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Abstract— Holoscopic 3D Imaging is a technique for producing 

natural 3D objects that exist in our world without the need for 

wearing specific eyewear. An Auto-Feature-Edge (AFE) descript-

tor algorithm is used to simplify the edge detection of objects that 

uses a Multi-Quantize Adaptive Local Histogram Analysis 

(MQALHA) algorithm. This paper presents an exploitation of 

available depth estimation and Feature Edge (FE) segmentation 

techniques when generating a 3D-Interactive–Map (3DIM). The 

robustness and efficiency of the proposed method is successfully 

illustrated in the paper and compared with the current state -of- 

the- art techniques. 
 

Index Terms—3D Holoscopic system, Edge detection, Auto-

thresholding, 3D depth, Local histogram analysis, Segmentation 

I. INTRODUCTION 

ULL natural colour effects, which are almost like the real 

world, can be obtained from Holoscopic 3D Imaging (HI), 

also known as Integral Imaging (II), which offers true-3D 

imaging technique [1]. This technique uses a micro-lens array 

to produce a planar intensity distribution of the true volume of 

the object scene [2].  

Current 3D display technology requires viewers to wear head-

gear devices, and recently much work was undertaken to 

develop multi-view autosteroscopic 3D display technology 

where the glasses will not be required. Unfortunately, at the 

moment the resolution is limited and the viewing is unnatural, 

which causes problems for the viewer during extended 

viewing [3, 4]. Due to improvements in microlens 

manufacturing technologies and the greater availability of 

processing power it is now possible to use the holoscopic 

technique for 3D display technology. The basic principle of 

3D HI is that a lens array captures the spatio-angular 

distribution of the light rays [5, 6]. Many micro-lenses form 

the lens array and from these the spatio-angular distribution of 

the light rays can be identified to form an Elemental Image 

(EI). The planar detector surface acts to maintain a 2D 

distribution of intensities that are the HI. The capture of the 

scene is through micro-lenses where each has a slightly 

different view from which it is possible to determine the 3D 

depth through the use of a decoder [7]. The principle concept 

for capturing and displaying the image as illustrated in Fig.1. 
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This manuscript details the use of an HI system with a 
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structures. This is done by performing correspondence 

matching with the EI array and a small set of regularly spaced 
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II. CURRENT 3D OBJECT SEGMENTATION METHODS 
 

The first work to identify depth extraction with HI systems 

used point spread functions [8]. In other work, for getting 

unidirectional 3D maps from HI, a practical feature-based 

matching approach was undertaken via disparity analysis and 

viewpoint image extraction [9]. From View-Point Images 

(VPI), the object’s depth was determined via their displace-

ments and a depth equation. There was a large amount of non-

information and homogeneous regions produced from this. 

Another paper proposed a method to determine surface points 

form the intersections between pixel projection rays [10]. This 

method’s output was a non-smooth and non-uniform 

sampling, which is a drawback. The same authors then used 

frameworks from [9] as well as graph cuts to estimate 

disparities on the surface of the extracted features between 

pairs of pixels. The authors were unsuccessful when trying to 

generate foreground masks directly from the HI system as it is 

hard to calculate depth on large non-informative and 

homogeneous regions [11].   

The authors introduced an automatic masking procedure for 

use with depth map calculation results to ensure the removal 

of errors that were in the background to obtain better object 

depth by extending the work in [9] to get adequate object 

contour and noise reduction [12]. This masks the binary object 

onto the depth map to calculate where it is part of the 

background. This process is efficient and rather accurate when 

identifying areas for removal from the background. 

Other work has enhanced the accuracy of the depth-

through-disparity algorithm to overcome deficiencies in a 

local descriptor’s special information by considering the depth 

and piecewise continuous space [13]. The method is better 

than the depth-through-disparity algorithm as it overcomes 

errors within the algorithm. 
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Fig.1 Unidirectional 3D-HI system using a cylindrical lens type lenticular sheet:  

a) capture of the 3D object process and b) display of the 3D image process.   
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A recent paper presented a new approach to estimate and 

extract from a 3D Omni-directional HI system a full parallax 

3D depth map [14]. This approach is a great improvement on 

the current optimal 3D object estimation and segmentation 

techniques. A three-stage system is shown in Fig. 2 for the use 

of this approach that does not need human interaction and 

therefore does not suffer from human induced errors. 

III. 3D OBJECT SEGMENTATION APPROACH  

In the proposed approach, the efficiency is crucially 

dependent on the 3D object map segmentation and its explicit 

recovery of indirect inference of 3D objects and their robust 

estimation and connection. In this paper the 3DHI technique is 

used as the base for a system that extracts and segments the 3D 

object using depth estimation and segmentation techniques as 

explained in the following steps. 
 

A. Pre-processing Stage 
 

This stage resamples the collected data so it is as a 2D VPI. 

2D images are recorded in which each image (an EI) has a 

slightly different view. These are then formed into a VPI where 

“viewpoint image segmentation” exploits the strong interval 

correlations between pixels displaced by one microlens. 

Previous work has detailed this process in detail [9, 13]. 
 

B. Auto-Feature-Edge Detection Stage 
 

This stage requires a Modeling Auto-Feature-Edge (AFE) 

detector algorithm. In this, threshold detection uses both edge-

based and region-based features to locate information in the 3D 

scene. The method presented here uses an automatic bi-level 

(one value) thresholding algorithm to sort images into regions 

based on the background. To ensure robust information about 

the feature’s edge is obtained, several techniques need to be 

integrated to identify the Feature-Edge (FE) blocks. Fig. 2(b) 

shows the principle of the Multi-Quantize Local Histogram 

Analysis (MQLHA) algorithm as adopted in the AFE threshold 

algorithm. 

The principle steps in the AFE detector algorithm (Fig. 3) are 

as follows: 

1.  Use a discrete Gaussian window=3 from the 2D Gaussian 

function to smooth the VPI to reduce noise: 

]2/)(exp[
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
yxyxG  , where, the parameter σ 

indicates the width of the Gaussian that defines the effective 

spread of the function.  

2.  Detection of the two boundary separating regions is via a 

gradient magnitude increase when there is a contrast between 

the FE on a smoothed VPI (  ⃗⃗⃗   σ) and the background by 

computing the magnitude     ⃗⃗⃗     and orientation     ⃗⃗⃗    of the 

biggest alteration in intensity within a small region of each 

pixel [15] as the pixel differences: 

     ⃗⃗⃗     √                                                   
 

   ⃗                                                  ⁄   

The gradient of the smoothed VPI can therefore be written as:  

            ⃗⃗  ⃗        ⃗⃗  ⃗            ⃗⃗  ⃗        ⃗⃗  ⃗  

3.  From this, only when the FE does not have a gradient 

magnitude that is the local maxima is the non-maxima 

suppression process performed. The gradient magnitude      

is set to zero apart from where it is the local maxima. Weak 

FE pixels are removed by using an average value from the 

surrounding 3x3 window.  

4.  This step uses the MQALHA algorithm to increase the FEs 

continuity, improve the speed of the multi-resolution aspect, 

and enable the use of the method with many noise levels (Fig. 

3). The multi-resolution task is done by the MQALHA 

through the use of local histogram analysis from low and high 
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Fig. 2 Illustration of the three stages in the proposed methodology for the 3DHI technique, a) pre-processing 
process, b) auto-feature detection process and c) adaptive depth map estimation process. 
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edge maps for two differently quantized thinned gradient 

magnitude VPIs. The algorithm is explained in the following 

two steps:  

a) Use the scheme described in [15] to automatically 

quantize the VPI into two 12-level intensities. Smooth 

the small peak fluctuations with a 1-D Gaussian filter 

with a standard deviation of 0.8. The first local 

maximum is in the grey level and is set as   , and is 

used to estimate the thinned gradient magnitude VPI to 

give the first quantized VPI. Shift the    value to the 

right by a distance (d) to produce the second VPI from 

the higher starting point. Where d =1/4*fmax is the best 

distance for producing the second VPI from the higher 

starting point. The higher value (    ) was selected to 

match the Full-Width-at-Quarter-Maximum (FWQM) of 

the noise distribution peaks (Fig. 4 (a)). Depending on 

the noise level, the second quantize starting point as well 

as    will both either increase or decrease.  

b) As in [16], divide the quantized VPIs into 4x4 non-

overlapping blocks. A 1-D Gaussian kernel of width 

W=3 smooths the computed histogram of each block, 

and from this they are classified as either background or 

EF blocks. If the block is in the background, as 

determined from the histogram being unimodal, than all 

pixels are set to zero. Otherwise, the first valley in the 

differentiated smoothed histogram is the threshold for 

that block. Those pixels with quantized grey levels over 

the threshold are determined to be edge pixels and set to 

one [16]. On the VPI, with    in the lower threshold FE 

map, save the threshold block, as with the VPI (    ) 

higher threshold FE map for further processing. For the 

“horseman” VPI the results are in Fig. 4 (b-e). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.  A “final edge map” is formed by combining the two EF 

maps. The higher threshold map is scanned to determine an 

edge segment and the lower threshold FE map is examined 

using a 3x3 local neighborhoods window to find possible 

connected successors. Then, when one of these successor 

pixels has an edge the algorithm will link it to the high 

threshold FE map after extracting and linking it to the 

endpoint. This new pixel becomes the new endpoint.  

6.  The above process will only stop when all the connected 

edge points from the lower VPI have been determined. From 

this it is possible to transfer all the features from the higher 

VPI map to the FE map. The method to obtain the required 

information will vary from specific application to application 

as the task and object domain require. 

C. Estimation of Adaptive Depth Map 

 This section details the stages in an approach to generate a 

3DIM extracted from the VPI and disparity analysis using a 

previously presented method [13]. 

First: From stage B, interesting points (FE with local maxima 

more than the threshold) are extracted using the training center 

VPI to establish the description. Using sum of square difference 

(SSD), extract the disparity displacement (Dis) that is the 

distance between the pairs of pixels. For the initial disparity 

map estimation of the cost function                       is: 





wyx

DispIpIdSSDDisbpC
,

2
)](2

ˆ)(1
ˆ[)(),(        (1) 

where,          is the cost function,  d is a horizontal 

displacement vector between pixel p of the window (block) w 

in the    centre VPI and         in the     target VPI. Using 

all viewpoint image pairs and their different baselines, the 

initial matching decision is performed: 
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where, SSSD is the sum of SSD that minimizes the depth map 

(D) and P is the pairs of the VPIs. The initial disparity for the 

central pixel p (xl,yl) is determined and for all local pixels (bn) 

their scores are obtained from various values of Dis 

(Dis=0,1,….,Dismax). Then, so that pixel (p) has the minimal 

cost from all the computed disparity cost functions of bp, the 

value of     
 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   is determined; where its minimum is given by: 

   ⃗⃗ ⃗⃗ ⃗⃗  ⃗
 

 
     

Rd
min        (bp, Dis

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
)                      (3) 

where, bp represents the window around pixel (p) and R is the 

research area.  
 

Second: Determine if the disparity is dominant for the block 

centered on pixel p (bp), and if it is not, further refinement 

needs to be performed. However, some noise is still part of the 

disparity map so it is suboptimal. The method from [13] is used 

to stop many neighboring edges from being considered as 

interesting and to assist large untextured areas as well as to 

ensure the extrapolation of unreliable pixels from local high 

confidence pixels. There are three confidence terms form the 

adaptive weighting factor:          =      ‖       ̅̅ ̅̅ ‖     ⁄  

representing the high variance of the center block bp and 

neighboring blocks bn, where,         ̅̅ ̅̅  represent the center 

pixel value bp and average value of the pixels within the block 

bn, respectively. With the use of a small   it is possible to 

reduce the variance of each block. Use the spatial Euclidean 

distance from the coordinates for which the variance is high 

and close to the center block bp to calculate the distance term; 

     (  )   √         
           

 .  

Use CIELab to calculate the colour space of a pixel bp (Cbp = 

[Lbp, abp, bbp]) and pixel bn (Cbn=[Lbn, abn, bbn]), donated as: 

Convolve VPI with 3x3 Gaussian Filter 

Compute Gradient Magnitude & Orientation 

Gradient Magnitude Thinning and Refinement 

Input Reference VPI 

Feature Edge Enhancement 

Feature Edge Extraction 

Fig. 3 Illustration of the steps of enhancement and 

extraction of the Feature Edge in AFE detector algorithm.  
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The aggregated cost is computed as a weighted factor of the bp 

for different neighbouring blocks as:  

                  =         .         .      (  )           (4) 

In the voting scheme, reliable neighbours gave each pixel p a 

vote: Votep (Dis) =  |                    , where, n is a 

consistent pixel from a reliable neighbour in the support 

aggregation window of the centre pixel p and the disparity Disn 

contributes one vote, which is accumulated in the set Votep 

(Dis). The maximum majority weighted vote decides the final 

disparity of the bp as: (    
         |           |). From 

Eqs. (2) and (4) with a bp block, the filtered cost match 

function              becomes two terms:           is the 

visual cost match function of the center block bp and           

indicates the smooth cost match function of the nearest 

neighbor block nb and is defined as: 

                                                        (5) 

 

Rewrite Eqs. (2), (4) and (5) using a smoothing term as: 
 

                                ∑                  

                                                                                               (6) 

 where, ∑                                 is the smooth 

match function for the nb nearest neighbour block. This makes 

the disparity map more accurate. 

Third: Derive the depth equation   
       

 
 from geometrical 

analysis of the recording process, where, D is the corresponding 

depth to be calculated, Ψ is the pitch size of the microlens, F is 

the focal length of the microlens, within the two extracted VPIs 

the disparity of the object point is Dis and the sampling 

distance is Δ. Calculate the 3DIM from Eq. 5. 
 

Fourth: Apply a median filter to further smooth the 3DIM. 

Calculate a median window size filter of 5x5 by systematizing 

all the neighboring pixels to a numerical order and substitute 

the middle ordered pixel for the considered pixel. 

IV. DISCUSSION / RESULTS 

  The main contributions of this method are as follows: 
 

A.  This method’s FE map is more distinctive and robust when 

dealing with camera VPI changes. It can provide robust local 

feature information that can provide the geometric constraints 

of the features. The real-world “Horseman” Fig. 4 shows the 

results from the AFE descriptor; while, Fig. 5 shows the 

results from the proposed algorithm for unidirectional real 

and synthetic 3DHs. The objects are correctly identified. 

B. This approach also separates the objects from the 

background in the extracted VPI. The FE detection guides the 

region identification through the generation of a binary mask 

(see Fig. 6). Detected points are classified as either 1 or 0, and 

connected FEs are converted into connected segments 

(contour). The detected edge pixels are used to automatically 

extract the seeds required for growing a region through pixel 

aggregation of the interior pixel area of each object [13, 17]. 

This is beneficial as the segmentation is determined without 

any prior knowledge and it does not require a homogeneity 

criterion threshold. The proposed method’s results were 

compared with those from previous [13] work as shown in 

Fig 6 (a, b). 

A comparison was made with state-of-the-art techniques [9- 

13]. This showed that the system presented in this paper was 

superior to the other tested systems as it used learnt parameters 

(given in Table 1). Table 2 shows this new system 

outperforming the comparison systems on the “Horseman” 

image. The proposed system is robust to camera VPI changes 

and it can provide information related to 3D depth estimation 

and 2D foreground object segmentation. However, there were 

some ambiguities that caused some problems. These were due 

to the thinning edge term (non-maximum suppression) that 

prevented multiple responses. Also, not many details are visible 

as the image resolution is low, due to illumination and focusing 

as well as other factors. The VPI resolution constrains the 

feature detection and extraction. 

V. CONCLUSION  

In this work, an automatic 3D-Interactive-Map generator was 

presented that was implemented in an Holoscopic 3D Imaging 

system.  The proposed method is based on the edges as the 

main features and was developed so it could handle both real 

and synthetic HIs. The 3DIM was generated automatically from 

a combination of semi-local disparity map estimation and FE 

detection techniques. The basis of the success was the use of 

the feature edge in both directions, i.e. estimation of 3D map 

and object segmentation. The proposed method outperformed 

current state-of-the-art techniques, but the depth estimation still 

needs improving and extending with the Omni-directional 

3DHI being viewed from more orthographic VPIS. 
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Fig. 4 AFE detection stage, a) first starting point (𝜎𝑟) (low threshold) 

setting strong edges and second starting point (𝜎𝑟+d) (high threshold) 
setting weak edges, b) low thresholding result on “Horseman” real-world 
VPI (noisy map), c) high thresholding result on “Horseman” (without 

noise) d) applying extraction and link process to set final EF map, and e) 

magnified section of a final FE map. 
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Fig. 5 Results of the proposed algorithm: the first three columns display the real 3DHIs where, 
“Horseman” and “Tank” each have a size equal to 1280x1264 and there are 160 cylindrical lenses, 

thus offering 160 elemental images of 8 x1264 pixels, and 8 viewpoint images of 160x1264 pixels. 

“Palm” has a size of 5628x3744 with each EI size 67x3744 and VPI size 84x3744. The other three 
columns are 3DHIs synthetic data, the micro-lens array consisting of 99 cylindrical lenses with a 

7x700 pixels resolution and the resolution of the extracted VPI was 693x 700 pixels [18]. (a) 3DHIs, 

(b) corresponding central (reference) VPIs, (c) 3D-Interactive-Map (3DIM) estimation using the 
proposed method, and d) “Horseman” and “Tank” depth map results using the method from [13].  

 

Table 2: Comparison with current methods. Table 1: Main parameters and statistical data. 
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Fig. 6 Foreground masks obtained from the real 

holoscopic images “Horseman” and “Tank” using, e) 

proposed algorithm and f) previous algorithm [13].   
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