arXiv:1905.02597v1 [cs.SE] 7 May 2019

Explainable Software Bot Contributions:
Case Study of Automated Bug Fixes

Martin Monperrus
KTH Royal Institute of Technology
martin.monperrus@csc.kth.se

To appear in “2019 IEEE/ACM 1st International Workshop on Bots in
Software Engineering (BotSE)”

Abstract

In a software project, esp. in open-source, a contribution is a valu-
able piece of work made to the project: writing code, reporting bugs,
translating, improving documentation, creating graphics, etc. We are
now at the beginning of an exciting era where software bots will make
contributions that are of similar nature than those by humans.

Dry contributions, with no explanation, are often ignored or re-
jected, because the contribution is not understandable per se, because
they are not put into a larger context, because they are not grounded
on idioms shared by the core community of developers.

We have been operating a program repair bot called Repairnator
for 2 years and noticed the problem of “dry patches” a patch that
does not say which bug it fixes, or that does not explain the effects
of the patch on the system. We envision program repair systems that
produce an “explainable bug fix”: an integrated package of at least 1)
a patch, 2) its explanation in natural or controlled language, and 3) a
highlight of the behavioral difference with examples.

In this paper, we generalize and suggest that software bot contri-
butions must explainable, that they must be put into the context of
the global software development conversation.

1 Introduction

The landscape of software bots is immense [5], and will slowly be explored
by far and large by software engineering research. In this paper, we focus
on software bots that contribute to software projects, with the most noble

sense of contribution: an act with an outcome that is considered concrete
and valuable by the community.

The open-source world is deeply rooted in this notion of “contribution’
developers are called “contributors”. Indeed, “contributor”’ is both a better
and more general term than developer for the following reasons. First, it em-
phasizes on the role within the project (bringing something) as opposed to
the nature of the task (programming). Second, it covers the wide range of ac-
tivities required for a successful software project, way beyond programming:
reporting bugs, translating, improving documentation, creating graphics are
all essential, and all fall under the word “contribution”.

Recently, we have explored one specific kind of contributions: bug fixes
[11, 9]. A bug fix is a small change to the code so that a specific case
that was not well-handled becomes correctly considered. Technically, it is
a patch, a modification of a handful of source code lines in the program.
The research area on automated program repair [§] devises systems that
automatically synthesize such patches. In the Repairnator project [11), 9], we
went to the point of suggesting synthesized patches to real developers. Those
suggestions were standard code changes on the collaborative development
platform Github. In the rest of this paper, Repairnator is the name given to
the program repair bot making those automated bug fixes.

A bug fixing suggestion on Github basically contains three parts: the
source code patch itself, a title, and a textual message explaining the patch.
The bug fixing proposal is called “pull-request”. From a pure technical per-
spective, only the code matters. However, there are plenty of human activ-
ities happening around pull requests: project developers triage them, inte-
grators make code-review, impacted users comment on them. For all those
activities, the title and message of the pull requests are of utmost impor-
tance. Their clarity directly impact the speed of merging in the main code
base.

In the first phase of the Repairnator project |11}, 9], we exclusively focused
on the code part of the pull-request: Repairnator only created a source
code patch, with no pull-request title and explanation, we simply used a
generic title like “Fix failing build” and a short human-written message.
Now, we realize that bot-generated patches must be put into context, so
as to smoothly integrate into the software development conversation. A
program repair bot must not only synthesize a patch but also synthesize the
explanation coming with it: Repairnator must create explainable patches.

This is related to the research on explainable artificial intelligence, or “ex-
plainable AI” for short [3]. Explainable Al refers to decision systems, stating
that all decisions made by an algorithm must come with a rationale, an ex-

Today Tomorrow

Code Repository Code Repository @’

"’
./, Robot
featu'res Byg fea}ures Byg 7 Developer
B fix Infra- e fix T\ e
N o7 lstructure NG R 2 . %
< LA L - - =z g o i
v‘:

-,' T n : "‘ ; '-—-’ ~~~ ', ..\“
FEE T BL AT o
(\J> ’A/\ l% Robot L/ .y -

[- | - s
Human Human Human Developer Human Human Human Robot
Developer Developer Developer R2D2 Developer Developer Developer Developer
Madeleine Leonie Sylvester Madeleine Leonie Sylvester KITT

Figure 1: One speculative future of software development, where robot de-
velopers and human developers smoothly cooperate.

planation of the reasons behind the decision. Explainable Al is a reaction to
purely black-box decisions made, for instance, by a neural network.

In this paper, we claim that contributions made by software bots must
be explainable, contextualized. This is required for software bots to be suc-
cessful, but more importantly, this is required to achieve a long-term smooth
collaboration between humans and bots on software development.

To sum up, we argue in this paper that:

Software bot contributions must be explainable.

Software bot contributions must be put in the context of a global de-
velopment conversation.

Explainable contributions involve generation of natural language ex-
planations and conversational features.

Program repair bots should produce explainable patches.

Section [2] presents the software development conversation, Section [3| dis-
cusses why and how software bots must communicate. Section [d] instantiates
the concept in the realm of program repair bots.

2 The Software Development Conversation

Software developers work together on so-called “code repositories” and soft-
ware development is a highly collaborative activity. In small projects, 5-10
software engineers interact together on the same code base. In large projects,
1000+ engineers are working in a coordinated manner to write new features,
to fix software bugs, to ensure security and performance, etc. In an active

source code repository, changes are committed to the code base every hour,
minute, if not every second for some very hot and large software packages.

All the interactions between developers is what forms the “software devel-
opment conversation’.

2.1 Nature of the Conversation

The software development conversation involves exchanging source code of
course, but not only. When a developer proposes a change to the code, she
has to explain to the other developers the intent and content of the change.
Indeed, in mature projects with disciplined code review, all code modifica-
tions come with a proper explanation of the change in natural language. This
concept of developers working and interacting together on the code reposi-
tory is shown at the left-hand side of Figure [I]

What is also depicted on Figure [I]is the variety of focus in the software
development conversation. The developers may discuss about new features,
about fixing bugs, etc. Depending on expertise and job title, developers
may take only part to one specific conversation. On Figure [1} developer
Madeleine is the most senior engineer, taking part to all discussions in the
project. Junior developer Sylvester tends to only discuss on bug reports and
the corresponding fixing pull requests.

2.2 Scale of the Conversation

In a typical software repository of a standard project in industry, 50+ devel-
opers work together. In big open-source projects as well as in giant repos-
itories from big tech companies, the number of developers involved in the
same repository goes into the thousands and more. For instance, the main
repository of the Mozilla Firefox browser, gecko-devl, has contributions from
3800+ persons. Table [1] shows the scale of this massive collaboration for
some of the biggest open-source repositories ever.

Notably, the software development conversation is able to transcend tra-
ditional organization boundaries: it works even when developers work from
different companies, or even when they are only loosely coupled individuals
as in the case of open-source.

2.3 Channels

The software development conversation happens in different channels.

https://github.com/mozilla/gecko-dev

Oral channels Historically, the software development conversation hap-
pens in meetings, office chats, coffee breaks, phone calls. This remains largely
true in traditional organizations.

Online channels We have witnessed in the past decades the raise of decen-
tralized development, with engineers scattered over offices, organizations and
countries. In those contexts, a significant part of the software development
conversation now takes place in online written channels: mailing-lists, col-
laborative development platforms (Github, Gitlab, etc), synchronous chats
(IRC, Slack), online forums and Q&A sites (Stackoverflow), etc.

Source code contributions only represent a small part of the software
development conversation. Most of the exchanges between developers
are interactive, involving natural language. In the case of collaborative
platforms such as Github, the bulk of the software development con-
versation happens as comments on issues and pull-requests. Software
bots will become new voices in this conversation.

3 Software Bots as Communicating Agents

The software bot community now works on a different software development
model, which is sketched at the right-hand side of Figure[I] Instead of only
having human software developers working on a given code base, we will
have code repositories on which both humans and bots would smoothly and
effectively cooperate. Here, cooperation means two things. First that robots
would be able to perform software development tasks traditionally done by
humans: for instance a robot could be specialized in fixing bugs. Second
that robots and humans would communicate to each other to exchange in-
formation and take together informed decisions.

3.1 Human Developers as Target

Now, let us stress on the communication aspect of software bots. Software
bots will not work alone, they will work together with human developers.
As such, software bots must be able to communicate with human develop-
ers, using their language, given the human cognitive skills. Software bots
will have to explain to other human developers what they are doing in each

Software Commits | Contributors
https://github.com/torvalds/linux 798710 n-a
https://github.com/chromium/chromium 744581 n-a
https://github.com/mozilla/gecko-dev 631802 3851
https://github.com/Libre0ffice/core 433945 853
https://github.com/WebKit/webkit 208041 n-a
https://github.com/Homebrew/homebrew-core 135248 7310
https://github.com/Nix0S/nixpkgs 166699 1935
https://github.com/odoo/odoo 122698 873

Table 1: Some of the biggest code repositories ever in the open-source world
(data from Jan 2019)

contribution, this is what can be called an “explainable contribution”. Devel-
opers would likely ask clarification questions to bots, bots would answer and
this would form a proper engineering conversation.

3.2 Software Bot Identity

A good conversation is never anonymous. This holds for the conversation
between human developers and software bots.

Name: We believe it is important that software bots have a name and
even their own character In Figure [I] all bots are named. Moreover, they
are all named after a positive robot from popular culture. Positive names
and characters encourage developers to have a welcoming, forgiving attitude
towards software bots. We envision that software bots will be engineered
with different characters: for example some would be very polite, others
would be more direct & la Torvalds.

Adaptation: We envision that sophisticated software bots will be able to
adapt the way they communicate to developers: for instance, they would
not explain their contributions in the same way depending on whether they
target a newcomer in the project or an expert guru developer. The tailoring
of communication style may require project-specific training in a data-driven
manner, based on the past recorded interactions (or even developer specific
training).

Diversity: In all cases, we think that it is good that all bots are differ-
ent, this difference is what makes a development conversation rich and fun.
Biodiversity is good, and similarly, we think that software bot diversity may
be crucial for a bot-human community to thrive.

https://github.com/torvalds/linux
https://github.com/chromium/chromium
https://github.com/mozilla/gecko-dev
https://github.com/LibreOffice/core
https://github.com/WebKit/webkit
https://github.com/Homebrew/homebrew-core
https://github.com/NixOS/nixpkgs
https://github.com/odoo/odoo

3.3 Contribution Format

When human developers submit patches for review to other humans, it is
known that the quality of the explanation coming with the patch is very
important. The format depends on the practices and idiosyncrasies of each
project. The patch explanation may be given in an email, as in the case of
Linux, where the Linux Kernel Mailing List (aka LKML) plays a key role.
The explanation may also be given as comment associated to a suggested
modification, such as a pull request comment on the Github platform. A
patch may be illustrated with some figure and visualization of the change.
A software bot must take into account the specificity of targeted platform
and community.

Many software bots will primarily produce contributions for humans.
As such their contributions must match the human cognitive skills and
must be tailored according to the culture of the targeted developer
community. Humans prefer to interact with somebody, rather than
with an anonymous thing, hence fun software bots will have a name
and a specific character.

4 Explainable Patch Suggestion

Now, we put the concept of “explainable contribution” in the context of a
program repair bot [8]. In this section, we explain that program repair bots
such as Repairnator must explain the patches they propose.

We envision research on synthesizing explanations in order to accompany
patches synthesized by program repair tools. The synthesized explanation
would first be an elaborated formulation of the patch in natural language, or
in controlled natural language. Beyond that, the patch explanation would
describe what the local and global effects on the computation are, with
specific examples. Finally, as done by human developers, the explanation
could come with a justification of the design choices made among other
viable alternatives.

4.1 From Commit Summarization to Patch Explanation

The goal of commit summarization is to reformulate a code change into
natural language [1, 4, 6]. Commit summarization can be seen as both a
broader task than patch suggestion (all changes can be summarized and not
only patches), and smaller (only a few sentences, and even a single line in the
context of extreme summarization are produced). We envision experiments
on using the state-of-the-art of commit summarization [6] on patches. It
will be very interesting to see the quality of the synthesized summaries on
patches, incl. on patches from program repair tools: do they capture the
essence of the patch? is the patch explanation clear?

Visualization A picture is worth 1000 words. Instead of text, the synthe-
sized patch can be explained with a generated visualization. This idea can
be explored based on research on commit, diff and pull-request visualization

(e.g. [20).

4.2 Automatic Highlighting of Behavioral Differences

For humans to understand a behavioral difference, a good strategy is to give
them an actual input and highlight the key difference in the output. There
are works that try to identify valuable input points on which the behavior
of two program versions differ [7, [I0]. In a patch explanation, the selected
input must satisfy two requirements: 1) that input must be representative
of the core behavioral difference introduced by the patch and 2) it must be
easily understandable by a human developer (simple literals, simple values).

The format of this behavioral difference explanation is open. It may
be a sentence, a code snippet, even a graphic. What is important is that
it is both understandable and appealing to the developer. Importantly, the
format must be set according to the best practices on communicating in code
repositories (eg. communicating on Github).

4.3 Conversational Program Repair Bots

Finally, an initial explanation of a patch may not be sufficient for the humans
developers to perfectly understand the patch. We imagine conversational sys-
tems for patch explanation: developers would be able to ask questions about
the patch behavior, and the program repair bot would answer to those ques-
tions. Such a system can be data-driven, based on the analysis of the millions
of similar conversations that have happened in open-source repositories.

In the context of a program repair bot that produces bug fixes, an
explainable bug fix means an integrated package: 1) a patch, 2) its
explanation in natural language, and 3) a highlight of the behavioral
difference with examples. The explanation might require a series of
questions from the developers and answers from the bot, which re-
quires advanced conversational features in the bot.

5 Conclusion

In this paper, we have claimed and argued that software bots must produce
explainable contributions. In order for them to seamlessly join the software
development conversation, they have to be able to present and discuss their
own contributions: the intent, the design rationales, etc.

In the context of a program repair bot such as Repairnator [I1], @], it
means that the bot would be able to reformulate the patch in natural lan-
guage, to highlight the behavioral change with specific, well-chosen input
values, to discuss why a particular patch is better than another one.

Beyond explainable contributions, we have hypothesized that software
bots must have their own identify and their own character, so as to bring
diversity in the development conversation. It may even be that the diver-
sity of participants in a software development conversation is what makes it
creative and fun.

Acknowledgments:

I would like to thank my research group for the fertile discussions on this
topic, and esp. Matias Martinez and Khashayar Etemadi for feedback on a
draft. This work was supported by the Wallenberg AI, Autonomous Systems
and Software Program (WASP).

References

[1] L. F. Cortés-Coy, M. Linares-Vasquez, J. Aponte, and D. Poshy-
vanyk. On automatically generating commit messages via summariza-
tion of source code changes. In Source Code Analysis and Manipulation

2]

13l

4]

[5]

[6]

7]

18]

19]

[10]

[11]

(SCAM), 2014 IEEE 14th International Working Conference on, pages
275-284. IEEE, 2014.

M. D’Ambros, M. Lanza, and R. Robbes. Commit 2.0. In Proceedings
of the 1st Workshop on Web 2.0 for Software Engineering, Web2SE 10,
2010.

D. Gunning. Explainable artificial intelligence (xai). Defense Advanced
Research Projects Agency (DARPA), 2017.

S. Jiang, A. Armaly, and C. McMillan. Automatically generating com-
mit messages from diffs using neural machine translation. In Proceedings
of the 32nd IEEE/ACM International Conference on Automated Soft-

ware Engineering, pages 135-146, 2017.

C. Lebeuf, M. Storey, and A. Zagalsky. Software bots. IEEE Software,
2018.

Z. Liu, X. Xia, A. E. Hassan, D. Lo, Z. Xing, and X. Wang. Neural-
machine-translation-based commit message generation: how far are we?
In Proceedings of the 33rd ACM/IEEE International Conference on Au-
tomated Software Engineering, pages 373-384. ACM, 2018.

P. D. Marinescu and C. Cadar. Katch: high-coverage testing of software
patches. In Proceedings of the 2013 9th Joint Meeting on Foundations
of Software Engineering, pages 235-245. ACM, 2013.

M. Monperrus. Automatic Software Repair: a Bibliography. ACM
Computing Surveys, 51:1-24, 2017.

M. Monperrus, S. Urli, T. Durieux, M. Martinez, B. Baudry, and
L. Seinturier. Human-competitive patches in automatic program repair
with repairnator. Technical Report 1810.05806, arXiv, 2018.

D. Shriver, S. Elbaum, and K. T. Stolee. At the end of synthesis:
Narrowing program candidates. In Proceedings of the 39th International

Conference on Software Engineering: New Ideas and Emerging Results
Track, 2017.

S. Urli, Z. Yu, L. Seinturier, and M. Monperrus. How to Design a
Program Repair Bot? Insights from the Repairnator Project. In 40th
International Conference on Software Engineering, Track Software En-
gineering in Practice, pages 95-104, 2018.

10

	1 Introduction
	2 The Software Development Conversation
	2.1 Nature of the Conversation
	2.2 Scale of the Conversation
	2.3 Channels

	3 Software Bots as Communicating Agents
	3.1 Human Developers as Target
	3.2 Software Bot Identity
	3.3 Contribution Format

	4 Explainable Patch Suggestion
	4.1 From Commit Summarization to Patch Explanation
	4.2 Automatic Highlighting of Behavioral Differences
	4.3 Conversational Program Repair Bots

	5 Conclusion

