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Abstract—The combination of multicast and directional
mmWave communication paves the way for solving spectrum
crunch problems, increasing spectrum efficiency, ensuring reli-
ability, and reducing access point load. Furthermore, multi-hop
relaying is considered as one of the key interest areas in future
5G+ systems to achieve enhanced system performance. Based
on this approach, users located close to the base station may
serve as relays towards cell-edge users in their proximity by
using more robust device-to-device (D2D) links, which is essential,
e.g., to reduce the power consumption for wearable devices.
In this paper, we account for the limitations and capabilities
of directional mmWave multicast systems by proposing a low-
complexity heuristic solution that leverages an unsupervised
machine learning algorithm for multicast group formation and by
exploiting the D2D technology to deal with the blockage problem.

Index Terms—Millimeter wave communication, multicast,
D2D, wearable devices, blockage, machine learning.

I. INTRODUCTION

Millimeter wave (mmWave) band transmissions allow wire-
less technologies to meet the high data rate requirements
of bandwidth-hungry applications, such as extended reality
(XRY] and multimedia services. This is one of the main
advantages of 5G new radio (NR) mmWave small cells, which
are considered as one of the main components of future
5G+ networks [1If]. Using multicast via point-to-multipoint
(PMP) communications in these small cells may help to
improve further the spectrum efficiency. Multicasting, which
is under consideration by the Third Generation Partnership
Project (3GPP) for Release 17 [2] of 5G systems, can provide
substantial improvements in terms of system efficiency, user
experience, and total network throughput [3], which is a
critical feature for ultra-high-speed data transmissions.

Multi-hop relaying schemes are considered as one of the
key interest areas in future 5G+ systems. With device-to-
device (D2D) communications enabled, users close to the base
station (BS) can serve as relays towards cell-edge users in
their proximity, interested in the same multicast content, by
using more robust D2D links. Hence, several non-adjacent

IReferring to all mixed real-and-virtual environments and human-machine
interactions generated by computer technology and wearables

links may be active at the same time, thus enabling con-
current transmissions to achieve better system performance.
The authors in [4]] demonstrated that mmWave and D2D
symbiosis can bring throughput performance improvement
up to 2.3 times. Furthermore, concurrent transmissions and
D2D-enabled communications in directional multicast systems
help to reduce energy consumption, as required by battery-
constrained wearable devices [5], [6].

Multicasting has been widely investigated in traditional
omnidirectional communications (i.e., at sub-6 GHz bands),
but the design of efficient mmWave multicasting techniques
has to account for the limited coverage of directional mmWave
communications [7]. Since mmWave is prone to blockages
and suffers from high propagation loss, it can severely affect
the performance of the multicast link. In case one user in
a multicast group suffers from blockage, two options are
possible: (i) all users experience this poor channel condition
(human blockage takes 15dB from the signal-to-noise ratio),
or (ii) the blocked user is served by the BS through unicast
communication. Here we claim that in a single-beam system,
D2D links can improve the performances compared to uni-
cast communications in terms of transmission delay, energy
consumption, and overall network throughput.

D2D-aided multicasting in mmWave directional systems has
been investigated in several recent studies. In [8], an efficient
heuristic is designed for multicast data delivery, where D2D
multi-hop and concurrent transmissions are jointly exploited
to achieve lower energy consumption compared to a series
of unicast transmissions. More recently, in [9] and [5], an
optimal multicast scheduling problem is formulated, with D2D
links and concurrent transmissions, through a mixed-integer
non-linear program (MINLP), which is known to be NP-hard.
Heuristic solutions with cubic complexity are also designed. A
similar approach is proposed in [10], where multicast schedul-
ing jointly exploits relaying and spatial sharing properties of
mmWave networks to minimize the overall data delivery time.
In [6]], an optimal D2D-enabled multicast scheduling policy is
proposed by constructing an ILP problem with the goal to
minimize energy consumption in mmWave cellular networks.

In practical scenarios, the problem of multicasting with
directional beams calls for new strategies that are simpler
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to compute, compared to the non-polynomial optimal ones
used in the above mentioned papers, while still guaranteeing
near-to-optimal performance [[11]]. For this purpose, machine
learning approaches can be used to provide close-to-optimal
solutions very fast.

In contrast with the previous studies, this paper examines the
achievable performance of a D2D-assisted multicast mmWave
system by taking into account both the complexity and
the directivity-imposed challenges. We use an unsupervised
learning scheme to cluster multicast users and define the
beam resolution to be swept. Moreover, we refer to D2D
communications as a blockage mitigation technique, which is
applied when users cannot be served through a multicast link.

Our Contributions. In this paper, we analyze a mmWave
communication system wherein the NR BS conveys multicast
data to a group of users under coverage by properly generating
the transmission beams. For the multicast group formation, we
employ the Self-Organizing Map (SOM), one of the traditional
unsupervised learning algorithms, to provide the near-optimal
result quickly. The complexity of SOM is linear with the num-
ber of users and quadratical on the map units’ number. Then,
we address the possible blockage conditions of multicast users
by proposing a D2D-aided multicast scheduling algorithm. The
algorithm utilizes D2D transmissions in proximity, thereby
ensuring service continuity even if the BS fails to serve devices
due to the blockage and outage caused by distance.

This paper is organized as follows. Section [[I] illustrates our
system model. Section describes the multicast subgroup
formation as well as the basic idea of D2D-assisted multicast-
ing. Numerical results and related discussion are presented in
Sections [V]and [Vl Conclusions are summarised in Section [V}

II. SYSTEM MODEL

This section describes the system model and its core com-
ponents, including the deployment, antenna, propagation, and
blockage models.

A. Deployment Model

We consider a 5G+ NR outdoor deployment, where all user
equipment (UE) devices are provided with mmWave modules
and served by an NR BS operating in the 28 GHz band. We
focus the analysis on the coverage area of a single antenna
array, where a group of M UEs of heights hy is uniformly
distributed within a sector of 90°, as illustrated in Fig.[l} UEs
are the communication devices carried by people interested in
a video streaming service. The NR BS, located at the origin of
the coordinates, has height h 4 and transmits data to multiple
users through a multicast mmWave link. The NR BS has a
coverage radius R, within which all UEs reliably receive data.
However, due to blockage, the connection can be disrupted;
we elaborate better on this assumption in the next subsections.

B. Antenna Model

We consider planar antenna arrays at both the NR BS and
UEs, and assume that the radiation pattern is represented as
a conical area with angle 6, coinciding with the half-power
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Fig. 1. System model illustration.

beamwidth (HPBW) of the antenna array. For a linear antenna
array, 6 can be computed as provided in [12]:

0 = 2|60, — O3ap], (D

where 034 is the angle at which the power output falls below
3 dB from the maximum output power, and 6,, is the location
of the array maximum, calculated as 6,, = arccos(—3/7),
given [ as the array orientation. We assume that 6,,, = 7/2
for g = 0.

The mean gain over the HPBW can be found as in [12]:

1 O sin(N7 cos(9)/2)
e,
0

G=_+—""— - 2
054 — O34, Jo;,, sin(mcos(0)/2)
where the upper and the lower 3-dB points are:
0, = arccos|—3 £ 2.782/(N)), (3)

and N is the number of antenna elements.

C. Propagation Model

The 3GPP urban micro (UMi) street canyon model [13]] is
used to model the mmWave propagation. Accordingly, for the
line-of-sight (LoS) deployment, the path loss measured in dB
is given by:

PL4p=32.4421log,, y+20log,, f, 4)

where f is the operating frequency in GHz, and y is the three-
dimensional (3D) distance between the NR BS and the UE.

D. Blockage Model

In real-life outdoor deployments, 5G NR systems suffer
from the presence of mobile obstacles, such as humans and
cars, which are often termed as “blockers” [[14]. We assume
that pedestrians might temporarily occlude the LoS path
between the UE and the NR BS; that is, human blockage. In
this case, the blockage attenuation B is assumed to be 15dB.



For the blocked and non-blocked states, the shadow fading
margins are represented by Mg p and Mg ,p. Then, the path
loss in (@) can be rewritten in the linear scale using Ay*, where
A and ¢ are propagation coefficients:

ALosnp = 10210810 I3 2 N6 b Gros = 2.1,
Aposp = 1021810 FHTAN G 5 G s = 2.1

®)

The blockers are modeled as cylinders with height A and
radius rg [15]. The number of blockers follows a Poisson
distribution with density Ap per square meter.

The propagation model, signal-to-noise ratio (SNR), reads
as:

- CLOS

[1-paY)]+

- PTGTGR( y—CLos

ALOS,HB ALOS,B

where pp(y) is the blockage probability at the 3D distance
y [15], No is the noise power spectral density, and W is the
operating bandwidth.

III. PROPOSED SOLUTION

In this section, we introduce a low-complexity algorithm for
the multicast subgroup formation (section [[II-A), and specify
the D2D-based enhancements to account for the blocked users
in the directional multicast transmission (section [III-B).

A. Multicast Group Formation

We utilize an unsupervised learning algorithm for multicast
subgroup formation. Specifically, clusterization is applied to
split a multicast group into subgroups served by the same
beam. Subgroups are created by using the SOM clustering,
one of the most well-known unsupervised neural network
models. In detail, the clustering is performed by grouping users
according to the similarity of their azimuth angle w.r.t. the
reference axis, since we deal with directional transmissions.

The main idea is first to randomly generate weights as the
characteristics of the neuron in the architecture, and then to
push each of the rows (observations) of the given data into an
imaginary space where each row acts as a point. The number
of neurons in the map (map size) is an application- or server-
specific parameter. Namely, large maps create many small
clusters. In contrast, a map of small size produces fewer but
more composite clusters. Once each data holds an imaginary
point into the input space, a search for the closest points (users)
is performed [16].

The pseudo-code for the classic SOM clustering tailored
to the scenario of multicast subgrouping is presented in
Algorithm [T} We recall that, at this stage, the SOM algorithm
operates by considering multicast users, whereas blockage is
accounted for in the next stage (see section [[II-B).

The following notation is used throughout the paper:

« t, the current iteration (epoch);

o A, the time constant that is used to decay the radius and
learning rate;

e F, the iteration limit, i.e., the total number of iterations
the network can undergo;

e 1, the row coordinate of the neuron grid;

Algorithm 1: SOM Algorithm

1 Input: Input vector x, which contains the angle from
the reference OX axis to each user;
Output: multicast subgroups
M ={Mi, Mz, ... M4}, g <N;
3 Initialize number of neurons in the map N;
4 Initialize number of epochs E;
5 Initialize each neuron’s weight w;; to a random value;
6 t+ 1,
7
8
9

(5]

while ¢t < E do

Select a random input vector x(t);

for all N neurons in the map do

10 Compute Euclidean distance between the input
vector x(t) and the neuron’s weight vector
iy d = ||E(t) — iyl

11 Track the neuron that produces the smallest
distance d;

12 Determine topological neighborhood (3;;(t) of the
BMU in the map and its radius o(t):
2
Big(t) = exp (55 ), (1) = oo exp (51);
13 Update the weight vectors of the neurons in the

neighborhood of the BMU (including the BMU
itself) by pulling them closer to the input vector:
Wiy (1) = wy(8) +u(8) B, (1) [2(t) — wiy ()]
a(t) = agexp ();

u | t+—t+1;

15 end

¢ j, the column coordinate of the neuron grid;

« d, the distance between a neuron and the best matching
unit (BMU);

« w, the weight vector;

o w;;(t), the weight of the connection between the neurons
1,7 in the grid and the input vector’s instance at iteration
L

e z is the input vector;

o «a(t), the learning rate, decreasing with time in the
interval [0,1] to ensure the network convergence;

e [;;(t), the neighborhood function, monotonically de-
creasing and representing a neuron %, j distance from the
BMU, and the influence it has on the learning at step t;

e o(t), the radius of the neighborhood function, which
determines how far neighbor neurons are examined in the
2D grid when updating vectors. It is gradually reduced
over time.

Then, in each training epoch ¢, Algorithm [T iterates through
the elements of the input vector x. For each element, it
finds the closest neuron, then it updates its weights and the
weights of all its neighbors in layer w;;. Upon completion of
Algorithm |1} neurons converge to final weight values through
a competitive learning scheme that adjusts them to resemble
nearby winning neurons. This process generates groups of
similar neurons in the final map (i.e., multicast subgroups).



Thus, the output of this approach is the number g and size of
multicast subgroups M = { My, Ma, ..., M;, ..., M}, where
M contains the set of multicast users.

We note that the performance of clustering algorithms de-
pends on the topology of the input data and the clustering goal.
The advantages of SOM among other clustering algorithms
are that: (i) it does not need a target output and (ii) a priori
estimate of the clusters’ number to be specified, as in the case
of K-means, and (iii) it can deal with ambiguity, assignment
of points to multiple clusters (different from, e.g., hierarchical
clustering).

B. D2D-aided Multicast Policy

We introduce the D2D-aided multicast scheduling algorithm
(MSA), designed to solve possible blockage conditions of
multicast group members by means of D2D transmissions
from users in physical proximity. The proposed approach,
described in Algorithm [2] is carried out in two steps for the
selection of:

« the transmission parameters of each multicast beam;

o the proper D2D transmitter for each user experimenting

outage from the multicast transmission.

In particular, the output of Algorithm[I]serves as an input for
Algorithm [2| First, the heuristic calculates the HPBW (beam
resolution) 6 required to serve subgroup M, (line 6), which
is given by:
9jarccOS(XB(m)XB(m/)JFYB(m)YB(m/)+ZB(77L)ZB(m/)

y(m)y(m')

(N

where multicast users m and m’ are the two edge users in the

group, the two farthest in term of angle between them.
Then, the SNR for multicast subgroup M is given by:

S(Mj) = min (S(ym)‘S(ym) > Sthr) ,Vm S Mj, (8)

where Sy, represents the lower bound of the SNR for the
most robust data transmission (i.e., MCS 1). If the SNR at
user m is less than the threshold (i.e., S(ym) < Swr), D2D
communication is activated (see lines 7-13).

The second step consists in discovering the multicast users
that are closest to the set of users to be served via D2D D (lines
14-16) in order to establish direct communication links. We
assume that D2D communications are performed concurrently,
and that transmission starts as soon as the D2D transmitter
receives the service from the NR BS.

C. Proposed Solution Complexity

The computational complexity of the proposed solution is
given by:
O(N?) + O(g|M;]) + O(|DJ),

where O(N?) is the complexity of the traditional SOM (Al-
gorithm [T)), which is used for multicast group formation. The
second and third summands, (O(g |M;|)+O(|D|)), represent
the complexity of Algorithm [2] executed after SOM due to
(i) two for cycles over all M ; multicast groups (here, g is the
number of defined groups) and the size of the group, which are
embedded loops; (ii) for loop over all identified D2D users.

Algorithm 2: D2D-aided MSA

1 Input: M = {Mq, Mg, ..., M;, ... Mz},

2 set M* < (;

3 set Mj < 0; b set of users from M, served through
PMP links

set D « 0;
for each set M; do
calculate 6, from (7);

4 > set of users served through D2D links
5
6
7 | for each node m € M; do
8
9

if S(Ym) > S then
‘ MG = M5 U {m};
10 else
11 | D«DuU{m};
12 calculate S(M) from (8);
13 | M" = MTUMT;

14 for each mode u € D do

15 | find max {S(yum)};
meM*
between users v and m

> Yu,m 1s the distance

16 end

IV. PERFORMANCE EVALUATION

In this section, we evaluate the effects of the proposed
D2D-assisted multicast scheduling via learning and assess the
performance of our mmWave system. By default, we assume
linear antenna array with 32x4, 16x4, §x4, 4x4, 2x4, and
1 x4 antenna elements. The transmit power is fixed at 33 dBm.
The other main simulation parameters, including the inputs for
the SOM algorithm implemented in Matlab using the Neural
Network Clustering App with map dimension 2x2 (N = 4),
are listed in Table

The analyzed performance parameters are:

e Network throughput (also known as aggregate through-

put) is the sum of data rates that are delivered to all
terminals in the network.

TABLE I
DEFAULT SYSTEM PARAMETERS FOR NUMERICAL ASSESSMENT
Parameter Value
Carrier frequency, f 28 GHz

Number of users, M 30

Height of AP, h g 3m

Height of blocker, hp 1.7m
Height of UE, hy 1.5m
Blocker radius, rpg 0.4m
Density of blockers, Ap 0.3 bl./m2
SNR threshold, SNR,, -9.478 dB
Transmit power, Pr 33dBm
Transmit power, Pr d2q 10dBm

BS antenna array {32,16,8,4,2,1} x4
Receive gain, Gr 5.57 dBi
Radius of the area of interest, Ry 30-100 m
SNR (MCS15, rate 948/1024), Smax 20dB

Noise figure, NF 7.6dB
Power spectral density of noise, No 174 dBm/Hz
Packet size, B 1Gb
Number of neurons in the map, N 4 (2x2 map)
Number of epochs, E 200
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o Energy consumption is the amount of energy used during
a given period of time.

o Energy efficiency (or efficient energy use) is defined as the
achieved network throughput divided by the consumed
energy in bit/s/J.

We consider the following benchmark solutions to assess the
performance of the proposed D2D-assisted multicast scheme:

« Directional multicast by using SOM, where the blocked
users are served sequentially by narrow unicast links
(Multicast).

o The BS transmits multicast data through a series of
unicast transmissions (Unicast).

We initially discuss the impact on the considered perfor-
mance metrics due to variable service area radius and blockers
density, in Figures 2] 3] and ] Continuous curves refer to 0.1
blockers per square meter density, dashed curves to 0.3. As a
general trend, Fig. [2] shows that an expansion in the service
area radius corresponds to an increase in the completion time,
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different sizes of the map.

which in turn affects the energy consumption for all analyzed
schemes. One may also notice that the proposed framework
outperforms both benchmark solutions. Specifically, the in-
crease in the blocker density deteriorates the performance
of both benchmark schemes, whereas it improves the energy
consumption of the proposed approach. This behavior can be
explained by the fact that, in our system, blockage brings to
the establishment of D2D communications. Therefore, a higher
number of blockers leads to a higher number of activated
adjacent D2D links and, hence, shorter completion time and
lower energy consumption.

Curves with similar behavior are reported in Fig. 3| and
Fig. ] where we investigate energy efficiency and network
throughput. Both metrics, as expected, decline with the rise
in the service area radius. Further, one may observe that
in a scenario with higher blocker density, the throughput
and energy efficiency reveal better results for our solution.
However, this difference becomes smaller for larger areas of



interest as we deal with highly directional transmissions.

Finally, we investigate the impact of the neuron map size N
on the system performance in Fig. 5] Continuous curves refer
to the case with N = 4, and dashed curves to N = 6. We recall
that this parameter affects only multicast schemes, leaving the
unicast transmission mode without any changes. To this end,
energy consumption for the considered schemes is illustrated
for the map of 2x2 and 1x6 neurons and a density of 0.3
blockers per square meter. We note that, for the considered
service area (sector of 90°) and number of multicast users
M = 30, the smaller map exhibits visibly better performance,
which is mainly explained by the multicast service specific in
directional systems. This fact can be inferred in Fig. [5] from
the comparison between the unicast and the multicast mode
when N = 6. Namely, for a small service radius, splitting
multicast users into a high number of subgroups is not efficient
as it introduces a delay due to the sequentiality while still
not providing the best transmit gain compared to unicast. On
the contrary, at larger transmission distances, the multicast
approach works better.

V. DISCUSSION

This section discusses the aspects that are out of this
paper’s scope but are essential in designing mmWave multicast
scheduling strategies, thus they will be investigated in future
research.

1) Mobility: In this paper, we assume a slow mobility
network, such as sport stadiums, concert halls, or urban low-
speed vehicles, where multicast users almost do not move
during the transmission period of a 1Gbit data packet. For
networks with high-speed nodes, such as high-speed trains,
uninterrupted connectivity can be ensured with features such
as beam switching and tracking. Then, in the case of mobility,
the beam should track the major part of the multicast subgroup.
If a device moves in a different direction, at some time instant,
this device will lose the connection with the BS, but a D2D
link will be used (as described in Algorithm [2]lines 7-13). This
way, the proposed approach can be adapted to the dynamic
scenario.

2) Traffic: In real deployments, both multicast and unicast
sessions may coexist. In this case, multicast may get priority
over unicast traffic due to its service properties. Therefore,
efficient radio resource management frameworks are required
to handle joint unicast and multicast traffic in mmWave
networks.

VI. CONCLUSIONS

In this work, we proposed a low-complexity heuristic so-
lution for D2D-assisted multicasting. The multicast group
formation is performed by employing an unsupervised learning
approach (i.e., SOM), whereas D2D links are used to cope
with the blockage or/and the outage due to the distance.
Our developed heuristic considers essential system parameters,
which include directional transmission, blockage, minimum
required data rate for successful reception, and beam resolution
of the antenna array. From the simulation results, we may

conclude that SOM works well for directional multicast and
that the number of neurons in the learning phase is service-
specific, as well as it depends on the considered area of
interest. We also demonstrated that the proposed scheme is
good to manage scenarios with high blockers density, and it
performs even better when the number of blockers is high.
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