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Abstract—In this paper, we consider device-to-device enabled
uplink cell-free communication between external users with the
base station. By exploiting the channel gain differences, external
and cellular users are multiplexed into the transmission power
domain and then non-orthogonally scheduled for transmission
with the same spectrum resources. Successive interference can-
cellation is then applied at the base station to decode the message
signals. We introduce an effective deep reinforcement learning
(DRL) scheme to optimise the worst-case user rate through the
dynamic power allocation of both external and cellular users.
We also compare the performance of the DRL scheme under
zero-forcing beamforming and conjugate beamforming methods.
Simulation results verify the effectiveness of the DRL method
for guaranteeing the user fairness through the worst-case rate
maximisation.

Index Terms—Cell-free network, worst-case rate maximisation,
uplink beamforming, power allocation, deep reinforcement learn-
ing.

I. INTRODUCTION

Massive machine type communication (mMTC) and Internet
of things (IoT) are the two uplink scenarios which are widely
used in fifth-generation (5G) networks. The emerging non-
orthogonal multiple access (NOMA) scheme is attracting
considerable attention due to its capacity to support massive
connectivity in numerous applications including multimedia
applications and the Internet of Things (IoT) [1]. However,
with the number of user equipments (UEs) and tall infrastruc-
tures increasing, UEs, due to long distance or blockage by
some obstacles, may not access the base station (BS) directly
in cellular ommunication.

Recently, distributed antenna based cell-free (CF) wireless
network is being considered as a solution [2], [3], where a
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large number of UEs in a geographical area will be served
simultaneously in NOMA scenarios by a large number of
spatially distributed access points (antennas), which coordinate
with a centralized processing unit. But, distributed antenna
based schemes face many challenges now. The first is to
guarantee the synchronisation at distributed antennas for trans-
mitting and receiving signals. The second is to dynamically
determine the set of distributed antennas that serve the UEs
near them and manage the interference between adjacent
antenna sets in downlink mode or between adjacent users in
uplink mode. This kind of CF network is out of the scope of
this paper.

On the other hand, emerging cooperative NOMA device-
to-device (D2D) communication is gradually applied for the
downlink performance enhancement for far users within the
cell coverage where the near cellular user functions as a relay.
Two kinds of scenarios are clasified according to if there is
a direct communication link between the BS and far users.
For the direct link scenario [4]–[6], the near user or central
user plays a role of assistant, where in the first phase, the
BS broadcasts signals using the NOMA protocol to a central
user and a cell-edge user, and in the second phase, the central
user helps the BS cooperatively relay signals intended for the
cell-edge user. For the scenario without a direct link [7]–
[9], the central user functions as an enabler, where the BS
broadcasts the superimposed signals to the central user in
the first phase and the central user decodes and forwards
the message signal for the far user in the second phase.
Besides, this cooperative mode is also used in the cognitive
network, where the secondary user shares the same frequency
spectrum with the primary user by assisting the primary user
communication as a combine-and-forward relay [10].

Inspired by the cooperative NOMA D2D communication,



we consider an uplink cell-free multiple-input-single-output
(MISO) network enabled by the cellular UE (CUE) as a
relay between the external UEs (EUEs) and the cell BS.
For this CF uplink communication system, three parts need
to be considered, i.e., the clustering configuration of UEs
(including one CUE and a couple of EUEs), transmit power
allocation for UEs in each cluster based on NOMA and the
beamforming at the BS. Many UE clustering methods for an
NOMA network has been presented in the literature, including
match theory [11] and k-means [12]–[14]. After clustering, the
closed-form expression of the signal-to-interference-plus-noise
ratio (SINR) of each NOMA UE can be derived, based on the
given beamforming weights, power allocation (PA) factors and
the successive interference cancellation (SIC) decoding order.

Considering the SINR propotional to the user rate, op-
timising beamforming and PA can achieve rate maximi-
sation. Recently, many good beamforming methods are
used in cellular or cell-free networks, including zero-
forcing beamforming/precoding [15], [16], conjugate beam-
forming/precoding [16]–[18] and deep reinforcement learning
scheme (DRL) based beamforming [3], [19]. Besides, a deep
learning based uplink power controlling method is proposed
for rate maximization based on different criteria, i.e., max-
sum, max-min and max-product [20]. The max-min optimiza-
tion aims to provide uniform service to all UEs for user
fairness.

In this paper, we propose an uplink cell-free MISO network
by employing the CUE as the D2D relay where the EUEs
first transmit signals to the cellular user that combines the
received signal and its own signal before transmiting them
to the BS. We derive the closed-form signal-to-interference-
plus-noise ratio (SINR) expression of both CUE and EUEs
in each cluster with given beamforming weights and power
allocation ratios. We consider the conjugate beamforming
and zero-forcing beamforming methods, respectively. For the
power allocation optimisation, we regared it as a Markov
decision process, and design a novel DRL based scheme to
solve it. To meet the user fairness, the reward of the DRL
environment is set to be the minimum SINR over all UEs. The
simulation results verify the performance of our DRL scheme
in improving the worst-case user rate for user fairness.

II. SIGNAL MODEL AND PROBLEM FORMULATION

A. System model

As shown in Fig. 1, N D2D clusters are predetermined by
existing clustering methods, such as K-means methods [12].
The EUEs in one D2D cluster transmit their signals by NOMA
principle to the CUE, which then combines the received signal
and its own signal and transmit it to the BS. Beamforming
and SIC decoding will be applied at the BS by exploiting the
differences of the effective channel gains between clustered
users (including EUEs and CUE) and the BS. Assume the
base station is equipped with M antenna elements while both
CUE and EUE are with single antenna, i.e., MISO system. For
symplicity, we also assume each cluster has K users, including
the CUE with index 1 and the EUEs with index 2, 3, · · · ,K.

B. Signal model

In this paper, the proposed scheme is based on a two-phase
transmission. First, the EUEs transmit their massage signals to
the CUE by NOMA in each cluster. The CUEs combine the
received signal and its own signal by reallocating transmisstion
power for them. Secondly, the CUEs transmit the suprimposed
signal to the BS which implements beamforming and SIC to
decode the signals of respective users.

For the first phase, the received signal of the CUE in cluster
n is given by,

rn =
∑K

k=2
gn,k

√
Ppn,kxn,k + zn, (1)

where gn,k denotes the channel gain between EUE k and the
CUE in cluster n, P is the available power of each user, 0 <
pn,k ≤ 1 is the power allocation ratio, xn,k is the normalised
transmitted signal of user k with zero mean and unit variance
and zn is the additive white Gaussian noise (AWGN) with the
power spectrum density (PSD) σ2

n. Then, the CUE generates
the transmitted signal by reallocating power for the received
signal plus its own massage signal, denoted as,

xn =
√
Pηnpn,1xn,1 +

√
Pηn(1− pn,1)rn/ρn, (2)

where Pηn is the transmission power for xn with power
allocation ratio 0 < ηn ≤ 1, pn,1 and 1−pn,1 are respectively
the power allocation ratios for xn,1 and normalised received
signal rn/ρn and ρn is the normalisation factor 1

ρn =

√∑K

k=2
|gn,k|2Ppn,k + σ2

nB, (3)

with B denoting the channel bandwidth and | · | the modulus
operator. Further substituting (1) into (2) yields

xn = xn,s + hnzn, (4)

where

hn ,
√
Pηn(1− pn,1)/ρn (5)

is the power scaling factor and the signal part xn,s is denoted
as

xn,s =
√
Pηnpn,1xn,1 + hn

K∑
k=2

gn,k
√
Ppn,kxn,k. (6)

For the second phase, the received signal at the BS is given
by,

y =
∑N

n=1
gnxn + z, (7)

where gn,1 ∈ CM×1 is the complex channel gain vector
between the CUE in cluster n and the BS and z is AWGN
vector with the PSD σ2. Assume σ2 = σ2

n for any n. Note
that gn,k can be expressed as gn,k =

√
ln,kfn,k with ln,k

and fn,k denoting path loss (large scale fading) and random
fading (small scale fading) between the EUE k and the CUE
in cluster n, respectively. The channel response gn is denoted

1The normalisation operator is called analog network coding in [10].



as gn =
√
lnfna(θ) 2 where ln and fn denotes the path loss

and random fading, respectively. a(θ) is the steering vector
between the CUE in cluster n and the BS.

In order to decode signals from cluster n, pre-multiplying
(7) by beamforming weight wn ∈ CM×1 (spatial filtering)
yields the filtered signal for cluster n, i.e.,

yn = wH
n

∑N

q=1
gqxq + wH

n z

=
∑N

q=1
bn,qxq + wH

n z (8)

where bn,q , wH
n gq is the beamforming gain and (·)H denotes

the conjugate and transpose operator. Further substituting (4)
and (6) into (8) yields

yn = bn,nxn,s︸ ︷︷ ︸
signal part

+
∑N

q=1,q 6=n
bn,qxq︸ ︷︷ ︸

inter−cluster interference

+ bn,nhnzn + wH
n z︸ ︷︷ ︸

total noise term

. (9)

In light of (6) and (9), we denote the equivalent channel
gains of EUE k, k 6= 1 in cluster n by

g̃n,k = hngn,k. (10)

In particular, g̃n,1 = 1 for each n. Herein, we neglect the com-
mon gain bn,n for g̃n,k. Since the equivalent channel gain g̃n,k
contains the power allocation parameter pn,k, k = 1, · · · ,K,
the idea of allocating more power for users with higher channel
gains cannot be straintforward.

Now, we consider SIC decoding method based on the dif-
ferent filtered signal power levels at BS. Without loss of gen-
erality, in xn,s, we assume g̃n,1

√
Pηnpn,1 ≥ g̃n,2

√
Ppn,2 ≥

· · · ≥ g̃n,K
√
Ppn,K . Thus, the SINRs are given by,

γn,1 =
|g̃n,1|2ηnpn,1

K∑
k=2

|g̃n,k|2pn,k +
N∑
q 6=n

|bn,q|2

|bn,n|2
ηq + pz

, k = 1, (11)

γn,k =
|g̃n,k|2pn,k

K∑
l=k+1

|g̃n,l|2pn,l +
N∑
q 6=n

|bn,q|2

|bn,n|2
ηq + pz

, 1 < k < K,

(12)

γn,K =
|g̃n,K |2pn,K

N∑
q 6=n

|bn,q|2

|bn,n|2
ηq + pz

, k = K, (13)

where pz ,
|hn|2

τ
+
‖wn‖22
|bn,n|2τ

is the noise term with τ ,

P/(σ2B) denoting the signal-to-noise ratio (SNR) and ‖ · ‖2
denoting the l2-norm of a matrix.

2Only the line of sight based signal transmission is considered in this paper.

C. Problem formulation

For any user k in any cluster n, the uplink user rate is given
by [2], [9],

Rn,k = log2(1 + γn,k), (14)

with log2(·) denoting the log function with the base of 2.
We consider the worst-case user rate maximisation in order

to guarantee the user fairness for transmission. Since Rn,k ∝
γn,k, for complexity reduction, we consider the optimisation
for SINRs directly,

max
{wn,pn,k,ηn}

min{γn,k}, (15)

s.t. γn,k > γ̀n,k,

0 < pn,k ≤ 1, 0 < ηn ≤ 1,

for n = 1, 2, · · · , N, k = 1, 2, · · · ,K,

where γ̀n,k denotes the quality-of-service threshold of γn,k.
Herein, {wn}, {pn,k} and {ηn} are parameters to optimise
for rate maximisation of the worst-case user.

To optimise {wn}, {pn,k} and {ηn}, both the channel
response between the CUEs and the base station and that
between the EUEs and the CUEs need to be known or
estimated a priori by existing methods, such as uplink pilot
transmission [2]. The SNR τ also needs to be estimated a
priori. We consider sub-6GHz communication and users with
low mobility, such that the coherence time 3 is relatively
large for effective channel estimation and power allocation
optimisation.

III. BEAMFORMING

In light of the SINRs expressions (11)-(13), minimizing
|bn,q|2/|bn,n|2 is direct to the minimization of the inter-cluster
interference term

∑N
q 6=n |bn,q|2/|bn,n|2ηq . There are two kinds

of beamforming methods for minimizing |bn,q|2/|bn,n|2. The
first is zero-forcing beamfoming [16], i.e.,

W = G(GHG)−1, (16)

with W = [w1, · · · ,wN ] and G = [g1, · · · , gN ]. With zero-
forcing beamforming, we have |bn,q|2/|bn,n|2 = 0 and thus
the inter-cluster interferences are eliminated. The second is
conjugate beamforming [16], i.e.,

W = G. (17)

In this paper, we will respectively implement these two beam-
forming methods in the proposed D2D enabled cell-free com-
munication scenario. Note that the influence of beamforming
weights in the noise term pz on the SINRs is generally small,
especially when the SNR τ is relatively large.

3The small scale channel fading can be seen as constant in one coherence
time period [2].



TABLE I
THE DRL SYSTEM PARAMETERS

States s = [γ1, γ2, . . . , γNK ]
Action a = [p1, p2, · · · , pNK , η1, · · · , ηN ]
K the number of users in each cluster
N the number of clusters

IV. DRL-BASED POWER ALLOCATION

We now consider optimising power allocation parameters
{pn,k} and {ηn}. It is evident that (11)-(13) are highly
nonlinear with respect to {pn,k} and {ηn} due to the nonlinear
hn and ρn. Thus, it seems very hard to find the analytical
solution to the power allocation problem. In this section, we
introduce a novel deep reinforcement learning (DRL) method
that solves the optimisation problem of power allocation for
given beamforming weights.

A. Preliminaries

Deep deterministic policy gradient (DDPG), as a DRL
method, provides a solution to manage the problem with
continuous state space and continuous action space. It concur-
rently learns a Q-function network approximation Q(s, a|θQ)
called the critic, and a policy network approximation µ(s|θµ)
called the actor, where s and a denote the state and action,
respectively. θQ and θµ represent the network parameters of
Q-function network and policy network, respectively. The Q-
function network is trained using the loss function, while
the policy network is learnt using the Q-function. The policy
network of DDPG directly maps states to actions.

B. Learning system

The learning system includes a DDPG agent and a learning
environment where the former learns the power allocation via
the interaction with the latter. We now detail the design of the
learning system.

1) Agent design: The DDPG agent consists of critic
network Q(s, a|θQ), actor network µ(s|θµ) and their re-
spective target networks Q′(s, a|θQ′) and µ′(s|θµ′). Herein,
we renumber the SINRs γn,k as γ(n−1)K+k, pn,k as
p(n−1)K+k and correspondingly generate the state s =
[γ1, γ2, · · · , γ(n−1)K+k, · · · , γNK ] and similarly the action
set a = [p1, p2, · · · , p(n−1)K+k, · · · , pNK , η1, · · · , ηN ]. The
system parameters are listed in Table I.

Two tricks are employed to stabilise the training of the
DDPG actor-critic architecture.
1) the experience replay buffer to train the critic.
2) target networks for both the actor and the critic which are
updated using the periodic Polyak averaging, i.e.,

θQ′(t+ t0) = (1− δ)θQ′(t) + δθQ(t), (18)
θµ′(t+ t0) = (1− δ)θµ′(t) + δθµ(t), (19)

with t denoting time step, t0 denoting update period and δ ∈
[0, 1] denoting the averaging factor.

We also consider the exploration-exploitation policy by
adding a stochastic noise onto the action ouput of DDPG

Algorithm 1 DDPG based PA method
1: Randomly initialize critic and actor with θQ(0) and θµ(0), respectively
2: Initialize target network: θQ′ (0) = θQ(0) and θµ′ (0) = θµ(0)
3: Initialize replay buffer R and t = 0
4: for Episode e = 1 to E do
5: for Step b = 1 to B do
6: For observation s(t), select action a(t) = µ(s(t)|θµ(t)) + v(t)
7: Execute action a(t). Observe the reward r(t) and next observation

s(t+ 1)
8: Store the experience (s(t),a(t), r(t), s(t+ 1)) in the experience

buffer R
9: Sample a random minibatch of I transitions

(s(u),a(u), r(u), s(u+ 1)) from R
10: Set y(u) = r(u)+β(Q′(s(u+1), µ′(s(u+1)|θµ′ (u))|θQ′ (u)))
11: Update the critic with the loss: L =

∑
u(y(u) −

Q(s(u),a(u)|θQ(u)))2

12: Update the actor using the sampled policy gradient: ∆θµJ =
1

I

∑
u ∆aQ(s,a|θQ)|s=s(u),a=µ(s)∆θµµ(s(u)|θµ)

13: Update t = t+ 1
14: Update v(t) according to (20)
15: if mod(t, t0) = 0 then
16: Update the target networks with (18) and (19)
17: end if
18: end for
19: end for

agent at each time step, i.e., a(t) = µ(s(t)|θµ(t)) + v(t).
Note that a(t) still needs to be limited within [0, 1]. At each
sample time step t, the noise value v(t) is updated using the
following formula, where the initial value v(0) is defined as
a zero vector 0,

v(t+ 1) = v(t) + ξ(v̄ − v(t)) + ε(t)ω, (20)

where v̄ denotes the mean of v(t), the constant ξ specifies
how quickly the noise model output is attracted to the mean,
ε(t) is the standard deviation of v(t) and ω is a random
vector satisfying the standard Gaussian distribution. At each
sample time step, the standard deviation decays as shown in
the following code.

ε(t+ 1) = ε(t)(1− ε), (21)

with 0 ≤ ε ≤ 1 denoting the standard deviation decaying rate.
The critic network has two inputs, i.e., state input (SINRs)

and action input (power allocation ratios) which have different
orders of magnitudes. The power allocation ratios themselves
are within [0, 1] according to (15). Thus, we add a softmax
layer after the state input to normalise them into the range of
[0, 1]. Similarly, we also add a softmax layer after the state
input of the actor network. The output layer of the actor
network is a sigmoid layer to ensure the power allocation
vector a in the range [0, 1].

2) Environment design: For the reward calculation of DRL
environment, firstly determine the SIC decoding order in the
order of decreasing arrived power of NOMA users. Secondly,
calculate the SINRs (states) of NOMA users for each cluster
by using SIC. Finally, according to (15), we select the mini-
mum SINR over all users as the reward of the current iteration,
i.e.,

r = min(s). (22)



Fig. 1. D2D enabled cell-free network
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(a) zero-forcing beamforming
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(b) conjugate beamforming

Fig. 2. The user rate learning curves: (a) DRL under zero-forcing beamform-
ing; (b) DRL under conjugate beamforming

The DDPG based PA training process is given in Algorithm
1 with the discount factor β ∈ [0, 1].

V. SIMULATION RESULTS

Without lossing generality, we consider two D2D clusters
in a cellular network that occupy the same frequency spectrum
resource. There are three users in each D2D cluster, including
one CUE and two EUEs, renumbered as shown in Fig. 1.

The DDPG agent consists of one critic and one actor
network. The critic network has two inputs defined in Table
I, i.e., state input and action input. As stated in Subsubsection
IV-B1, the softmax layer is used in both critic and actor
network following their respective state input layers for nor-
malisation. Similarly, the sigmoid layer is used as the output
layer of the actor network to normalise the estimated power
allocation parameters. Besides, the critic network has three
fully-connected hidden layers i.e., 256 × 128 × 64 with each
followed by a leakyRelu activation layer. The actor network
also has three hidden layers (128 × 64 × 32) followed by
leakyRelu activation layers.

We consider the sub-6GHz communication herein. The
available transmission power of all users are assumed to be
same, say 20dBm for example. The path loss (in dB) is
characterized by the alpha-beta-gamma (ABG) model [21],
i.e.,

l(f, d) = 22log10(d) + 8 + 20log10(f), (23)

where log10(·) denotes the log function with the base of 10,
herein the diatance d is in the unit of meter (m) and the carrier

TABLE II
THE SIMULATION PARAMETERS

name d1(m) d2(m) d3(m) d4(m) d5(m) d6(m)
value 20.00 19.58 19.65 25.00 18.00 11.42
name f (Hz) B(Hz) σ2(dBm/Hz) nf (dBm) M Ω
value 5.8e9 20e6 −174 10 1 1

TABLE III
THE POWER ALLOCATIONS AND USER RATES

user index zero-forcing beamforming conjugate beamforming
power ratio rate (bps/Hz) power ratio rate (bps/Hz)

1 0.984 5.843 0.919 3.622
2 0.231 6.140 1.000 3.621
3 0.949 5.989 0.908 3.620
4 0.982 5.777 0.919 3.615
5 0.800 5.722 1.000 3.613
6 0.067 5.754 0.370 3.622
η1 0.956 —- 0.296 —-
η2 1.000 —- 1.000 —-
sum rate —- 35.270 —- 21.713

frequency f is in gigahertz (GHz). Let d1 and d4 respectively
denote the distance between the corresponding CUE and the
BS, and d2, d3, d5 and d6 respectively denote the distance
between the EUE with corresponding CUE. Assume the small-
scale random channel fading follows independent but not
identically distributed (i.n.d) Nakagami-{M, Ω} distribution
with spreading and shape parameters M and Ω, respectively.
With the receiver noise PSD σ2 and the noise figure nf ,
the noise power is pn = σ2B + nf (dBm). Without loss of
generality, the other simulation parameters are given in Table
II.

As shown in Fig. 2, both DRL with conjugate beam-
forming and that with zero-forcing beamforming converge
within limited episodes, but the former causes lower user rates
and sum rate. This is because the conjugate beamforming
method cannot eliminate the inter-cluster interferences due
to |bn,q|2/|bn,n|2 6= 0 in (11)-(13). We also observe that
different users have very close user rates after convergence.
This is because for the SIC decoding method, the performance
improvement of one user usually implies the performance
degradation of the other users until achieving the goal during
the process of maximizing the worst-case user rate.

Table III shows the specific PA and user rate values of
agent at episode 600 with different beamforming methods.
First discuss power allocation values ηn, n = 1, 2. As dis-
cussed in Section III, the inter-cluster interferences can be
eliminated by using zero-forcing beamforming method, i.e.,∑N
q 6=n |bn,q|2/|bn,n|2ηq = 0. With this condition, we can

verify that the higher ηn can lead to higher SINRs for all
users in cluster n by simply dividing by ηn in the numerator
and denominator of (11)-(13) simultaneously. So, the optimal
values for ηon, n = 1, 2 should be 1. We have η1 = 0.956
which approaches the optimal value 1. When using the
conjugate beamforming method, different clusters may have
different inter-cluster interference strengths. Thus, allocating
more power to cluster 2 (η2) with stronger interferences and



lower power to cluster 1 (η1) with weaker interferences for
the worst-case user rate maximisation.

We also observe that the PA ratios of all CUEs (p1 and
p4) are larger than 0.5, so the arrived power of CUE at BS is
larger than the total arrived power of the EUEs in any cluster.
Besides, the channel gain between EUE 3 and CUE 1 is larger
than that between EUE 2 and CUE 1 and the channel gain
between EUE 5 and CUE 4 is larger than that between EUE
6 and CUE 4. We find from Table III that when using zero-
forcing beamforming, the PA ratios of EUEs follow p3 > p2
and p5 > p6, i.e., more power allocated to users with higher
channel gains for better SIC. However, due to the limitations
caused by different inter-cluster interferences and the worst-
case user rate maximisation over all clusters, the PA ratios
of EUEs may not follow this rule, such as p2 > p3 under
conjugate beamforming.

VI. CONCLUSION AND FUTURE WORK

In this paper, we consider the D2D relay enabled uplink
cell-free communication system where the external user equip-
ments access the cell base station through the cellular user
relay. For effective decoding at the base station, we consider
beamforming and a DDPG based power allocation method
for worst-case user rate maximisation. Finally, SIC decoding
method is used at the base station based on the different arrived
power strengths with given beamforming and power allocation
parameters. The simulation results verify the effectiveness of
the DRL method for guaranteeing the user fairness through
the worst-case rate maximisation.

Firstly, to reduce energy consumption of the cellular user
equipment, the energy harvesting can be considered in the
future. Secondly, we only consider the worst-case user rate
optimisation ignoring the sum rate optimisation. The sum
rate maximisation under given individual QoS constraints is
effective for improving spectral efficiency. Finally, the aim of
maximizing the ergodic rate is also considerable where the
power allocation and beamforming can be calculated only once
within a large-scale coherence time, especially in scenarios
with high mobility or high frequency communication usually
with a tiny small-scale coherence time.
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