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Abstract—In this work, we propose a quantum algorithm to
evaluate neural networks architectures named Quantum Neural
Network Architecture Evaluation (QNNAE). The proposed algo-
rithm is based on a quantum associative memory and the learning
algorithm for artificial neural networks. Unlike conventional algo-
rithms for evaluating neural network architectures, QNNAE does
not depend on initialization of weights. The proposed algorithm
has a binary output and results in 0 with probability proportional
to the performance of the network. And its computational cost
is equal to the computational cost to train a neural network.

I. INTRODUCTION

There are some problems that quantum computing pro-
vides time complexity advantages over classical algorithms.
For instance, Grover’s search algorithm [1] has a quadratic
gain when compared with the best classical algorithm and
the Shor’s factoring algorithm [2] provides an exponential
gain when compared with the best known classical algo-
rithm. Quantum computing also provides space complexity
advantages over classical methods. For instance, a quantum
associative memory has an exponential gain in storage capacity
when compared with classical associative memories [3], [4].

Artificial Neural Networks [5] (ANN) are another model
of computation that provides advantages over classical algo-
rithms. ANN have the ability to learn from the environment
and can be used to solve some problems that do not have
known algorithmic solution.

The development of machine learning applications requires
an empirical search over parameters. Several techniques have
been proposed to perform parameter selection. In [6] a meta-
learning strategy is used to suggest initial SVM configurations.
Evolutionary computation [7] and several other metaheuris-
tics [8] have been used to select artificial neural networks.
In [9] quantum computation combined with a nonlinear quan-
tum operator is used to select a neural network architecture.

In this work, we suppose that a quantum computer with
thousands of qubits will be created and it will follow the
rules of quantum computation described in [10]. In previous
works, nonlinear quantum computation [11] has been used in
the learning algorithm of a neural network [12], [9]. We do not
know if this supposition is realistic and we avoid any nonlinear
or non-unitary operators.

It is possible to use quantum computers to obtain a global
information about a function with only one function call [13].

The objective of this work is to propose a quantum algo-
rithm to evaluate a global information about neural networks
architectures. The quantum algorithm evaluates a neural net-
work architecture training the neural network only once. The
proposed algorithm has binary output and results in 0 with
high probability if the neural network can learn the data set
with high performance. The computational complexity of the
algorithm is equal to the computational complexity of a neural
network learning algorithm. The algorithm is based on the
quantum superposition based learning strategy [14], [12] and
on the quantum associative proposed by Trugenberg [15].

The remainder of this paper is divided into 5 sections.
Section II presents the basic concepts of quantum computing
necessary to the development of this work. Section III presents
quantum associative memory used in the proposed algorithm.
Section IV presents the main contribution of this work: a
quantum algorithm to evaluate artificial neural networks ar-
chitectures that does not depends on weights initialization.
Section V presents an empirical evaluation of the proposed
algorithm. This evaluation was performed using the classical
version of the algorithm. Section VI finally presents the
conclusion and future works.

II. QUANTUM COMPUTATION

The quantum bit (qubit) is a two-level quantum system that
has unitary evolution over time in a 2-dimensional complex
vector space. An orthonormal basis (named computational
basis) in this space is described in Eq. (1). One qubit can
be described as a superposition, linear combination, of the
vectors in the computational basis, as described in Eq. (2), in
which α and β are complex amplitudes conditioned with the
following normalization |α|2+ |β|2 = 1. This feature causes a
quantum bit to be represented in many ways, unlike a classical
bit that is always represented by 0 or 1.

|0〉 =
[
1
0

]
|1〉 =

[
0
1

]
(1)

|ψ〉 = α |0〉+ β |1〉 (2)

For a system with several qubits the tensorial product (⊗)
is used. Given two quantum bit |ψ〉 = α |0〉+β |1〉 and |φ〉 =
ρ |0〉+θ |1〉 the tensor product |ψ〉 ⊗|φ〉 is equal to the vector
|ψφ〉 = αρ |00〉+ αθ |01〉+ ρβ |10〉+ βθ |11〉.
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A. Operators

A quantum operator on n qubits is represented by a 2n×2n
unitary matrix. An M matrix is unitary if MM† =M†M = I ,
where M† is the conjugate transpose of M and I is the identity
matrix. Any 2n×2n unitary matrix describes a valid quantum
operator on n qubits. An example of a quantum operator,
named Hadamard, and its actions on the computational basis
are shown in Eq. (3).

H = 1√
2

[
1 1
1 −1

]
H |0〉 = 1√

2
(|0〉+ |1〉)

H |1〉 = 1√
2
(|0〉 − |1〉) (3)

Not surprisingly, quantum operators can simulate classical
operators. The key to this is the Toffoli operator described
in Eq. (4). Every classical operator can be decomposed into
Nand operators, which is irreversible. However, even though
the Nand operator is irreversible, with proper treatment, the
Toffoli operator is able to simulate it. So quantum operators
can simulate any binary function whether it is reversible or
not.

T |x, y, z〉 = |x, y, z ⊕ (x · y)〉 (4)

B. Quantum parallelism

The ability of intrinsic parallelism is one of the most
promising characteristics of quantum computation. For in-
stance, given a function f(x) : {0, 1} → {0, 1}, it is possible
to create a unitary operator Uf that implements f as described
in Eq. (5). It is possible to verify several inputs as described
in Eq. (6), where x = H |0〉 and y = |0〉.

Uf |x, y〉 = |x, y ⊕ f(x)〉 (5)

Uf

(
|0, 0〉+ |1, 0〉√

2

)
=
|0, f(0)〉+ |1, f(1)〉√

2
(6)

C. Measuring

Almost all quantum operators are unitary, except the mea-
surement operation. Unlike classical computing, in which
values can be measured and the system remains unchanged,
in quantum computing, the very act of measuring causes the
system to change. After a measurement the quantum state
to collapse to one of its possible values. For instance, if a
quantum system is in the state described in Eq. (7).

α00 |00〉+ α01 |01〉+ α10 |10〉+ α11 |11〉 (7)

After the measurement the state will collapse to |x1x2〉 with
probability |αx1x2 |

2.

III. QUANTUM ASSOCIATIVE MEMORY

The quantum associative memory used in this work was
proposed in [4]. This associative memory functionality can be
divided into two phases: i) quantum storage mechanism and
ii) quantum retrieval mechanism. The algorithm of the storage
phase used in [4] is equivalent to the algorithm proposed in

[3] that presents the first model of quantum associative mem-
ory. Given a dataset with p patterns {mpk}ppk=1 the storage
algorithm creates the quantum state described in Eq. (8).

p∑
pk=1

1
√
p
|mpk〉 . (8)

In the retrieval phase, the quantum memory receives an
input pattern, which may be a corrupted version of a pattern
already stored and probabilistically indicates the chance of the
memory containing the pattern. The main characteristic of this
phase is that it does not require a classic auxiliary memory,
as is the case of Ventura’s memory. This probability of
recognition of the presented pattern is accessed by measuring
the control qubit |c〉 observing the probability of being |0〉.

|ψ〉 = 1
√
p

p∑
pk=1

|i;mpk ; c〉 (9)

As described in Eq. (9) the state in the recovery phase
can be divided into three parts. The quantum register i, of
size n, represents the input to be checked. The value mpk

representing the p values stored in the storage phase and the
quantum register c, initialized with H |0〉, is the control qubit.

After the execution of probabilistic quantum memory re-
trieval algorithm, measuring the control qubit |c〉 will result
|c〉 = |0〉 with probability described in Eq. (10). The retrieval
algorithm of Trugenberg’s probabilistic memory is described
in [4].

P (|c〉 = |0〉) = 1

p

p∑
k=1

cos2
( π
2n
dH(i, pk)

)
(10)

P (|c〉 = |1〉) = 1

p

p∑
k=1

sin2
( π
2n
dH(i, pk)

)
(11)

As described in Eq. (10) and Eq. (11) the probability of
recognition, or not, is related to the proximity of the input
to the stored patterns. The measure of similarity used is the
Hamming distance represented by dH(i, pk). When looking
for an isolated pattern, the distance between the patterns will
be, for the most part, greater than 0, collaborating for ket
|c〉 = |1〉.

IV. QUANTUM LEARNING ALGORITHM

Quantum neural networks [16], [17], [18], [19], [20], [21],
[22] and quantum inspired neural networks [23], [24], [25]
have been proposed in several works. In this work, we follow
a different approach and analyze the possibility to obtain
global properties of a classical neural network using a quantum
algorithm.

Evaluate a neural architecture is not an easy task, “the
mapping from an architecture to its performance is indirect,
..., and dependent on the evaluation method used” [26]. The
number of hidden layers, neurons per layers, the activation
function is determined by the experience of the researcher [27]



and there is no algorithm to determine the optimal neural
network architecture [28].

In this Section, we describe the proposed quantum algorithm
that uses quantum parallelism to evaluate neural networks
architectures (number of neurons in hidden layer). Several
works propose techniques to search for near-optimal neural
networks architectures [26], [27], [28], [8]. One limitation of
these works is the impossibility to evaluate a neural network
architecture without many random weights initialization [27].
The quantum algorithm proposed in this section performs a
neural network architecture evaluation that does not depends
on a weights initialization because quantum parallelism is
used to initialize the neural network weights with all possible
weights.

Classically the main idea of this algorithm is to train all
possible neural networks with a given architecture and create
a binary vector performancej for each weight vector wj .
The perfomancej has the same size of a validation dataset
{(xk, dk)} and the position k of the vector is equal to 1 if the
network with weights wj correctly classify xk. The algorithm
compares the performance of each neural network with the
performance representing an accuracy of 100% as described
in Eq. (12), where ts is the number of qubits in the validation
set, |W | is the number of weights in superposition and dH (·)
calculates the hamming distance.

|W |∑
k=1

1

|W |
cos2

(
π

2ts
· dH(|1〉ts , |performancek〉)

)
(12)

In a classical computer, this strategy cannot be accomplished
in polynomial time. We show that in a quantum computer this
algorithm can be executed in polynomial time and the result
is related to the neural network architecture capacity to learn
a dataset.

The quantum version of the proposed algorithm consists
in create a superposition of all neural networks. Train the
neural networks in the superposition. Create a performance
vector for each neural network in the superposition and use the
recovering algorithm of the quantum associative memory using
the performance quantum register as the quantum memory and
with input |1〉ts to evaluate the neural network architecture.
This idea is precisely described in Algorithm 1.

Lines 1 to 3 of Algorithm 1 performs the initialization.
Line 1 creates a superposition of all possible neural networks
for a given architecture. Line 2 splits a dataset T in a train
set and a test set. We suppose the T is composed of classical
data (or data in computational basis). Line 3 initialise quantum
register performance with the state |0〉ts, where ts is the
number of patterns in the validation set.

Line 4 trains the neural networks in the superposition. The
learning algorithm of a classical neural network can be viewed
as a binary function that sends the input x(t), desired output
d(t) and weights w(t) in iteration t to the new weight vector
w(t+ 1) as described in Eq. (13).

w(t+ 1) = f (w (t) , x (t) , d (t)) (13)

Algorithm 1: Evaluate architecture

1 Initialize all weights qubits with H |0〉
2 Divide the dataset T in a train set and a validation

dataset
3 Initialize quantum register |performance〉 with the

quantum register |0〉n
4 Train the neural networks in superposition with the train

set
5 for each pattern pj in and desired output dj in the

validation set do
6 Initialize the quantum registers p, o, d with the

quantum state |p, 0, d〉
7 Calculate N |pk〉 to calculate network output in

quantum register |o〉
8 if |o〉 = |d〉 then
9 Set |performance〉j to 1

10 end
11 Calculate N−1 to restore |o〉
12 end
13 Apply the quantum associative recovering algorithm with

input |1〉n and memory |performance〉
14 Return the control qubit |c〉 of the quantum associative

memory

Any binary function can be simulated by a quantum operator
Uf then the learning procedure can be simulated in a quantum
computer and it is possible to train several artificial neural
networks using quantum parallelism.

The for loop in line 5 to line 12 evaluates the performance
of each neural network in the superposition. After this loop,
each neural network is entangled with its performance vector
that has 1 in position j if and only if the network correctly
classifies the jth vector in the validation dataset.

In line 13 the recovering algorithm of the probabilistic
quantum memory is applied to the performance quantum
register as memory and input |1〉ts. The input |1〉ts represents
a performance of 100%. Line 14 returns the control bit |c〉
of the probabilistic quantum memory. A measurement of |c〉
will return 0 with high probability if the neural network
architecture is capable of learning the dataset.

The computational cost of Algorithm 2 is equal to the cost
to train a single neural network and to evaluate its performance
in the validation dataset. Lines 1 to 3 have computational cost
O(nw + p), where nw is the number of weights and p is the
number of patterns in T . Line 4 trains a neural network and
has the same cost of the neural networks learning procedure.
The for loop in lines 5 to 12 evaluate the performance of
neural networks in the superposition with cost O(ts). Line 13
applies the quantum associative memory with cost O(nw) and
in line 14 the measurement has cost O(1).

V. EXPERIMENTS

A quantum computer necessary to perform an experimental
evaluation of this work is not yet a reality. Simulation of



(a) (b)

(c) (d)

Fig. 1: Artificial neural network performance versus output of QNNAE algorithm P (|c〉) = |0〉 in datasets (a) cancer, (b) card,
(c) diabetes and (d) gene.

Algorithm 2 with actual technology is impossible because
the simulation of quantum systems in classical computers
has exponential cost in relation to the number of qubits. For
instance, in [29] the simulation of 45 qubits requires 0.5
petabits of memory.

The neural network simulation and algorithm output were
simulated on a classical computer. To perform an evaluation of
Algorithm 2 we follow its classical description and performs
modifications of the number of neural networks in the quantum
parallelism. This modification was necessary due to the high
cost of train neural networks with all possible weights initial-
ization. Instead of using all possible weights, we randomly
select 1000 neural network weight vectors for a single layer
neural network with k hidden neurons.

To evaluate the proposed algorithm we used the datasets
described in Section V-A. We split each dataset into train and
validation sets. The train sets contain 10% of the patterns in the
dataset and the validation dataset contains 90% of the patterns.

The train sets were used to train the neural networks and the
validation sets were used to compute the performance vectors.

For each dataset and for each number of hidden neurons in
the interval [1, 20) 1000 single layer neural networks were
trained and the performance vectors were calculated using
the validation dataset. The simulation was performed with
the multi-layer neural network available in scikit-learn [30]
version 0.18. The neural networks parameters used in the
experiment are displayed in Table I. The probability of the al-
gorithm output 0 was calculated using Eq. (10), that represents
the output of a quantum associative memory with input |1〉ts
and quantum memory consisting of the network performances
in superposition.

A. Datasets

To evaluate QNNAE, we perform experiments with eight
well-known classification problems found in PROBEN1 repos-
itory. The datasets are: cancer, card, diabetes, gene, glass,



(a) (b)
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Fig. 2: Artificial neural network performance versus output of QNNAE algorithm P (|c〉) = |0〉 in datasets (a) glass, (b) heart,
(c) horse and (d) mushroom.

TABLE I: Neural network learning algorithm parameters

Parameter value
learning algorithm lbfgs

alpha 1e-5
number of hidden neurons [1, 20]

max iter 400

heart, horse and mushroom. Table II describe some charac-
teristics of these datasets.

B. Results

Results are displayed in Fig. 1 and Fig. 2, where the
horizontal axis represents neural network architecture average
performance and the vertical axis means the probability of the
proposed algorithm outputs 0. Each point represents the archi-
tecture of a neural network. It is evident the relation between
the output of Algorithm 1 and neural network performance

and the probability of the output 0 gives a measurement of
the neural network architecture performance.

These results suggest that the binary output of QNNAE is
directly related to the mean performance of the neural network
architecture initialized with different weights. To evaluate
the neural network architecture is necessary to repeat the
algorithm κ times to estimate P (|c〉 = |0〉).

TABLE II: Datasets characteristics

Problem examples features classes
Cancer 699 9 2
Card 690 51 2

Diabetes 768 8 2
Gene 3175 120 3
Glass 214 9 6
Heart 920 35 2
Horse 364 58 3

Mushroom 8124 125 2



VI. CONCLUSION

We proposed a quantum algorithm that evaluates a neural
network architecture performance over a dataset. The proposed
algorithm is the first algorithm to perform such task using
quantum computation. The evaluation of the neural network
does not depend on a weight initialization because quantum
parallelism is used to create a superposition with all possible
weights. This kind of evaluation is intractable in a classical
computer.

There is a lot of space for further research. There is a
relation between the neural network performance and the prob-
ability of Algorithm 2 output 0, but the range of probabilities
can be very close. How can this methodology be changed
to improve the range of probabilities? The choice of other
neural networks parameters can be evaluated using the same
framework, for instance, the choice of learning algorithm and
learning algorithm parameters? Can we evaluate the output of a
quantum ensemble of classifiers using an associative memory?
This article provides an initial step to evaluate neural networks
architectures using (standard) quantum computing. The main
difference to the previous approach [9] is the use of only
unitary quantum operators.

The proposed methodology can also be applied to others
machine learning methods. For instance, the methodology can
be applied to evaluate different machine learning models over
a dataset. This strategy could lead to a quantum meta-learning
approach.
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