_cif.264
[14] was encoded with H.263 (GOP size of 15) at 128 kpbs
and 25 fps, and transmitted over UDP unicast. 600 video
transmissions were performed. For each transmission, we get
the received video with and without the Video-Tester frame
rate sustainer element.

We choose 5 frame positions (70, 120, 170, 220 and 270 of
299 total frames) from the reference video in order to compare

scheme2.eps

0

0.2

0.4

0.6

0.8

1

Reference
frame

-10 -15 -20 -30 -40 -50

C
u

m
u

la
ti
v
e

fr
e

q
u

e
n

c
y

Reference frame position

Reference frame
70 of 299

120 of 299
170 of 299
220 of 299
270 of 299

GOP size

without fps adjustment

with fps adjustment

Fig. 3. Frame misalignment test.

0

0.2

0.4

0.6

0.8

1

Reference
frame

-10 -20

C
u

m
u

la
ti
v
e

fr
e

q
u

e
n

c
y

Reference frame position

Reference frame
70 of 299

120 of 299
170 of 299
220 of 299
270 of 299

without fps adjustment

with fps adjustment

Fig. 4. Frame misalignment test (once the videos without thefirst frame
were removed).

misalignments through all the tests. Figure3 shows the cu-
mulative frequency of the position occupied by the reference
frame. The received video presents severe misalignments in
absence of the frame rate sustainer. Instead, our method highly
increases the probability that the frames are aligned. However,
note that there is an anomaly at position−15.

This anomaly can be explained attending to the GOP size.
When the loss occurs at the first frame of the first GOP (an I-
frame), the remaining frames (P or B) have no reference to be
decoded. Therefore, the loss of this first frame implies the loss
of the whole GOP. To the receiver, the video transmission starts
one GOP later, so the frame rate sustainer has no work. This
point can be proved with Figure4. It shows the same analysis,
once the videos without the first frame were removed.

Accordingly, in order to do reliable Full-Reference calcu-
lations (like PSNR) with our frame adjustment method, we
can dismiss the first GOP if the received video lacks the first
frame.

 0

 20

 40

 60

 80

 100

0.1 0.5 0.9 1.3 1.7 2.1 2.5 2.9 3.3 3.7

0 5.26 10.52 5.88 15.78 22.22 11.11 15.78 17.64 22.22

F
ra

m
es

 w
ith

 M
O

S
 [%

]

Set Packet Loss Probability [%]

Measured I-frame Loss Rate [%]

MOS

1

2

3

4

5

Fig. 5. MOS ratings measured in scenarios with different packet loss
probability.

B. Exemplary tests

A bank of tests was designed in order to show the kind of
results that can be achieved with our Video-Tester tool. The
videoakiyo_cif.264 [14] was encoded with H.263 at 300
kpbs and 25 fps, and transmitted over UDP unicast. 10 tests
were launched with increasing packet loss probability, from
0.1 % to 3.7 %. Within each test, we measured the I-frame
loss rate and the percentage of frames with certain level of
MOS.

Results are shown in Figure5. Each stacked bar belongs to
one test. The bottom x-axis shows that tests are ordered from
left to right with increasing packet loss probability. The top
x-axis shows the measured I-frame loss rate for each test. As
expected, we can observe a progressive deterioration of both
I-frame loss rate and MOS ratings.

V. CONCLUSION

This paper proposes Video-Tester, an extensible and
reusable single framework for video quality assessment over
IP networks. On the basis of two end-points (public or private
IP addresses), it comprises all the procedures involved in
video over IP communications. More specifically, it accounts
from capturing to rendering video, which involves encoding,
sending, receiving and decoding the video signal.

Video-Tester estimates the proper parameters and charac-
teristics required for the overall system evaluation, and due
to its modularity, it can evaluate the impact of any of the
components —at any level— on the final video quality.

Notably, Video-Tester is a Python-based tool and, hence, it
benefits from Python key distinguishing features. It also uses
the valuable GStreamer library [13]. More precisely, to achieve
the greatest flexibility and for making it maximally configura-
ble, a GStreamer RTSP server [19] is designed. Moreover, a
procedure to solve the frame misalignment problem in lossy
scenarios is proposed.

Summing up, Video-Tester includes the main features of
previous works and adds further improvements in terms of

alineamiento1.eps
alineamiento2.eps
mos.eps

usability, extensibility, codec support, support of transmission
methods and metric robustness (frame alignment) in case of
losses. The wide range of extracted parameters allows the
implementation of virtually any kind of video quality metric:
Full-Reference, No-Reference or Reduced-Reference metrics;
as well as any level picture-, packet-, bitstream-based or even
hybrid metrics.

ACKNOWLEDGMENTS

This work was partially supported by the “Ministerio
de Ciencia e Innovación” of Spain under research project
TIN2010-20323.

REFERENCES

[1] (2012) Cisco visual networking index: Forecast and methodology,
2010-2015. [Online]. Available:http://www.cisco.com/ 1

[2] W. Simpson,Video Over IP, 2nd ed. Focal Press, 2008.1
[3] S. Chikkerur, V. Sundaram, M. Reisslein, and L. Karam, “Objective

video quality assessment methods: A classification, review, and perfor-
mance comparison,”Broadcasting, IEEE Transactions on, vol. 57, no. 2,
pp. 165 –182, Jun. 2011.1

[4] S. Winkler, “Video quality measurement standards – Current status and
trends,” pp. 1–5, Dec. 2009.1

[5] I. Ucar, J. Navarro-Ortiz, P. Ameigeiras, and J. Lopez-Soler. (2012)
Video Tester – A video quality assessment tool. [Online]. Available:
http://code.google.com/p/video-tester/ 1

[6] S. Winkler and P. Mohandas, “The evolution of video quality mea-
surement: From PSNR to hybrid metrics,”IEEE Trans. Broadcasting,
vol. 54, no. 3, pp. 660–668, Sep. 2008.1

[7] A. Murthy and L. Karam, “A MATLAB-based framework for image
and video quality evaluation,” inQuality of Multimedia Experience
(QoMEX), 2010 Second International Workshop on, Jun. 2010, pp. 242–
247. 1

[8] J. Klaue, B. Rathke, and A. Wolisz, “EvalVid – A frameworkfor video
transmission and quality evaluation,” inModelling Techniques and Tools
for Computer Performance Evaluation, 13th International Conference
on, Urbana, Illinois, USA, Sep. 2003, pp. 255–272.1, 2

[9] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,” Image
Processing, IEEE Transactions on, vol. 13, no. 4, pp. 600–612, Apr.
2004. 2, 3

[10] J. Gross, J. Klaue, H. Karl, and A. Wolisz, “Cross-layeroptimization of
OFDM transmission systems for MPEG-4 video streaming,”Computer
Communications, vol. 27, pp. 1044–1055, Jul. 2004.2, 3

[11] (2012) GPAC, an open source multimedia framework
for research and academic purposes. [Online]. Available:
http://gpac.wp.institut-telecom.fr/ 2

[12] J. Klaue. (2012) EvalVid – A video quality evaluation tool-set.
[Online]. Available: http://www2.tkn.tu-berlin.de/research/evalvid/ 2

[13] (2012) GStreamer – Open source multimedia framework. [Online].
Available: http://gstreamer.freedesktop.org/ 2, 4

[14] (2012) YUV CIF reference videos (lossless H.264 encoded). [Online].
Available: http://www2.tkn.tu-berlin.de/research/evalvid/cif.html 2, 3, 4

[15] Video coding for low bit rate communication, ITU-T Recommendation
H.263, Jan. 2005.2

[16] Advanced video coding for generic audiovisual services, ITU-T Recom-
mendation H.264, Mar. 2010.2

[17] Information technology – Coding of audio-visual objects, ISO/IEC
Standard 14 496-2, Dec. 2001.2

[18] (2012) Theora specification. [Online]. Available:
http://www.theora.org/doc/Theora.pdf 2

[19] (2012) GStreamer RTSP server. [Online]. Available:
http://gstreamer.freedesktop.org/modules/gst-rtsp-server.html 2, 4

[20] (2012) Programming with pcap. [Online]. Available:
http://www.tcpdump.org/pcap.html 2

[21] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A
transport protocol for real-time applications,” RFC 3550,Jul. 2003.3

[22] Opinion model for video-telephony applications, ITU-T Recommenda-
tion G.1070, Apr. 2007.3

http://www.cisco.com/
http://code.google.com/p/video-tester/
http://gpac.wp.institut-telecom.fr/
http://www2.tkn.tu-berlin.de/research/evalvid/
http://gstreamer.freedesktop.org/
http://www2.tkn.tu-berlin.de/research/evalvid/cif.html
http://www.theora.org/doc/Theora.pdf
http://gstreamer.freedesktop.org/modules/gst-rtsp-server.html
http://www.tcpdump.org/pcap.html

	I Introduction
	II Related work
	III Proposed framework
	III-A Video-Tester design and operation
	III-B Supported metrics

	IV Experimental results
	IV-A Frame misalignment
	IV-B Exemplary tests

	V Conclusion
	References

