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Abstract

SQL (Structured Query Language) is intended to liberate
users from the complex syntax, complex semantics and com-
plex memory management that would be required of a pro-
cedural approach to relational database manipulation, and
so allow users to concentrate on problem-solving. However,
students still have problems with language features, pro-
gram concepts and the legacy of their prior learning. This
paper aims to assist lecturers teaching SQL. We present typ-
ical student mistakes, attempt to explain why these mistakes
arise, and propose possible remedies.

1 Introduction

1.1 Learning SQL

SQL is claimed to user-friendly. Our experience is
that students find it more user-friendly than procedural lan-
guages but still experience many problems, with SQL syn-
tax, semantics and pragmatics. Many of these problems can
be resolved, and most students eventually come to terms
with SQL, but generally only employ a limited subset of the
language and as a result only address a limited subset of
possible queries.

These short-comings have many possible explanations,
ranging from the language design, teaching and learning
approaches, and the inherent difficulty of recognizing and
formulating complex tasks.

Those problems that are a result of the design and pur-
pose of SQL include: inconsistencies within the SQL lan-
guage (e.g. [1]), conflict between DDL, DML and DCL
sub-languages that is not apparent in deductive languages
(e.g. [4]) and inadequate modelling power compared to Se-
mantic and Object-Oriented solutions (e.g. [3]). However,
it is not our purpose to propose that SQL be re-written or
that students drop SQL, rather we aim to improve student
learning, and to extend their effective use of SQL.

1.2 Background

The writers of this paper have had a considerable expe-
rience of teaching and assessing database systems and SQL
in particular to a variety of BSc and MSc students across
a number of Universities, both in the UK and also in the
USA, Hong Kong, and Singapore. Informally, we perceive
no strong differences in initial learning difficulties from any
of the different student cohorts.

1.3 Organization

Section 2 of this paper presents a presents a relational
schema used for assessment purposes. Section 3 works
through a number of natural (ie English) language questions
and shows typical student mistakes, followed possible rea-
sons for these mistakes and some suggestions how to deal
with these mistakes. The Conclusion collates our recom-
mendations with suggestions for future work.

2 The Database

2.1 Sample Schema

The following is a schema for the Secret
Service of an unnamed country:

CREATE TABLE Spies (
SpyCode INT
SpyName VARCHAR(30)
Speciality VARCHAR(30)
Experience INT -- in years
PRIMARY KEY (SpyCode)

);
CREATE TABLE Missions (
MissionName VARCHAR(30)
Location CITY -- User

defined domain
Danger INT
PRIMARY KEY (MissionName)
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);
CREATE TABLE MissionSpy (

MissionName VARCHAR(30)
SpyCode INT
Expendability INT -- 0..9, high

indicates can be sacrificed
PRIMARY KEY (MissionName, SpyCode)

);

2.2 Different Schemas

Over the years, we have used a number of structurally
equivalent databases; for example: Concerts and Musicians;
Magicians and Spells; Employers and Departments; that
is, they are all some variant on Date’s Supplier and Parts
schema [1]. We have noticed little difference, if any, in stu-
dent performance using one schema or another – except that
student feedback indicates that they may prefer schemas
such as Concerts and Musicians rather than Employers and
Departments. This is perhaps because they have had no real
exposure to the latter or because the latter is intrinsically
dull and that the former provides a ’cognitive hook’.

For pedagogic purposes, we have kept the schemas small
(two or three relations) and have intended them to be self-
explanatory (and indeed, we have seldom had any questions
regarding their meaning). Experience has shown that larger,
more complex and less obvious schemas will increase stu-
dent error, whatever the underlying query set. This does not
mean that we have restricted our assessment to simplistic
queries, although we have tried to avoid any obligation on
the student to master the schema topic.

3 The Questions

3.1 Student Performance

This section presents a series of questions that require
SQL DML expressions. The questions get progressively
harder, and in timed assessments this is normally indicated
by showing the mark awarded for each task. Typical Stu-
dent responses are commented upon and some recommen-
dations for more effective teaching and learning are made
as appropriate.

The first few questions are relatively simple but even so
we find that some students, whatever the cohort’s learning
and experiential background, still make errors. As expected,
the later questions show correspondingly less student suc-
cess.

3.2 DML Query Diagnosis

a) List full details of spies with more than 5 years’ ex-
perience.

Suggested Answer:

SELECT * FROM Spies
WHERE Experience > 5

Comment a1:
We thought this was the easy question. However, stu-

dents still find ways of going wrong.
Some students replace the keyword SELECT with

PROJECT. This is probably a confusion with the
PROJECT function in relational algebra. We note, that
many standard database textbooks introduce relational alge-
bra (and indeed relation calculus) before SQL. (We do not
claim an exhaustive survey but our observation is true for
those textbooks shown in Table 1, whilst [1] interleaves his
treatment with the SQL equivalent appearing second.) This
approach is intended to help understand how the relational
model can be manipulated, presumably because set oper-
ations are familiar from preliminary discrete mathematics
courses.

However, SQL is closer to an implementation of a rela-
tional calculus than a relational algebra and thus students
find the mapping of SQL onto the latter unnecessarily com-
plicated.

P.Atzeni et al: Database Systems, McGraw Hill, 1999
T.Connolly & C.Begg: Database Systems,

Addison-Wesley, 2004
S.Dietrich: Understanding Relational Database Query Languages,

Prentice Hall,2001
R.Elmasri & S.Navathe: Fundamentals of Database Systems,

Addison-Wesley, 2006
H.Garcia et al: Database Systems, Prentice-Hall, 2002
R.Ramakrishnan & J.Gehrke: Database Management Systems,

McGraw Hill, 2003
A.Silberschatz et al: Database System Concepts,

McGraw Hill, 2005

Table 1: Selected Database Textbooks

Recommendation a1:
Relational algebra operators of SQL are seldom used for

query handling (thus: AND generally replacing INTER-
SECTION, OR generally replacing UNION, and implicit
JOINs replacing CARTESIAN PRODUCTS). Perhaps it
would be better to introduce relational algebra where it is
used, for example, for implementation and query optimiza-
tion.

Comment a2:
Many students will enumerate each attribute, and some

will even anchor each attribute with the relation name, giv-
ing an answer such as
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SELECT S.SpyCode, S.SpyName,
S.Speciality, S.Experience

FROM Spies S
WHERE Experience > 5

Perhaps, this is a matter of lack of trust. Students observe
that using the relation name always succeeds but that omit-
ting the name sometimes fails. They do not observe that it
only fails where there is an attribute name clash.

Some mistrusting students also believe that every result
needs naming. For example:

SELECT * FROM Spies AS ExperiencedSpies
WHERE Experience > 5

Once again this is probably done because it succeeds
and sometimes not giving names fails. Students have not
grasped the fact that names are only needed if the system
cannot provide one, for example, when the same relation
appears more than once in a query.

Recommendation a2:
For such cases, show the students both versions and ap-

peal to their laziness in typing. Alternatively, show that the
simpler version conforms to the golden rule of program-
ming: ‘less code = less mistakes’ (sometimes!).

Comment a3:
Many students fail to appreciate the distinction between

data and meta-data and thus ‘decorate’ numeric values, par-
ticularly where the attribute represents dates, money etc.
For example:

SELECT * FROM Spies
WHERE Experience > 5 years

Recommendation a3:
To avoid such transliteration, students need to be pro-

vided with a sound understanding of the way that data is
stored, and place less trust in the English-like claims for
SQL.

b) List, in reverse order, all locations in the Secret Ser-
vice.

Suggested Answer:

SELECT DISTINCT Location FROM Missions
ORDER BY Location DESCENDING

Comment b1:
Almost all students omit the DISTINCT keyword. The

query executes but with potential replicates. It is possible
to create database snapshots where there will not be any
replicates so they don’t see any problem.

In the ‘real’ world this translates to slow development
times, especially since errors are often only revealed dur-
ing testing rather than at query construction (the queries are
syntactically sound).

Recommendation b1:
Show snapshots where there are replicates. Emphasize

that the DISTINCT can usually be omitted only where the
KEY is part of the projection list.

Comment b2:
Some students spell ORDER BY as GROUP BY and

spell DESCENDING as DESC (ok in some dialects), as
REVERSE or even as ASCENDING.

Recommendation b2:
Students often neglect to practise these simple tasks, for

the very fact that they are simple to understand – and then
fail on assessment. Since it is fairly common to present re-
sults in some sequence in the real world, students should be
obliged to write queries involving ordering and other simple
formatting requirements.

c) List the names of spies (SpyName) and their mis-
sions (MissionNames), for spies who specialize in either
Snooping or Forgery.

Suggested Answer:

SELECT SpyName, MissionName
FROM Spies S, MissionSpy MS
WHERE S.SpyCode = MS.SpyCode
AND S.Speciality IN (’Snooping’,

’Forgery’)
-- also ok: (S.Speciality =
’Snooping’ OR S.Speciality = ’Forgery’)

Note that we have used the range variables S and MS
to save typing; some queries get very cluttered if the base
relations have long, meaningful names.

Comment c1:
Some students omit the JOIN clause (S.SpyCode =

Ms.SpyCode). In many similar circumstances the query
produces the correct result but at the expensive cost of exe-
cuting a CARTESIAN PRODUCT.

Recommendation c1:
We suggest some hand-evaluation or simulation of how

such answers produce their results. We note that some stu-
dents will complain that they have been told elsewhere to
ignore efficiency issues. This is not always true and stu-
dents need to appreciate that with large data volumes their
queries will take too long to execute.

Comment c2:
Some students introduce an extra join clause, e.g.

AND Missions.MissionName = Ms.MissionName

Once again, this is probably a matter of lack of trust: it
works or seems to work, so do it. Actually, in this case, it is
only guaranteed to work if MissionName in MissionSpy is
referenced by MissionName in Missions – which would be
a strange thing. But many students do not understand how
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foreign keys, especially what is the referencer and what is
the referenced.

Recommendation c2:
As above, we suggest showing an execution trace of this

type of excessive query. One additional problem is that stu-
dents, quite correctly, are told not to bother about efficiency,
and that the optimizer will automatically optimize. Perhaps,
naively, they believe that it will always remove redundancy.

Comment c3:
Some students will choose attributes not asked for in the

question. Sometimes this yields simplistic solutions; for
example selecting SpyCode rather than SpyName in some
queries could eliminate the need to join on the Spies table.
On the other hand this may provide too many attributes: in
the above case perhaps selecting Spies.* or SpyCode as well
as SpyName.

Recommendation c3:
Students need to recognize that clients need only pay for

what they request. In assessment, this means penalizing stu-
dents who are over-generous.

Comment c4:
Students have trouble with conditional expressions. It is

common for them to write:

S.Speciality = ’Snooping’ OR ’Forgery’

Again, we blame student trust in SQL. The problem is
that SQL claims to be English-like. Not unnaturally, stu-
dents are willing to believe it.

d) List all spies with ’Lee’ as part of their name, who
have a mission in Paris, as long as the expendability of
the mission has been decided.

Suggested Answer:

SELECT SpyName
FROM Spies S, Missions M, MissionSpy MS
WHERE S.SpyCode = MS.SpyCode

AND MS.MissionName = M.MissionName
AND M.Location = ’Paris’
AND S.SpyName LIKE ’%Lee%’
AND MS.Expendability IS NOT NULL

Comment d1:
As in the previous example, students give a variable

number of JOINS. We have similar recommendations. We
note that the greater the complexity of the query, the less
likely that students actually give the correct number of ex-
plicit joins.

Comment d2:
Students are not comfortable with SQL search condi-

tions. Many students will silently ignore the pattern match-
ing requirement and just write S.SpyName = ’Lee’. In a
similar manner, students fail with DATE extraction, confuse
COUNT with SUM etc.

Recommendation d2:
Perhaps we are to blame. The power of SQL’s DML is

its declarative manipulation of relations: teaching its aggre-
gate functions, search conditions and other non-declarative
features is consequently neglected. On the other hand, these
are features are generally not difficult to use, and so assess-
ment could be done in non-timed assignments.

Comment d3:
Students have problems with NULL values. Apart from

obvious syntax errors using equality tests rather than testing
IS or IS NOT, students are just as likely to check against 0
or the empty string. Students also have problems OUTER
JOINs possibly because these results incorporate NULL
values.

e) Give counts of how many missions exist in each loca-
tion.

Suggested Answer:

SELECT Location, COUNT(MissionName)
FROM Missions
GROUP BY Location

Comment e1:
Students get their syntax confused. The COUNT or

wrong attribute appears in the GROUP BY clause or the
wrong attribute appears in the COUNT function.

Comment e2:
As noted previously, some students select additional at-

tributes (presumably to be ’helpful’ by providing additional
information to the user) which causes the query to fail be-
cause the attributes chosen are not single-valued for the
group. Similarly, some students will always use (*) as the
COUNT parameter; this only works if the desired parame-
ter is the only candidate key.

Recommendation e2:
Students need to understand how GROUP BY partitions

relations. We find that ‘hand working’ snapshot examples
can really help with GROUP BY, especially as this can be
done meaningfully with small data sets using single base
tables.

f) If a mission has more than five spies then list its name,
together with a count of how many spies undertake in it.

Suggested Answer:

SELECT MissionName, COUNT(SpyCode)
FROM MissionSpy
GROUP BY MissionName
HAVING COUNT(SpyCode) > 5

Comment f1:
Some students master the semantics of GROUP BY but

fail with the syntax of HAVING. In these cases, they will
write:
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WHERE COUNT(SpyCode) > 5

Recommendation f1:
Students need to be shown clearly the relationship of

GROUP BY .. HAVING to SELECT .. WHERE. This
is another type of task where lots of practice helps.

g) Give a count of all spies who do not have a mission.

Suggested Answer:

SELECT COUNT (*) FROM Spies S
WHERE NOT EXISTS

(SELECT * FROM MissionSpy MS
WHERE S.SpyCode = MS.SpyCode)

Comment g1:
Here it gets harder to generalize the nature of the error,

and hence to characterize its genesis. However, we note that
expressions with HAVING COUNT = 0 or some phrase
involving IS NULL or IS NOT NULL frequently appears
in answers. Sometimes, indeed, they may accidentally give
the correct answer for certain snapshots.

Comment g2:
We note the ambiguity of the word ‘all’. It is used in

a different context in various questions and in natural lan-
guage. We do not, however, recommend that no queries are
ever asked that use ‘all’ rather that students are encouraged
to challenge any questions that may be ambiguous. A clear
understanding of what is being queried is essential.

Recommendation g3:
Transliteration to/from SQL can again be useful here in

demonstrating cases where the SQL does not mean quite the
same thing as English.

Comment g3:
Students often fail to distinguish between subqueries that

essentially define dynamically-derived data sets, and those
that are correlated to an outer query, though the effects of
the latter are quite different. This in turn tends to lead to
the syntax error of omitting the join from the inner query.
This problem is compounded in that no data from the nested
query forms part of the result of the outer query. Hence the
confusion of many students when, in answer to the question
‘what exactly should I select in the inner query’ they are
told that it really doesn’t matter. In brief, students are not
confident with the semi-join concept.

Recommendation g3:
A sound understanding of how queries are executed can

help. Often students will find a difficult solution where an
alternative method of achieving the same result exists; for
example, it might be better to use a join than a nested sub-
query.

h) List SpyCodes for spies who only have missions in
GeorgeTown.

Suggested Answer:

(SELECT DISTINCT SpyCode
FROM MissionSpy MS, Mission M
WHERE MS.MissionName = M.MissionName
AND M.Location = ’GeorgeTown’)
EXCEPT
(SELECT DISTINCT SpyCode
FROM MissionSpy MS, Mission M
WHERE MS.MissionName = M.MissionName
AND M.Location <> ’GeorgeTown’)

Comment h1:

Another easy question to ask but hard to answer, and
generally meeting with poor student response. In addition,
to the comments for question-g. We note that some students
will silently ignore the ‘only’ qualifier in the question; their
answers are thus just the first SELECT clause.

This is also interesting from an assessment technique
point of view. It is common that questions get progres-
sively harder the further down the page (with correspond-
ingly more marks allocated); yet students often fail to rec-
ognize that such problems are likely to have a more complex
solution.

Comment h2:

This is another type of question for which students may
attempt a procedural solution; creating a temporary relation
to hold the Spies in GeorgeTown, another for Spies not in
GeorgeTown and then executing the relational algebra sub-
traction. Indeed, our proposed answer is similar, but pre-
sented as a single expression. This perhaps indicates that
not all problems have a nice declarative solution and that
procedural approaches are sometimes more intuitive.

Comment h3:

We note that students also get confused answering
such questions as: Get Spies who participate
in all Missions. They either students either submit
simplistic or overcomplex solutions.

Comment h4:

Sometimes students have a partial memory of a solution
to a congruent or similar query, and random EXISTS, NOT
EXISTS, ALL, ANY clauses are scattered across the SQL
‘solution’.

Recommendations h*:

Again, there is no simple panacea to these problems. Our
approach is plenty of examples and to show the results of
plausible but not quite correct attempts.
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i) Spies with more than ten years’ experience are con-
sidered Spy Masters. Get spy details for all spies who go
on more than one mission with a Spy Master who only
shares the same speciality as themselves.

Suggested Answer:
We leave this as an exercise for the reader.
Comment i1:
Students do not do well with such over-complex ques-

tions, especially under test conditions.
Recommendation i1:
It is self evident that questions should be unambiguous

and comprehensible. The first check is whether the problem
makes any sense. The second check should be if it is moti-
vating. Students will object to being asked to do hard things
merely for the sake of doing them.

We recognize, of course, the desire to stretch the better
student, but timed assessments are not the appropriate vehi-
cle to strive for such discrimination.

j) Use the sample schema, to write sample queries
demonstrating the use of the SQL features that you have
learned.

Comment j1:
Weak students do not do well with such an open-ended

request; tending to give simple answers. This is especially
true for timed tests.

Recommendation j1:
This sort of open-ended question may be excellent for

un-timed assignments, giving the stronger student a chance
to explore the less common language features and formulate
harder queries – whilst still allowing the slower student to
achieve a good mark (and more importantly a good under-
standing) through extra effort.

3.3 DML Updates, DDL and DCL Diag-
nosis

For reasons of space, we have restricted our investiga-
tion of student responses to tasks involving DML queries.
We note, however, that DML updates (inserts, deletes and
modification), and DDL and DCL activities often give rise
to similar observations to those enumerated above, com-
pounded by the fact that students often confuse the syntax
of the different activities. Another major source of prob-
lems is the handling of integrity issues, especially foreign
and candidate keys.

3.4 Reading SQL

3.4.1 Translating SQL

We sometimes give SQL queries and ask students to pro-
vide their English language equivalent. This approach has

mixed success. We believe students should be able to ‘read’
SQL – after all a large part of programming is debugging
and amending other people’s code (or indeed your own code
that was written so long ago that you have had time to for-
get what it does). However, under timed assessments, many
students are sadly inarticulate. We illustrate this with a typ-
ical example of student attempts to ‘translate’ SQL queries:

Express the following SQL query in
English:

SELECT SpyName, MissionName
FROM Spies S, MissionSpy MS
WHERE S.SpyCode = MS.SpyCode
AND S.Speciality IN (’Snooping’,

’Forgery’)

Typical answers just echo the SQL:

Get SpyName and MissionName from Spies and
MissionSPy where SpyName SpyCode is joined
with MissionSPy SpyCode and SpyName Spe-
ciality is in Snooping or Forgery.

Such answers are not wrong and can show some under-
standing of SQL (e.g. JOINs and SETs) however they
would not be much use to somebody who did not under-
stand the relational model.

More complex queries, or those involving GROUP BY
or EXISTS generally result in answers that are even nearer
to SQL transliterations and further from English. Perhaps,
SQL is a victim of its own publicity that it provides an
English-like query language.

Recommendation:
However, we still encourage such questions, but not

within timed assessments. Rather, they provide useful in-
teractive tutorial exercises and definitely help tutors gauge
students understanding.

3.4.2 Debugging SQL

Another approach is to provide a schema, a snapshot
database, and pairs of English language questions and incor-
rect, though well-formed SQL answers. Students are then
asked to show why the SQL is wrong and what it actually
does: a useful and often-required debugging skill.

Students perform better here than when asked to translate
SQL into English (see above). Although the task is more
open-ended (‘why is the SQL wrong?’), in some ways it
is more mechanical and requires less communications skill.
We recommend adding such tasks to tutorials and also in
timed assessments. Within tutorials, we also recommend
asking students to correct ill-formed SQL statements.
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4 Conclusions

4.1 Overall Recommendations

Our experience suggests a simple four-point plan to im-
proving student learning of SQL.

Firstly, avoid ‘cognitive overload’ and teach SQL before
teaching the relational algebra and calculus.

Secondly, avoid the ’miracle’ approach to teaching. We
note that most database textbooks teach SQL by means of
a series of English language query and SQL solution pairs.
We have found that student performance improves by also
showing wrong answers. By anticipating common errors,
we have found that their frequency decreases. This ap-
proach has proven successful in teaching other program-
ming languages, in particular functional languages [2].

Thirdly, more examples need to be placed on the com-
mon ’complex’ query types, in particular those involving
devil words such as ’all’ and ’only’. This is in contradis-
tinction to most databases textbooks which, at best, give
an equal weight to all of their query types [see Table 1].
However, it is necessary to be selective in handling com-
plexity and so ensure that students understand the nature of
the question, and can anticipate by sample snapshots what
correct and incorrect answers will produce.

Fourthly, widen student experience by giving more em-
phasis on reading SQL, both by translating SQL expressions
into natural language and also by judging how well possibly
incorrect SQL expressions answer given problems.

We welcome other examples of common and illuminat-
ing student mistakes to throw into our rattlebag, to help ex-
plain and hopefully reduce such errors.

4.2 Future Work

We intend to expend our analysis to those aspects of SQL
(ie DML updates, DDL and DCL) not covered in this paper,
and to gather statistical evidence of where students experi-
ence difficulties to help focus teaching and learning activi-
ties.
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