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Abstract

Query performance issues over semi-structured data
have led to the emergence of materialised XML views
as a means of restricting the data structure processed
by a query. However preserving the conventional rep-
resentation of such views remains a significant limit-
ing factor especially in the context of mobile devices
where processing power, memory usage and bandwidth
are significant factors. To explore the concept of a com-
pressed materialised view, we extend our earlier work
on structural XML compression to produce a combina-
tion of structural summarisation and data compression
techniques. These techniques provide a basis for effi-
ciently dealing with both structural queries and value-
based predicates. We evaluate the effectiveness of such
a scheme, presenting results and performance measures
that show advantages of using such structures.

1 Introduction

Query processing over relational database structures
can be improved by the creation of materialised views,
which provide reorganised data appropriate for partic-
ular query plans. A typical example is the use of pre-
computed data structures for on-line analytical pro-
cessing (OLAP) queries. Whilst relational systems will
continue to provide support for a variety of applica-
tions, the growth in importance of semistructured data
is reflected in the expanding use of XML especially in
the context of web-based applications. In this scenario,
materialised views are used particularly to enhance the
performance of queries by caching the results of previ-
ous searches on client platforms, thereby obviating the
need for repeated contact with remote servers. The
use of cached materialised views is of particular im-
portance in mobile applications where a server may be
unavailable at the moment that a query is generated.
Given that applications operating in this environment

are typically running on small devices such as mobile
phones and using the limited bandwidth capabilities
provided by wireless connections, there is operational
advantage in optimising the use of communication in-
frastructure, processor time and data storage. The ver-
bose representation of XML that has contributed to its
general adoption as a standard for Internet-based com-
munication between applications provides a challenge
for the efficient use of these resources. Compressing
materialised XML views can provide a benefit in this
scenario as long as the view can be queried using the
full functionality of XPath expressions. This can be
achieved by using XML tree summarisation techniques
to deal with the structural elements of queries and dic-
tionary compression techniques to address query vali-
dation. Dictionary techniques work well with relational
structures since domains provide a natural way to par-
tition attribute values. Semistructured data loses this
benefit so it is necessary to address the issue of how
such structures can be usefully partitioned to generate
the most efficient views.

2 Compressed View Model

Materialised views that typically result from XPath
queries may be fragments of XML graphs or relation-
based representations of the original structure. For
XML fragments (as with the underlying structures
themselves), the structural elements can be compressed
by retaining only a skeleton representation of the graph
and dictionaries can be used to support non-redundant
storage of leaf values.

Semi-structured data can be represented as a graph
with vertices used to indicate data items and structural
interrelationships shown by arcs. Arbitrary graphs can
be encoded in XML representation through the use of
special ID:IDREF pairs. Although graphs are an accu-
rate representation of XML views, tree representations
provide a useful simplification. A sequence of distinct
arcs in a graph is called a path. Paths may be either
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Figure 1. Example XML Document

chains (if the vertices in the path are distinct) or cir-
cuits (if the initial vertex and the final vertex are the
same). Removing a single arc from each of the circuits
in a graph produces a spanning tree that still connects
all the data items in the graph. By removing differ-
ent arcs, a number of different spanning trees can be
produced from a single graph.

Query 1
//book[/author & /title/DATA=‘Databases’]

Query performance over XML fragments in materi-
alised views can be supported in much the same way as
performance over the underlying data structure. The
structural index approach illustrated by the work of
Kaushik et al [17] allows a resolution of path location
steps in linear time. A family of indexes ((j,k)-F+B-
index) can be constructed using a range of values for
forward or backward bisimilarity. Given the sample
document shown in Figures 1 and 2 and excluding the
path from the root vertex, the longest forward facing
path in the query graph of Query 1 has length two:
(book/title/DATA). There are no backward directed
paths so the (2,0)-F+B-index shown in Figure 3 is the
smallest covering index for the structural part of the
query.

Value predicates in the query graph are replaced by
a structural leaf predicate with the special tag label
DATA. The family of (j,k)-F+B-indexes does not incor-
porate atomic data, so no member of this index fam-
ily is covering for the validation part of any query. A
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Figure 2. DataGraph for Example Document

materialised view that is covering for both structural
and validation elements of a range of queries can how-
ever be generated by incorporating atomic data into
the (j,k)-F+B-index structure. Entropy-based com-
pression techniques for atomic data provide the basis
for a compact representation of tree fragment views
[13] whilst at the same time allowing validation without
prior decompression of the tree fragment or externally
referenced structure.

Although (2,0)-F+B-index graph allows for the
fastest querying of the structure, the data is gathered
into one single DATA partition, mixing data held in the
title and name tags. When it comes to evaluating the
predicate part of Query 1: (DATA=‘Databases’) the op-
timally partitioned graph for the query would be the
(2,1)-F+B-index shown in Figure 4. This splits the
data held in the title and name tags into separate
partitions allowing for more efficient compression and
predicate querying. However the split adds a cost of
three vertices into the structure, reducing the efficiency
of structural querying of the graph.

A materialised view of the document can be gen-
erated holding the summarised structure of the docu-
ment with links to dictionaries holding the compressed
text of the document. An example of the model is
shown in Figure 5, where the structure and partitions
are gathered from the F+B-index with pointers from
the compressed partitions into the relevant partition
dictionaries.
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Figure 3. (2,0)-F+B-index

3 Related Work

Approaches for improving the performance of
queries over XML data structures focus on the use of
indexes and view materialisation. XPath views are typ-
ically used to preserve data structures that may be rel-
evant to subsequent queries. These structures may be
represented as sub-trees [1] or as relations [4]. Strate-
gies for the maintenance of materialised XPath views
are necessary if they are to be useful once the underly-
ing data structure has been updated [27]. Materialised
XPath views may provide sufficient coverage to enable
the resolution of subsequent queries and there is inter-
est in how to identify what portions of such queries can
be answered by views and how queries can be reorgan-
ised to optimise view usage [32].

Several methods of efficiently compressing XML
data have been developed. The earliest XML-aware
compressors took advantage of context-based compres-
sion to reduce the data size from text based compres-
sors. A comparative study by Ng et al [26] showed the
compression ratios achievable by non-queryable XML
compressors are far greater than those of queryable
compressors. As an example of the latter class of
compressors, XGrind [28], utilises a separate Huffman
coding built for each separate element and attribute
type to compress the values whilst tokenising the struc-
tural elements to maintain the document structure.
This allows the document to be parsed as the original
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Figure 4. (2,1)-F+B-index

XML document with only elements of interest being
decompressed. Cheney [9, 10] shows a scheme that can
achieve 10-25% reduction from even most efficient text
based compressors (zip, gzip etc.). While these schemes
greatly reduce the size of the data there is no way to
directly query this structure, the data must first be
fully decompressed before being accessible to queries.
Ferragina et al [14] developed a data structure combin-
ing several benefits of simple zip compression with fast
access by linking two compressed array structures, one
for the encoding of the structure and one for the node
data.

The next broad range of XML compressors are
data structures which build on XMill [21] to allow
the analysis and storage of the data into a queryable
form [11, 3, 23]. These allow efficient path queries over
the data while still needing large parts of the data to be
decompressed in the worst cases. We have already in-
vestigated the use of dictionary compression techniques
for representing XML data structures [25] and other
investigators have also examined the decomposition of
XML into array-based structures [12].

Early work on different kinds of index structures
for semi-structured data focused on query optimisa-
tion for the Lore system [22]. The main thrust of this
work was the development of heuristics that determine
when to use each of the four specific forms of indices
(value, text, link and path index) provided by their
experimental base. Halverson et al [15] identify the
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Figure 5. NSGraph with Dictionaries

need to combine pattern matching techniques based
on inverted lists with the navigational approach typ-
ical for XML tree traversal algorithms, pointing out
the lack of integration between these two lines of re-
search. They provide a cost model for query answering
in each of these domains, identifying query classes that
are better suited to either approach or to a combina-
tion of both. Full path indexing can be supplemented
by dynamic indexing that responds to query load [8].
Sub-graphs and feature extraction can also be used as
the basis of index construction [33, 34]. Indexing tech-
niques for supporting cross-border queries in mobile
applications are also emerging [20]. Vectorization of
XML, developed by Choi and Buneman [12, 5] com-
bines the XMill [21] approach for compact represen-
tation of atomic data with the approach for skeleton
compression by sharing subtrees [7] to address XML
join queries. Their fundamental assumption is that
the skeleton of typical XML documents is small and
thus can be kept in memory. The actual data is only
used in the last stage of their join algorithm, avoid-
ing unnecessary 1/O operations. Kaushik et al [18] ex-
tend their original work [16, 19] on structural indices
for path expressions to include keyword constraints on
the contained atomic data. They propose a general
strategy to combine structural indices with inverted
lists in order to address this class of queries efficiently

and test their approach using the Niagara system [24].
As their value indices are based on techniques devel-
oped in the context of information retrieval systems,
their resulting query system includes support for find-
ing the k£ most relevant results. Structural and index
values are combined by Amato et al [2] by extend-
ing the structure to incorporate the values for some
elements or by incorporating BT-Tree value indexes
within the structure. Even within unstructured data
there are often regular substructures that allows for a
mapping to semi or fully structured data, Buneman
et al [6] describes such a mapping to an edge-labelled
graph structure. Our initial work [30] investigated ef-
fective partitioning schemes for semi-structured data,
this was aimed at providing efficient structures for vari-
ous classes of queries. We extended this work introduc-
ing NSGraph[31] which utilised numbering schemes in
order to connect the structural elements within a par-
tition to entries within an associated data dictionary.

4 Experimental Work

Although NSGraph comprises both structure and
data values, we currently simplify the consideration of
these components by dealing with them individually
- the data values being compressed separately from
the structure. This compression is achieved using a
minimal-bit representation. To this end we create a
dictionary for each data grouping, tokenising each data
value using the smallest number of bits possible.

For example, in Figure 5 we use two dictionar-
ies, one for titles and one for names. Titles con-
sists of two unique data values, therefore each title
value can be represented using a single bit token.
For the three unique values associated with parent
node Name, two bits must be used for each token.
For each data grouping the token is only as large as
loga(no. of unique values in group) rounded to the
next whole number of bits.

As NSGraph does not yet deal with data values, we
simulate this data compression using a Delphi imple-
mentation that deals solely with the data values and
not the XML structure. Our simulation accepts the
data values stripped from the XML files in comma-
separated format. This simulation is not optimised and
consequently we also state a theoretical compression
achievable using this kind of minimal-bit representa-
tion calculated as follows:

Using a minimal token approach, the size
of each dictionary should be (token size =
no. of entries) + X(uncompressed entry size).
The compressed data size is then
no. of records x X(size of tokens in record),



| [ DataGraph (2,2)F+B  (2,00F+B (02)F+B (0,0)F+B | Data Set |
v 1400565 3199 101 85 44 Legal
e 1400564 3198 1704 84 84 Legal
v 285004 23 14 23 14 Orders
e 285003 22 22 22 22 Orders
v 255004 21 13 21 13 Modified Orders
e 255003 20 20 20 20 Modified Orders

Table 1. Vertex and Edge Counts in Various Graph Simulations

with the total theoretical size being that of the
compressed data plus all dictionaries.

The level of structural compression is evaluated by
comparing the number of elements in the original doc-
ument (shown in Table 1 as v in the DataGraph) and
the number of partitions generated by NSGraph at var-
ious levels of bisimilarity. Similar results are shown for
the number of edges found in the original DataGraph
and NSGraph variations (shown as e in Table 1).

The variation shown as (0,0)F+B equates to the
data being partitioned by label name alone ignoring
the structure surrounding element. The (2,0)F+B vari-
ation gives an example of skeleton partitioning where
only the label name and outgoing paths of the element
are examined. The (0,2)F+B variation is similar to the
previous example but only looking at incoming paths to
the element. The final evaluated variation, (2,2)F+B,
shows the partitions produced by separating elements
on the basis of both incoming and outgoing paths being
identical.

To evaluate the minimal-bit representation we make
use of both benchmark and real-world data sets.
Firstly, we have taken a subset of the TPC-H bench-
mark, based on the Orders element, to produce a se-
ries of test data containing varying numbers of orders.
These files range from the smallest file containing de-
tails of 1000 orders up to the largest with 15000 (Or-
ders). Part of the orders data is an artificially-created
string drawn from a limited pool of words. To see the
effect this has on compression, we have produced a sec-
ond series of test data with these strings omitted (Mod-
ified Orders). Finally, we make use of a real-world set
of legal data. Files in this series contain details of be-
tween 1000 and 13000 convictions taken from a sen-
tencing information system (Legal).

For purposes of comparison, we use XGrind to com-
press the same data in XML format. This produces a
compressed XML structure and associated metadata,
the sizes of which are aggregated to produce the total
XGrind compressed size. We evaluate the size con-
tributed by the structural elements of the NSGraph by
counting the edges and nodes produced. In general,

these elements will provide a negligible contribution to
the storage used when compared with that required for
the compressed data values.

5 Results

Table 1 gives the results of structural summarisa-
tion of the sample data sets. The first column shows
the number of vertices and edges found in the gener-
ated DataGraph of the various data sets. This gives
a baseline with which to compare the various levels of
bisimilarity used in producing the summarisations.

For all data sets there is a reduction in the num-
ber of both vertices and edges in the generated NS-
Graph variations. In the Legal data set this reduction
is over 99.7% at the highest level of bisimilarity tested
((242)F+B). Other variations in the bisimilarity also
restrict the number of vertices and edges but compari-
son with the (2,2)F+B case indicates that there is a
certain amount of partition mixing in these results.
The two TPC-H data sets give significant reductions
with (2,2)F+B index, a 99.99% reduction in both the
number of vertices and edges, the smaller differences
with the other variations show less partition mixing
and a more stable structure. Both TPC-H data sets
give very similar results as the structure of the data
changes only slightly between the two versions. The
values for these indexes give an indication to the po-
tential savings in memory that are available by using
this approach to represent the structural elements of
materialised views.

The results of data compression over the three data
sets are shown in Figures 6, 7 & 8. As our simulated
NSGraph data compression and XGrind take differ-
ent input formats it would be inappropriate to directly
compare the compression achieved by each. Therefore
we compare the output size of both programs against
the size of the raw data values used as input. In all
cases the results include the size of the dictionaries or
other information required to decompress the output.

Figure 6 shows the effect of compression over the
TPC-H orders data. The simulated compression gives
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moved)

an output slightly larger than the raw data. The the-
oretical minimum for the minimal-bit representation
corresponds closely to the size of structure produced by
XGrind. The results in Figure 7 show the effect of re-
moving the large comment element from the structure.
Here the simulated NSGraph compression is compara-
ble with the size of the XGrind structure. Figure 8
shows that the level of compression that is achieved
by the NSGraph simulation is more advantageous than
that produced by XGrind. In addition, the results pro-
duced by the NSGraph simulation now approach the
theoretical minimum.

6 Discussion

Our results show that XGrind is more effective than
the simulated NSGraph data compression over the
TPC-H Orders data, but XGrind and the simulation
are broadly comparable for the modified Orders data
set. When comparing the theoretical minimal bit rep-
resentation against XGrind, results for the full Orders
data set are roughly equal, but the theoretical repre-
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Figure 8. Legal data

sentation is better over the modified data set.

The difference between the Orders and Modified Or-
ders data sets is that the latter has had the generated
text element removed. A class of target applications
for the the methods that we are developing is in the
area of distributing news items to mobile clients. In
this scenario, only the metadata would be pushed to
the client although longer text items may be pulled if
they are requested by the client. For this kind of ap-
plication, the Modified Orders data provides a good
model for the metadata element.

Conventional benchmark data provides a major
challenge for the entropy coding techniques we are de-
veloping since the random nature of the data is not an
accurate reflection of the structure of many real-world
applications. This becomes apparent when considering
the results produced by the Legal dataset. Both the
simulated NSGraph compression and the theoretical
results provide more efficiently compressed structures
than XGrind. It may also be seen that the simulation
results for this data set are closer to theoretical mini-
mum than for other datasets.

Differences between the simulated compression and
the theoretical minimum are apparent for all data sets.
These are due to overheads in the Delphi implementa-
tion and we expect that more efficient implementation
techniques will enable us to build a complete NSGraph
system that more closely approaches the optimum data
representation. Results given do not include the size of
the NSGraph structural element, however the levels of
structural summarisation discussed below indicate the
contribution to overall size will be negligible compared
to the compressed data element.

Our previous work has shown that increasing the
levels of bisimulation both in a forward and backward
direction concentrates elements with increasingly sim-
ilar structures [29]. Partitioning dictionaries using the
same approach also results in an increasing number of
separate, but more closely related, dictionary struc-



tures. The NSGraph system is able to deal with queries
containing both structural and atomic value predicates
without the need to store the original XML data struc-
ture. Combining both structural summarisation and
compressed data exploits the advantages of both tech-
niques to provide an efficient solution for representing
XML trees.

The potential demonstrated by the simulated and
theoretical dictionary compressed view technique when
applied to semi-structured data presents an opportu-
nity to exploit the redundancy that is found in many
real-world data structures. This is as true of XML
as it is of relational databases. Although ID:IDREF
relationships in XML structures allow non-redundant
modelling, data designers will typically use redundant
methods to achieve the same effect. Examples of this
practice include the PubMed corpus, which has been
modelled with redundant author names rather than
with the use of IDREF's to represent this information
non-redundantly. The conventional approach of repre-
senting materialised views as tree fragments or as re-
lations preserves this redundancy. Where memory and
processor resources are limited, this approach simply
preserves the redundancy of the underlying structure.
Using compressed tokens in the manner described here
removes this redundancy and makes optimal use of re-
sources. This is especially important for applications
running on small mobile devices, which typically have
severe limitations in memory and processor capability.
The implication of our results in the context of mobile
pull-based data intensive applications is that the num-
ber of cache faults will usually be minimised by lim-
iting the level of bisimulation. This is consistent with
the outcome that could be expected from increasing
the fragmentation of the data structure representation.
Power utilisation can also be minimised by optimising
the representation of the data and hence reducing pro-
cessor load. It has the added advantage of limiting the
need to download additional blocks of data from the
server in order to resolve specific queries.

The preliminary results we report are being followed
up by an implementation of the compressed materi-
alised view model that we have simulated. We are also
exploring the automatic detection of optimal (or near
optimal) partitioning of the data in order to maximise
the efficiency of the partition compression. We expect
to be able to extract benefit by altering the compres-
sion scheme used in the generated partitions contingent
on the characteristics of the partitions that have been
captured. Huffman encoding of string data or zip com-
pression of larger data items may also provide improved
compression ratios in structures that incorporate large
text elements.

7 Conclusions

Compressed materialised XML views can provide a
benefit in the efficient use of resources including com-
munication bandwidth, processor time and data stor-
age but such views must still be accessible to the
full functionality of XPath expressions. Such views
can be generated by using XML tree summarisation
techniques to deal with the structural elements of
queries and dictionary compression techniques to ad-
dress query validation. Dictionary techniques work
well with relational structures since domains provide
a natural way to partition attribute values. Semi-
structured data loses this benefit so it is necessary to
address the issues of how such structures can be effi-
ciently partitioned to generate the most efficient struc-
ture to produce the compressed views.

We are currently evaluating a system that can com-
bine the benefits of an F+B-index structural summari-
sation with the benefits of dictionary compression of
the data. The intention is to produce a coherent data
structure that can utilise the fast response character-
istics of structural indexing whilst also being able ef-
ficiently to access a compressed representation of the
data within the structure. The purpose of this system
is to evaluate the effect that combining data compres-
sion and structural indexing has on the size of the in-
memory representation of semi-structured data. The
objective of the current research is to build on the sim-
ulation results we report and to determine whether sev-
eral mobile device specific problems - memory limita-
tions, battery and processor usage - could be efficiently
addressed in such a combined system.
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