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Roberto Viola, Josu Pérez, Mikel Garcı́a and Gorka Velez

Vicomtech Foundation
Basque Research and Technology Alliance

San Sebastián, 20009 Spain
Email: amartin@vicomtech.org

Pablo Angueira
Department of Communications Engineering

University of the Basque Country
Bilbao, 48013 Spain

Email: pablo.angueira@ehu.eus

Jon Montalbán
Department of Electronic Technology

University of the Basque Country
Bilbao, 48013 Spain

Email: jon.montalban@ehu.eus

Abstract—Vehicles shipping sensors for onboard systems are
gaining connectivity. This enables information sharing to realize a
more comprehensive understanding of the environment. However,
peer communication through public cellular networks brings
multiple networking hurdles to address, needing in-network
systems to relay communications and connect parties that cannot
connect directly. Web Real-Time Communication (WebRTC) is a
good candidate for media streaming across vehicles as it enables
low latency communications, while bringing standard protocols
to security handshake, discovering public IPs and transverse
Network Address Translation (NAT) systems. However, the end-
to-end Quality of Service (QoS) adaptation in an infrastructure
where transmission and reception are decoupled by a relay, needs
a mechanism to adapt the video stream to the network capacity
efficiently. To this end, this paper investigates a mechanism to
apply changes on resolution, framerate and bitrate by exploiting
the Real Time Transport Control Protocol (RTCP) metrics,
such as bandwidth and round-trip time. The solution aims
to ensure that the receiving onboard system gets relevant
information in time. The impact on end-to-end throughput
efficiency and reaction time when applying different approaches
to QoS adaptation are analyzed in a real 5G testbed.

Index Terms—Adaptive QoS, Cellular networks, RTCP,
vehicular communications & WebRTC.

I. INTRODUCTION

Advanced Driver Assistance Systems (ADAS) have turned
vehicles into an Internet of Thing (IoT) ecosystem with
onboard sensors to understand the driver status, the road
environment and the traffic context and are subjected to
stringent requirements in terms of reliability and latency
[1]. Their evolution towards a connected swarm, cooperating
to expand the individual understanding with sensors from
surrounding vehicles and systems, becomes crucial to get
a more holistic and broad view. This way, more complex
applications such as platooning, cooperative driving or see-
through are possible [2].

However, peer communication between vehicles through
public cellular networks brings multiple networking hurdles
to address. The problems raised here go from the need to
discover the public Internet Protocol (IP) addresses and ports
in order to interconnect endpoints to the management of
heterogeneous IPv4 or IPv6 addresses or the ability to cross
Network Address Translation (NAT) systems [3]. Accordingly,
industrial applications include in-network systems to relay
communications and connect parties that cannot connect
directly. Here, the relay is employed by parties to remove all
the network barriers to communicate with each other.

WebRTC technology is a good option to send video flows
between automotive systems [4]. It compiles different standard
technologies to bridge peers from different network domains,
such as Session Traversal Utilities for NAT (STUN) to
negotiate endpoints behind a network infrastructure, Datagram
Transport Layer Security (DTLS) to perform the credentials
handshake and protect the data flows, and Real Time Transport
Control Protocol (RTCP) to capture metrics which monitor
network spanning bandwidth and round-trip time. Moreover,
WebRTC can be used with Traversal Using Relay NAT
(TURN) to enable relay communications. Among the available
WebRTC solutions, Janus represents a widely employed
market solution, as it ships all the mentioned technologies to
bridge a production infrastructure [5].

One essential feature, which is not addressed in these
contexts, is the end-to-end adaptation of QoS efficiently. Once
a relay comes into play, the RTCP monitoring is limited to the
decoupled paths (upload and download) from the peers to the
relay server. The adaptation to the more restrictive uplink or
downlink path is crucial to ensure that the video stream is
adapted to the network capacity of each side.

This paper proposes two solutions for performing the end-
to-end QoS adaptation to make the external video source
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valid in reliability and timing for the onboard system of the
vehicle receiving the video. Specifically, this work provides
the following relevant contributions:

• A mechanism based on bandwidth and round-trip time
thresholds to downgrade or upgrade the bitrate, framerate
and resolution of the video stream to enforce the reception
of a valid stream in terms of reliability and delay.

• A first approach, with video transcoding ability at the
relay server focusing on the quick reaction to network
performance at download path without any additional
messaging apart from the standard stack.

• A second approach, without transcoding ability
forwarding receiver side RTCP values towards the
transmitter to gain end-to-end efficiency while adding
some latency in the reaction elapsed until the reception
of the RTCP report from the receiving peer to adapt the
video stream.

• A study on the overheads in terms of employed
throughput and adaptation latency when comparing the
different approaches for delivering onboard cameras on
top of a real 5G infrastructure.

This paper is structured as follows. First, section II
focuses on relay solutions for peer communications and QoS
adaptation techniques in those infrastructures. Then, section
III and section IV present the proposed adaptation of QoS for
WebRTC technology and the vehicular setup employed for the
tests in a 5G testbed respectively. After, section V describes
the results to assess the pros and cons of each tested approach.
Finally, section VI sums up the paper topics and outlines some
open questions.

II. RELATED WORK

QoS adaptation is a core research area in 5G networks which
mainly focuses on the allocation or reservation of resources
in the radio [6] or the wired network segments [7], and
the application of network slicing policies [8]. Nevertheless,
before they come into play, video streaming protocols and
infrastructures need to take care of themselves [9].

WebRTC is a technology that supports video, audio
and generic data communications between peers. Moreover,
the WebRTC stack includes RTCP reports which facilitate
information to the origin to adapt the video encoder to
the network metrics and guarantee the QoS. Alternatively,
DiffServ Code Point (DSCP) can be used to assess end-to-
end network measurements and to evaluate QoS policies [10].

The communication of peers usually needs relay servers
to address the limitations and blocking hurdles imposed
by network functions of different public networks [3].
Specifically, in video streaming communications, TURN is a
widely employed technology with open-source solutions ready
to be deployed and used. This technology needs both peers to
know the TURN credentials to access it. Janus is a Software as
a Service solution ready to be deployed in cloud infrastructures
and enabling different communication models as two side
communications or multi-party transmission [11].

However, both approaches lack end-to-end adaptation
mechanisms to track network performance which would entail
a video encoding downgrade or upgrade to achieve a reliable
and timely information delivery.

III. QOS ADAPTATION OF WEBRTC SESSIONS IN MOBILE
NETWORKS

In order to identify the context where a mechanism to
deal with QoS adaptation of a WebRTC session, it is
important to underline the potential communication options
when two vehicles communicate with each other through
mobile networks:

• Direct Communication is possible. This scenario implies
that both vehicles are subscribed to the same cell
and the same Public Land Mobile Network (PLMN)
id or that their respective cellular operator enables
the communication (sockets) between User Equipments
(UEs). This is not common, and usually, the Mobile
Network Operator (MNO) does not allow communication
between UEs when they have not contracted public IPs.
In this scenario, the network stats reported by RTCP
can monitor the full communication path and identify
any issue related to the uplink, wired backhaul/core and
downlink. This way, the sender of a WebRTC media
session could upgrade or downgrade the media to better
fit into the available network performance.

• Direct Communication is not possible. This scenario
implies a gateway, ideally at the network edge, as a
service provided by a Multi-access Edge Computing
(MEC) infrastructure to minimize the traffic latency
and save traffic at the core. This gateway establishes
connections with peers and solves the previously
mentioned common limitation, as the UEs open a socket
with a server and do not communicate directly. In this
case, the connection monitoring is split, as the peers
are isolated and the sender only gets feedback of the
uplink and the path to the gateway (upload). Moreover,
the gateway gets feedback of the path to the Radio
Access Network (RAN) and the downlink (download).
Here, the sender, which performs the heavy task of media
encoding, only has visibility of the upload connection.
Thus, any bottleneck present at the receiver for download
connection will not produce a reaction.

In order to address the limitation of monitoring and
adaptation when direct communication is not possible, a
mechanism to adapt the video encoding setup to the different
paths present when a gateway acts as a relay server to
communicate peers, as shown in Figure 1, is required.

To be able to provide adaptation to any potential
connectivity issue in the connection path, two different
approaches are proposed:

• Transcoding Relay: the first approach places transcoding
abilities at the relay server. This is able to parse and
process the RTCP reports of the download path echoed
by the reception peer. This option implies the capacity
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Fig. 1. QoS-driven vehicular media communications with relay media service.

to perform media transcoding with live settings from
the RTCP values. This option does not scale well as
the transcoding means heavy processing. Moreover, the
sender could incur some overheads sending a bitrate,
framerate and resolution that would be downgraded at
the relay, wasting processing and computing resources.
Furthermore, usually, the MEC infrastructures are not
offered shipping GPU features.

• Reporting Relay: in the second approach, the relay server
forwards the RTCP reports generated between the relay
and the receiver towards the sender peer through a
WebRTC data channel. This way, the relay provides
awareness of the receiver download metrics to the sender.
Then, the sender can decide to adapt the encoding settings
both to the upload path to the gateway and to the receiver
download path capacity. This solution brings scalability,
forwarding media flows and messages from data channel
without significant data overheads.

This mechanism runs at the gateway and the sender for the
transcoding relay or just at the sender for the reporting relay
is as follows. The adaptation mechanism allows for adjusting
the resolution, framerate and bitrate of the video according to
thresholds on the assessed bandwidth and round-trip time of
the upload and download paths from the peers to the relay
server, as depicted in Figure 2.

The Algorithm 1 describes in detail the bitrate adaptation
mechanism executed at the sender. Accordingly, 3 different
levels are considered. The nominal bitrate, resolution and
framerate are employed when the bandwidth, round-trip-time
(RTT) and jitter values are good enough (depending on
the bitrate). The bitrate is downgraded when some of the
bandwidth, the RTT, or the jitter are not optimal. In this mid-
level, to keep the video fidelity, the video is subsampled with
a lower framerate and shorter GOP to keep the ability to

BW&
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Jitter
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BW |
RTT |
Jitter
mid

BW |
RTT|
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Fig. 2. 3-level rate control adaptation based on Bandwidth, Round trip-time
and Jitter metrics.

quickly access to a video stream, which is highly important
for spontaneous vehicular communications. Finally, when the
network conditions are unfavorable and the values of the
bandwidth, the RTT, or the jitter are poor, the bitrate goes to
a minimum, where the framerate is again downgraded and the
resolution, meaning Width x Height (WxH), is also reduced.
As the framerate, in this case, is minimum, the GOP size
is needed to be bigger, meaning slower access to the video
stream. Otherwise, the encoder would use too many key frames
damaging the compression rate. This way, we try to provide a
continuous video signal to onboard computer vision systems
to at least receive a video signal even with reduced resolution
or framerate, trying to keep captured information and image
details.

IV. IMPLEMENTATION

For the implementation of the different actors, different
alternatives and frameworks have been employed:



Algorithm 1 3-levels Adaptive Rate Control.
function ADAPTIVERATE(bwt, rttt, jitt) . when a RTCP

report comes
Input: bwt . measured bandwidth
Input: rttt . measured delay
Input: jitt . measured jitter
Output: bitratet+1 . next bitrate
Output: frameratet+1 . next framerate
Output: resolutiont+1 . next resolution

m ← mid divider coefficient . subsampling for mid
level

p ← poor divider coefficient . subsampling for poor
level

if (bwt, rttt, jitt) > (bwgood, rttgood, jitgood) then
bitratet+1 ← bitratemax . nominal bitrate
frameratet+1 ← frameratemax . nominal framerate
resolutiont+1 ← resolutionmax . nominal WxH
gopSizet+1 ← gopSizemin . quickest access

else if (bwt, rttt, jitt) < (bwpoor, rttpoor, jitpoor) then
bitratet+1 ← bitratemax/p . details kept
frameratet+1 ← frameratemax/p . irregular
resolutiont+1 ← resolutionmax/p . W/(p/2)xH/(p/2)
gopSizet+1 ← 1 . access limited to every second

else
bitratet+1 ← bitratemax/m . mid bitrate
frameratet+1 ← frameratemax/m . not so smooth
resolutiont+1 ← resolutionmax . nominal WxH
gopSizet+1 ← gopSizemin/m . still quick access

• Sender and Receiver. On top of Gstreamer framework for
media processing, some applications have been developed
to send and receive video streams in H.264/Advanced
Video Codec format (AVC) format. In order to have
a fast encoding, NVIDIA plugins are used to employ
hardware acceleration and remove any latency from the
encoding perspective. Both Gstreamer applications use
Interactive Connectivity Establishment (ICE) protocol
combined with a STUN server from google to allow the
discovery of public IPs even when they are behind a NAT.
In terms of WebRTC, the period for the RTCP reports
can be configured. Additionally, they are synchronised
through an NTP server and include a watermarking
mechanism that stamps microsecond accuracy clock in
the image, which can be recovered by the receiver to
assess the end-to-end latency. The sender includes the
ability to restart the GOP, sending a key frame and all
the required headers, i.e., Sequence Parameter Set (SQS)
and Picture Parameter Set (PPS) in H.264, to immediately
apply any change on resolution or framerate.

• Transcoding relay. This simple Python gateway enables
the communication of peers when they can communicate
directly or when they cannot. For the latter, a WebRTC
receiver is instantiated to receive the video stream at the
server side (upload) and a WebRTC sender is instantiated
to deliver the video stream to the receiver (download).

TABLE I
SET OF LIMITS EMPLOYED IN THE BANDWIDTH EXPERIMENTS.

Period bandwidth (Mbps)
0-20 1

20-40 10
40-60 100
60-80 10
80-100 1

The communication between the receiver and sender
running in the relay is done directly inside the server
through UDP to minimize the end-to-end latency, as the
WebRTC signalling takes some time (∼ 500 ms) while
internal UDP is instant without signaling. The sender
in the relay is able to transcode the video based on
applicable RTCP reports (download).

• Reporting relay. This Janus gateway enables peers’
communication when they cannot communicate directly.
Janus, using video rooms and text rooms, is able to
forward the sending media in a one to many or many
to many manners, which would expand the suitable use
cases significantly in an efficient way. Thus, the gateway
is able to forward any message as far as RTCP reports
of the download are sent to the sender, which by default
only has upload visibility.

V. RESULTS

All the results have been captured from a setup where the
UEs are Quectel RM500Q modems accessing a 5G SA base
station operated by an Amarisoft Callbox Pro in the band
n78 (3,5 GHz) with 100 MHz of bandwidth which provides
more than 200 Mbps of downlink and 120 Mbps uplink with
around 20 ms latency. The UEs are connected with USB to two
laptops providing network connectivity. The laptops include
16GB RAM, i7-10th gen and NVIDIA graphics card capable
of encoding 4K-video in H.264. For the MEC hosting of the
Dockers of the gateways, an equivalent machine is employed.
This is directly connected to the Amarisoft network Core
to avoid any impact there. This way, we employ a real 5G
experimentation setup.

To stress good, mid and poor network conditions in the
upload or download, we apply some rules in the sender
or receiver via the tc Linux command, which allows us to
add bandwidth limits or to include an artificial latency in
the communications of a machine. In this regard, the Table
summarises the applied conditions. A script changes every 20
s the bandwidth or latency from the worst value to the best
and then goes back to the worst. The Table I represents the
limits applied for bandwidth experiments while Table II runs
along the added latency. According to some tests done with
a ping and an IPERF, the application of such limits to any
ongoing or new connection is immediate.

Furthermore, the employed levels for the adaptation are
compiled in Table III as they are valid for computer vision
systems that identify bounding boxes, supporting Advanced



TABLE II
SET OF OVERHEADS ADDED IN THE LATENCY EXPERIMENTS.

Period latency (ms)
0-20 600

20-40 100
40-60 10
60-80 100
80-100 600

TABLE III
ENCODING PARAMETERS FOR EACH LEVEL.

Level Bitrate (kbps) Framerate (fps) Resolution (WxH) GOP (frames)
Good 4000 30 1920x1080 5
Mid 2200 15 1920x1080 7
Poor 700 5 640x360 5

driver-assistance systems (ADAS) applications such as see-
through.

This section contains the analysis of the outcomes obtained
from the implementation. In this regard, we have performed
4 different tests running 2000 s of video streaming of a
recording captured by onboard cameras on a sensorised vehicle
as shown in Figure 3. Here the 5 different levels of bandwidth
limitations and latency aggregations from Tables I and II have
been applied, resulting in 100 changes applied in upload or
download.

Fig. 3. Sample of recording employed.

The first experiment tries to find the impact on the RTCP
reporting period in the quicker scenario when the peers can
communicate directly and the RTCP reports monitor both
upload and download. This means that the sender can make
a decision with all the information in hand. In this case, we
have tested configuring RTCP reporting period to 500 ms and
1 s. Table IV shows the better average and standard deviation
of the different tests done when applying bandwidth limits and
adding latency on the sender or the receiver side.

The results show that the more frequent the RTCP reports
are, the quicker the sender becomes aware of that situation

TABLE IV
REPORTING PERIOD RESULTS WHEN APPLYING NETWORKING ISSUES.

Report Period Average Sender Standard Deviation of
(ms) reaction (s) Sender reaction (s)
500 3.5 1.2

1000 4.5 1.4

TABLE V
THRESHOLDS FOR CAPTURED RTCP METRICS.

Border Bandwidth (kbps) RTT (ms) Jitter (ms)
Good/Mid 10000 90 2
Mid/Poor 5000 180 8

through RTCP reports and can react. Thus, we use 500 ms for
the RTCP reporting period in the following experiments,.

These experiments also allow us to find the appropriate
thresholds for the cellular experimentation setup to trigger
the encoding level change. These are compiled in the Table
V. These values are not optimised to bridge a paramount
experience but to check that the mechanisms properly change
between the levels when the limitations in bandwidth or
latency are applied on the sender or the receiver side.

With all the parameters configured to be common to all the
tests, the three experiments are done are:

• Direct communication, where sender and receiver directly
exchange RTCP reports.

• Simple Python gateway, where all the traffic goes through
the gateway and the sender is only able to monitor
upload path and download issues are not managed, as
the transcoding in the gateway is not scalable.

• Janus gateway, where all the traffic goes through the Janus
gateway able to provide media delivery to the receiver
and forward the receiver RTCP reports to the sender to
efficiently apply changes on encoding settings for upload
and download issues.

Table VI compiles all the results for the three different
setups. Here, the time of the sender to get the awareness of
the issues from the RTCP reports and the time elapsed from
that moment to the moment the receiver gets updated video
settings are compiled.

From the Table VI, it becomes evident several aspects. First,
the RTCP reports take a lot of time to sense the changes in
the network performance. Second, direct communication is the
best case but not always viable, as noticed in commercial Long
Term Evolution (LTE) and 5G networks. The gateways are able
to do the work, adding some latency to the sender’s reaction
as the messages need to travel from the receiver to the sender
via the gateway. Third, our mechanism takes from 700 ms
to 1 s to apply the new encoder settings from the moment
the sender decides to change it to the moment the received
video stream includes such changes. Last but not least, in the
Simple Gateway scenario, as the sender has no visibility of
the download’s metrics, we have just applied changes in the
upload, as this solution is not able to adapt to issues raised in



TABLE VI
REACTION TIME AT SENDER AND ELAPSED TIME AT RECEIVER SIDE WHEN

APPLYING NETWORKING ISSUES.

Setup Average Sender Average Receiver
reaction (s) encoding update (s)

Direct Communication 2.5 0.7
Simple Gateway 3.3 0.7
Janus Gateway 3.6 1.0

the download.

VI. CONCLUSIONS AND FUTURE WORK

This paper proposes a mechanism based on network stats
reported by RTCP to adapt the encoder parameters of video
streams for mobile communications in the vehicular domain.
This mechanism enables the adaptation efficiently providing
networking metrics to the sender in a standard manner. This
is highly beneficial for scenarios where the vehicles cannot
communicate directly with each other, which is a common
situation in commercial networks.

The solution is tested in a real 5G network where artificial
bottlenecks are added to stress the upload and download
paths. In the future, we plan to use an outdoor setup to
perform realistic experiments, including cars and real ADAS
applications to test the reliability of networks for such
applications and optimize the reaction times.
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