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Abstract—While several BDI logics have been proposed in the
area of Agent Programming, it is not clear how these logics
are connected to the agent programs they are supposed to
specify. More yet, the reasoning problems in these logics, being
based on modal logic, are not tractable in general, limiting their
usage to tackle real-world problems. In this work, we use of
Dynamic Preference Logic to provide a semantic foundation
to BDI agent programming languages and investigate tractable
expressive fragments of this logic to reason about agent programs.
With that, we aim to provide a way of implementing semantically
grounded agent programming languages with tractable reasoning
cycles.

Index Terms—Dynamic Epistemic Logic; Agent Programming;
Formal Semantics; BDI Logics;

I. INTRODUCTION

In the study of rational action and agency, several different

logics and formal theories for practical reasoning have been

proposed. Particularly, the Belief, Desire Intention framework

[1] has become a popular approach to practical reasoning in the

areas of Artificial Intelligence and Autonomous Agents, giving

rise to the construction of several programming languages and

computer systems.

Having a formal definition of its semantics is essential for

proving properties about a programming language and also

for providing a formal framework to specify and to verify

properties about a system’s behaviour. For agent programming

languages, a formal semantics also clarifies the notion of

agency it carries.

Recently, it has been proposed that Dynamic Preference

Logic (DPL) can be used to reason about BDI Agent Pro-

gramming with declarative mental attitudes [2], providing a.

a computable two-way translation between specifications in

the logic and agent programs. Reasoning in DPL is, however,

not tractable in general. As such, the use of DPL for reasoning

about agent programming - while theoretically relevant for the

analysis of a programming language semantics - is of very

limited practical use.

In this work, we investigate expressive fragments of the

language of DPL that yield tractable reasoning problems. The

reasoning problems discussed in this paper are concerned

with knowing whether an agent knows (believes, desires or

intends) a certain propositional property ϕ and how to compute

the resulting mental state of an agent after performing a

belief/desire revision or contraction. With this, we aim to

provide a tractable fragment that may be used to implement

an actual agent programming language with declarative mental

attitudes having a well-defined logical semantics based on

Kripke frames.

This work is structured as follows: in Section II we present

the logic of agency proposed here, based on Dynamic Prefer-

ence Logic; in Section III we discuss the connection between

the logic proposed and Agent Programming. In Section IV,

we discuss a tractable expressive subset of the language which

can be used to implement agent programming languages. In

section V, we present the related work and compare their

contributions to ours. Finally, in Section VI, we present our

final considerations.

II. A DYNAMIC LOGIC FOR BDI PROGRAMMING

In this section, we present a dynamic propositional modal

logic of agency which will be used to specify an agent’s mental

state. Throughout this work, we will assume the existence of a

set P of propositional symbols and we will denote by L0 the

language of propositional logic constructed over the symbols

in P .

We assume a BDI agent has a library of plans describing

which actions she can perform on the environment. For the

sake of simplicity, we will assume that the plans are determin-

istic, completely specified and STRIPS-like. Aware of these

restrictions, we introduce the notion of plan library.

Definition 1. We call A = 〈Π, pre, pos〉 a plan library, iff Π is

a finite set of plans symbols, pre, pos : Π → L0 are functions

that map each plan to its preconditions and post-conditions,

respectively. We further require that the post-conditions of any

plan is a consistent conjunction of propositional literals. We

say α ∈ A for any plan symbol α ∈ Π.

With this definition in mind, we can establish the language

we will use as a base for our constructions.

Definition 2. Let A = 〈Π, pre, pos〉 be a plan library. We

define the language L≤P ,≤D
(A) by the following grammar

(where p ∈ P and α ∈ A):

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Aϕ | [≤P ]ϕ | [<P ]ϕ
| [≤D]ϕ | [<D]ϕ | [α]ϕ | Iα
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The formula Aϕ means that it is universally true that ϕ

holds, while the formula [≤D]ϕ ([≤P ]ϕ) means that in all

worlds equally or more desirable (plausible) than the current

one, ϕ holds and [<D]ϕ ([<P ]ϕ) meaning that in all worlds

strictly more desirable (plausible) than the current one, ϕ

holds. Finally, the formulas [α]ϕ and Iα mean that after

carrying out the plan α, the property ϕ holds, and that the

agent intends to execute a plan α, respectively. As usual,

we will define Eϕ ≡ ¬A¬ϕ and 〈≤�〉ϕ ≡ ¬[≤�]¬ϕ with

� ∈ {P,D}.

To interpret these formulas, we introduce the notion of agent

model - which will be used to represent an agent’s mental state.

Definition 3. Let A = 〈Π, pre, pos〉 be a plan library. An

agent model is a tuple M = 〈W,≤P ,≤D, I, v〉 where W is a

set of possible worlds, and both ≤P and ≤D are pre-orders

over W with well-founded strict parts <P and <D, I ⊆ Π
is a set of adopted plans (or intentions), and v is a valuation

function.

To model the effect of executing a plan α ∈ A given an

agent model M , we will define the notion of model update,

as commonly used in the area of Dynamic Epistemic Logic.

Definition 4. Let A = 〈Π, pre, pos〉 be a plan library, α ∈ A
a plan, and M = 〈W,≤P ,≤D, I, v〉 an agent model. The

update of model M by execution of plan α is defined as the

model M ⊗ [A, α] = 〈W ′,≤′
P ,≤

′
D, I

′, v′〉 where

W ′ = {w ∈W | M,w � pre(α)}
≤′

�
= ≤� ∩ W ′ ×W ′

I ′ = I

v′(p) =











W ′ if pos(α) � p

∅ if pos(α) � ¬p

v(p) ∩ W ′ otherwise

The interpretation of the formulas is defined as usual, with

each modality corresponding to an accessibility relation.

M,w � [≤P ]ϕ iff ∀w′ ∈W : w′ ≤P w ⇒M,w′
� ϕ

M,w � [<P ]ϕ iff ∀w′ ∈W : w′ <P w ⇒M,w′
� ϕ

M,w � [≤D]ϕ iff ∀w′ ∈W : w′ ≤D w ⇒M,w′
� ϕ

M,w � [<D]ϕ iff ∀w′ ∈W : w′ <D w ⇒M,w′
� ϕ

M,w � [α]ϕ if M,w � pre(α) then M ⊗ [A, α], w � ϕ

M,w � Iα iff α ∈ I

In this work, we denote the most plausible (similarly,

desirable) worlds in the set S by Min≤P
S. In other words,

Min≤P
S = {w ∈ S | ∀w′ ∈ S : w′ ≤P w ⇒ w ≤P w′}

Let ϕ ∈ L≤P ,≤D
(A), we also define the formula

µPϕ ≡ (ϕ ∧ ¬〈<P 〉ϕ) (similarly, µDϕ), which is satisfied

exactly by the minimal worlds according to the order ≤P

(similarly for ≤D) which satisfy the formula ϕ, i,e, JµPϕK =
Min≤JϕK. These formulas will be useful to encode mental

attitudes in this logic.

A. Enconding mental attitudes

Following Souza et al [3] [2], we introduce a codification

of mental attitudes in the language L≤P ,≤D
(A). In this work,

we interpret the notion of ‘possible world’ as epistemically

possible, not metaphysically possible. As such, the universal

modality can be used to encode the knowledge held by an

agent.

Kϕ ≡ Aϕ

We encode the (KD45) notion of belief as what is true in

the worlds that the agent believes to be the most plausible

ones. As such, our notion Bϕ means that ‘it is most plausible

that ϕ.’

Bϕ ≡ A(µP⊤ → ϕ)

Similar to belief, we propose a codification of (consistent)

desires as everything that is satisfied in all most desirable

worlds.

G(ϕ) ≡ A(µD⊤ → ϕ)

Our language possesses the notion of procedural intentions

by the formula Iα. To encode Bratman’s [1] notion of prospec-

tive intention, we will define a formula Intϕ. First, however,

we must encode the restrictions imposed by Bratman for

consistency of an intention by means of a formulaAdmInt(ϕ)
meaning that ‘it is admissible for the agent to intend that ϕ’.

AdmInt(ϕ) ≡ G(ϕ) ∧ E(ϕ) ∧ ¬B(ϕ)

With this notion, we can define the notion of having an

‘intention that ϕ.’

Int(ϕ) ≡ AdmInt(ϕ) ∧
∨

α∈A

(Iα ∧B (pre(α) ∧ [α]ϕ))

Notice that, while we imposed several restrictions in our

codification for an agent to rationally hold some prospective

intention, none of these restrictions have been required for an

agent to hold a procedural intention, i.e. an intention to do -

here represented by the set of adopted plans I in the model. To

model the kind of agent that satisfies Bratman’s restrictions,

we define the notion of a coherent agent model, i.e. an agent

having a coherent mental state.

Definition 5. Let A be a plan library and M =
〈W,≤P ,≤D, I, v〉 be an agent model. We say a set I ⊂ Π
of plans is A-coherent in M if for all α ∈ I , M � B(pre(α))
and M � AdmInt(pos(α)). If I is A-coherent in M , we say

M is a coherent agent model.

B. Dynamic operations on agent’s mental states

Once established the basic language and the encodings

of mental attitudes, we define some well-behaved mental

operations, which will be used to implement agents’ practical

reasoning. Here we explore three dynamic operations on agent

models, each a representative of the three basic mental opera-

tions as studied by the Belief Revision Theory [4]: expansion,

revision and contraction.



The first operation we introduce is that of public an-

nouncement. This operation corresponds, in a sense, to the

operation of expansion from Belief Revision Theory. Based

on the codifications we provided in the previous section,

this operation can be interpreted as the mental operation of

knowledge acquisition.

Definition 6. Let M = 〈W,≤P ,≤D, I, v〉 be a coherent

agent model and ϕ a formula of L0. We say the model

M!ϕ = 〈W!ϕ,≤P !ϕ,≤D!ϕ, I!ϕ, v!ϕ〉 is the result of public

announcement of ϕ in M , where:

W!ϕ = {w ∈W | M,w � ϕ}
≤�!ϕ = ≤� ∩ (W!ϕ ×W!ϕ)
I!ϕ is the maximal subset of I that is A− coherent

v!ϕ(p) = v(p) ∩ W!ϕ

The radical upgrade of an agents beliefs by an information

ϕ results in a model such that all worlds satisfying ϕ are

deemed more plausible than those not satisfying it. This

operation corresponds to a operation of belief revision from

belief Revision Theory.

Definition 7. Let M = 〈W,≤P ,≤D, I, v〉 be a coherent agent

model and ϕ a formula of L0. We say the model M⇑ϕ =
〈W,≤P⇑ϕ,≤D, I⇑Pϕ, v〉 is the result of the radical upgrade

on the plausibility of M by ϕ, where

≤P⇑ϕ= (≤P \{〈w,w′〉 | M,w 6� ϕ and M,w′
� ϕ})∪

{〈w,w′〉 | M,w � ϕ and M,w′ 6� ϕ}
I⇑Pϕ is the maximal subset of I that is A− coherent

We can similarly define the radical upgrade of the agents

desires by the operation ⇑D ϕ, which updates the desirability

relation, instead of the plausibility relation.

Lastly, we introduce the operation of lexicographic con-

traction [5]. This operation corresponds to performing a re-

ordering of the worlds in a way that both ϕ and ¬ϕ are

considered equally plausible (or equally desirable) to the agent.

To define this operation in a more elegant way, we will define

the notion of the plausibility degree of a world.

Definition 8. Let M = 〈W,≤P ,≤D, I, v〉 be a coherent agent

model, w ∈ W a possible world and ϕ ∈ L≤P ,≤D
(A) a

formula. We say that w has plausibility degree n ∈ N for φ,

denoted n = dP ϕ(w), if M,w � ϕ and there is a maximal

chain w0 <P w1 <P w2 <P . . . <P wn s.t. ∀i : wi ∈ JϕK,

w0 ∈Min≤P
JϕK and wn = w.

We can define the desirability degree of a world w for ϕ,

denoted by dDϕ(w), the same way. With that notion, we define

the lexicographic contraction as below.

Definition 9. Let M = 〈W,≤P ,≤D, I, v〉 be a coherent agent

model and ϕ a formula of L0. We say the model M⇓Pϕ =
〈W,≤P⇓ϕ,≤D, I⇓Pϕ, v〉 is the lexicographic contraction of

the plausibility of M by ϕ, where:

w ≤P⇓ϕ w′ iff



































w ≤P w′ if w,w′ ∈ JϕK

w ≤P w′ if w,w′ 6∈ JϕK

dP ϕ(w) < dP¬ϕ(w
′) if w ∈ JϕK and

w′ 6∈ JϕK

dP¬ϕ(w) < dP ϕ(w
′) if w 6∈ JϕK and

w′ ∈ JϕK
I⇓P ϕis the maximal subset of I that is A− coherent

As before, we can similarly define the lexicographic con-

traction on the desirability of M by ϕ (denoted by M⇓Dϕ).

These operations correspond to the contraction (or abandon-

ment) of a belief/desire by the agent.

For each operation ⋆ defined before, we introduce a new

modality [⋆ϕ]ψ in our language, meaning “after the operation

of ⋆ by ϕ, ψ holds”. which can be interpreted as

M,w � [⋆ϕ]ψ iff M⋆ϕ, w � ψ

An important result about the dynamified logic is that, if

we consider some special kind of model, which includes the

models we will use in Section III to reason about Agent

Programming, it has the same expressibility as the static logic

presented before [2]. In fact, the formulas [!ϕ]ψ, [⇑� ϕ]ψ and

[⇓� ϕ]ψ, with � ∈ {P,D}, are definable in the language

L≤P ,≤D
(A) by a set of reduction axioms.

III. REASONING ABOUT BDI AGENTS USING DPL

An interesting property of Preference Logic - the logic used

as a foundation to construct L≤P ,≤D
(A) - is that preference

models can be encoded by means of some structures known

as priority graphs [6]. Exploring this connection, we will

show how we can use agent programs with stratified mental

attitudes, e.g. beliefs annotated with their credence/plausibility

level, to obtain a model for the agent’s mental state.

In most BDI agent programming languages, an agent pro-

gram is defined by means of a tuple ag = 〈K,B,D, I〉,
where K , B and D are sets of (ranked) propositional for-

mulas representing the agent’s knowledge, beliefs and desires,

respectively, and I is a set of plans adopted by the agent.

A ranked formula 〈ϕ, n〉 expresses that the agent has a

certain degree of uncertainty in the information ϕ. As such, if

the agent has 〈ϕ, n〉 in her belief base, it means that the agent

believes that ϕ is true with an uncertainty degree of n.

Definition 10. Let P be a set of propositional variables and

A a plan library. We call an agent program over A, a tuple

of finite sets ag = 〈K,B,D, I〉 where:

• K ⊂ L0 is the knowledge base;

• B ⊂ L0 × N is called the stratified belief base.

• D ⊂ L0 × N is called a stratified goal base.

• I ⊂ A is the (procedural) intention base.

When the plan library A is clear, we will often call the tuple

ag = 〈K,B,D, I〉 an agent program.

Given the definition above, we define the mental attitudes

of an agent, i.e. what she knows, believes, etc. by means of

the components of an agent program. Notice that our belief

and desire bases are stratified, in the sense that the beliefs

(similarly desires) of an agent are ranked according to their



plausibility. Since some of these beliefs may be contradictory

with each other, we must compute the maximal set of beliefs

(desires) that is consistent - respecting the stratification of the

base.

Definition 11. Let Γ ⊂ L0×N be a finite set of pairs 〈ϕ, i〉 and

let Γi = {ϕ | 〈ϕ, i〉 ∈ Γ}. We define the maximal consistent

subset of Γ, the set ΓMax ⊂ L0, s.t.

• ΓMax ⊆
⋃

Γi and if 〈ϕ, i〉 ∈ Γ and ϕ ∈ ΓMax then

Γi ⊆ ΓMax;

• ∀Γ′ ⊆
⋃∞

i=1
Γ : (∃Γi ⊆ Γ′ ∧ Γi 6⊆ ΓMax ⇒ Γ′

�

⊥ or ∃Γj ⊆ ΓMax ∧ Γj 6⊆ Γ′ and j < i)

With this in mind, we can provide interpretations of the

notions of belief and desire by means of such bases.

Definition 12. Let ag = 〈K,B,D, I〉 be an agent program

and ϕ ∈ L0. We define what an agent believes, desires and

intends as:

• ag � Kϕ, iff K � ϕ

• ag � Bϕ, iff BMax
� ϕ

• ag � Gϕ, iff DMax
� ϕ

• ag � Iϕ, iff ag � Gϕ and ∃α ∈ I , s.t. pos(α) � ϕ

While we placed no condition on agent programs, since in

this work we adhere to Bratman’s [1] notion of intention, our

declarative mental attitudes must satisfy some constraints in

order for the agent to be considered rational.

Definition 13. Let ag = 〈K,B,D, I〉 be an agent program.

We say ag is coherent iff all of the conditions below hold.

1) Knowledge consistency: K 6� ⊥
2) Belief-Knowledge consistency: ϕ ∈ K iff 〈ϕ, 0〉 ∈ B

3) Desire-Knowledge consistency: ϕ ∈ K iff 〈ϕ, 0〉 ∈ D

4) Intention-Desire consistency: for all α ∈ I there is a ϕ

in DMax s.t. pos(α) �L0
ϕ;

5) Pursuable plan: ∀α ∈ I : ag � B(pre(α));
6) Intention consistency: {pos(α) | α ∈ I} 6� ⊥;

7) Plans are relevant: ∀α ∈ I : ag 6� B(pos(α)).

Liu [6] shows that preference relations can be equivalently

represented by means of syntactical constructs, known as

priority graphs. A priority graph, however, is nothing more

than a partial order over propositional formulas, much similar

to the stratified bases we introduced here. As such, we can use

the same reasoning to compute the plausibility and desirability

orders of an agent model by means of belief and desire bases.

Definition 14. Let Γ ⊂ L0 × N be a stratified base, W a

set of possible worlds and v : L0 → W a valuation function.

Considering Γi = {ϕ | 〈ϕ, i〉 ∈ Γ} and w � X to stand

for ∀ϕ ∈ X : (w ∈ v(ϕ)), then we define the pre-order

≤Γ ⊆ W ×W s.t.

w ≤Γ w
′iff ∀i ∈ N : (w′

� Γi ⇒ w � Γi)∨
(∃j < i s.t. (w � Γj and w′ 6� Γj))

Using this construction, we are able to construct an agent

model from an agent program.

Definition 15. Let ag = 〈K,B,D, I〉 be an agent pro-

gram, we define the model induced by ag as Mag =
〈JKK,≤B,≤D, I, v〉 where JKK ⊂ 2P are all the proposi-

tional valuations that satisfy the set K , ≤B⊂ JKK× JKK and

≤D⊆ JKK × JKK are the preference relations induced by the

bases B and D, as described in Definition 14, and w ∈ v(p)
iff p ∈ w.

Finally, since preference relations can always be encoded

as priority graphs [6], we can always compute agent programs

describing mental models.

Proposition 16. Let M = 〈W,≤P≤D, I, v〉 be an agent

model, with W ⊆ 2P , then there is an agent program

ag = 〈K,B,D, I〉 s.t M = Mag. More yet, M is a coherent

agent model iff ag is a coherent agent program.

From this result and the encodings of mental attitudes in

both the logic and in agent programs, it is not difficult to see

that the mental notions coincide.

Corollary 17. Let ag = 〈K,B,D, I〉 be a coherent agent

program and ϕ ∈ L0 be a propositional formula, then

Mag � K(ϕ) iff ag � Kϕ

Mag � B(ϕ) iff ag � Bϕ

Mag � G(ϕ) iff ag � Gϕ

Mag � Int(ϕ) iff ag � Iϕ

Mag � Iα iff α ∈ I

We have two considerations to make about the codification

presented here. First, regarding the complexity of reasoning

about agent programs’ attitudes, to compute an agents beliefs

(or goals), it requires a linear number of propositional satis-

fiability checks on the depth of the base. Second, regarding

the notion of mental attitudes encoded here, notice that we

adopted a notion of goal as a maximal set of consistent

desires - consistent with other works in BDI programming.

It is not difficult, however, to treat other notions, as that of

Van Riemsdij et al [7], in our framework.

IV. TRACTABLE FRAGMENTS OF DPL

We have seen so far that we can use the logic L≤P ,≤D
(A) to

reason about agent programs. The computational complexity

of reasoning about agents, however, is far too great to be useful

for real-world problems. In this section, we investigate some

restrictions on the kinds of agent programs and agent models

that guarantee that the reasoning problems in the resulting

logic are tractable.

Since agent programs are defined over propositional formu-

las - and reasoning about propositional satisfiability is a well-

known NP-complete problem - we define a restriction of agent

programs for which reasoning will be proved to be tractable.

Definition 18. Let Γ ⊂ L0 × N be a stratified base, we say

Γ is conjunctive iff for all 〈ϕ, i〉 ∈ Γ, ϕ is a conjunction of

literals, i.e. ϕ =
∧

lk, with lk = pk or lk = ¬pk.

A conjunctive agent program is, thus, an agent program in

which all of its bases are conjunctive.



Definition 19. Let ag = 〈K,B,D, I〉 be an agent program,

we say ag is a conjunctive agent program iff K is a set of

conjunctive formulas, B andD are conjunctive stratified bases

and for any plan α ∈ I , pre(α) and pos(α) are conjunctive

formulas.

First, we must show that we can compute the maximal

consistent subsets, such as BMax and DMax, in polynomial

time. To do so, we provide the Algorithm Max(Γ), depicted

in Figure 1.

Algorithm Max(Γ)
Input : a conjunctive stratified base Γ
Output : a set of literals ΓMax corresponding to the

maximal consistent subset of the base Γ
[1] ΓMax := {}
[2] n := maximal depth of Γ
[3] for i := 1 t o n
[4] Γi := {l | 〈ϕ, i〉 ∈ Γ and l appears in ϕ}
[5] if ¬l ∈ Γi and l ∈ Γi for some l then
[6] continue
[7] else

[8] if l ∈ Γiand¬l ∈ ΓMax for some l then
[9] continue
[10] else

[11] ΓMax := ΓMax ∪ Γi

[12] return ΓMax

Fig. 1: Algorithm for the maximal consistent subset of Γ.

Proposition 20. Let Γ ⊂ L0 × N be a conjunctive stratified

base, then the algorithm Max presented in Figure 1 is correct,

i.e. computes ΓMax in O(n3m2) time, where n is the size of

Γ and m is the size of the biggest formula in Γ.

As a consequence, we can always decide whether a con-

junctive agent program knows (beliefs, desires or intends) a

certain formula ϕ in polynomial time.

Corollary 21. Let ag = 〈K,B,D, I〉 be a conjunctive agent

program and ϕ ∈ L0 a propositional formula in disjunctive

normal form. We can compute whether ag � K(ϕ) (ag �

B(ϕ) or ag � D(ϕ)) in polynomial time in the size of K (B

or D) and ϕ.

Corollary 21 guarantees that we can reason about the agent’s

mental state at any point in time in the program execution

in polynomial time. The execution of an agent program,

however, is usually determined by its reasoning cycle, i.e. the

execution of certain mental changing operations that describe

the agent’s reasoning. These mental operations are usually

described by means of changes in the agent’s mental state.

As such, to provide a truly tractable semantic framework to

reason about agent programming, we must ensure that these

mental changing operations can be computed in polynomial

time.

We now dedicate our attention to this problem. We aim to

provide tractable operations on agent programs to compute the

dynamic operations discussed in Section II.

First, based on the work of Girard [8] and of Liu [6], let’s

show how we can compute knowledge acquisition - interpreted

here as a public announcement - using agent programs.

Proposition 22. Let ag = 〈K,B,D, I〉 be an agent program,

ϕ ∈ L0, and ag′ = 〈K ∪ {ϕ}, B′, D′, I ′〉, where

B′ = (B ∪ {〈ϕ, 0〉})
D′ = (D ∪ {〈ϕ, 0〉})
I ′ = {α ∈ I | (B′)Max

� pre(α) and (B′)Max 6� pos(α)
and ∃ϕ ∈ D′ : pos(α) � ϕ}

be the agent program resulting of agent ag obtaining a

knowledge ϕ. Then Mag′ =Mag!ϕ
. We denote ag′ by ag!ϕ.

As a result of this encoding, we can compute knowledge

acquisition/public announcement in polynomial time.

Corollary 23. Let ag = 〈K,B,D, I〉 be a conjunctive agent

program and ϕ, ψ ∈ L0 conjunctive propositional formulas.

We can compute whether ag!ϕ � K(ψ) (ag!ϕ � B(ψ) or

ag!ϕ � D(ψ)) in polynomial time in the size of K (B or

D), ϕ and ψ.

As Radical Upgrade can also be computed by means of

transformation on the agent programs, we can represent the

mental operation of belief revision in our framework.

Proposition 24. Let ag = 〈K,B,D, I〉 be a coherent agent

program and ϕ ∈ L0, let yet ag′ = 〈K,B′, D, I ′〉, where

B′ = {〈ψ, 0〉 | ψ ∈ K} ∪ {〈ψ, i+ 2〉 | 〈ψ, i〉 ∈ B}
∪{〈ϕ, 1〉}

I ′ = {α ∈ I | (B′)Max
� pre(α) and (B′)Max 6� pos(α)}

be the agent program resulting of agent ag revising her beliefs

by information ϕ. Then Mag′ = Mag⇑Pϕ
. We denote ag′ by

ag⇑Pϕ.

As a corollary, reasoning about the resulting mental state of

the agent after belief revision is a tractable problem.

Corollary 25. Let ag = 〈K,B,D, I〉 be a conjunctive agent

program and ϕ, ψ ∈ L0 conjunctive propositional formulas.

We can compute whether ag⇑Pϕ � K(ψ) (ag⇑Pϕ � B(ψ) or

ag⇑Pϕ � D(ψ)) in polynomial time in the size of K (B or

D), ϕ and ψ.

A similar result can be stated for the radical upgrade of the

agents desires, instead of beliefs. This operation represents the

adoption of a given goal.

To implement lexicographic contraction, we use the al-

gorithm depicted in Figure 2. We represent by ϕ[ψ|l] the

substitution of literal l appearing in ϕ by the formula ψ.

Proposition 26. Let ag = 〈K,B,D, I〉 be a coherent agent

program and ϕ ∈ L0, let yet ag′ = 〈K,B′, D, I ′〉, where

B′ = Cont(B,ϕ)
I ′ = {α ∈ I | (B′)Max

� pre(α) and (B′)Max 6� pos(α)}

be the agent program resulting of agent ag contracting her

beliefs by information ϕ. Then Mag′ = Mag⇓Pϕ
, i.e. the



Algorithm Cont(Γ, ϕ)
Input : a conjunctive stratified base Γ

a negated conjunctive formula ¬ϕ
Output : Γ⇓ϕ the lexicographic contraction of Γ by ϕ

[1] Γ⇓ϕ := {}
[1] for each 〈ψ, i〉 ∈ Γ
[2] ψ′ := ψ
[2] for each propositional symbol p in ϕ
[2] ψ′ := ψ[⊤|p][⊤|¬p]
[3] Γ⇓ϕ := Γ⇓ϕ ∪ {〈ψ′, i〉}
[12] return Γ⇓ϕ

Fig. 2: Algorithm for the contraction of a base Γ by a formula ϕ.

algorithm Cont(Γ, ϕ) depicted in Figure 2 is correct. We

denote ag′ by ag⇓Pϕ.

As before, we can reason about the changes in the mental

state of the agent after the contraction of a belief ,or similarly

the withdraw of a goal, in polynomial time to the size of the

agent program and the formulas.

Corollary 27. Let ag = 〈K,B,D, I〉 be a conjunctive agent

program and ϕ ∈ L0 a disjunctive propositional formula and

ψ ∈ L0 conjunctive propositional formula, we can compute

whether ag⇓Pϕ � K(ψ) (ag⇓Pϕ � B(ψ) or ag⇓Pϕ � D(ψ))
in polynomial time in the size of K (B or D), ϕ and ψ.

With these results, we’ve provided a restriction of the logic

which with which reasoning about agents’ mental states is

tractable and provided a way to translate from agent models

to agent programs.

V. RELATED WORK

From the Agent Programming perspective, the two most

important works on modelling BDI mental attitudes are, in

our opinion, the seminal work of Cohen and Levesque [9] and

the work of Rao and Georgeff [10] describing the logic BDI-

CTL. While their contribution to the area is undeniable, much

criticism has been drawn to both approaches. Particularly, they

are difficult to connect with agent programming languages, by

the use of a possible-world model semantics.

Works as that of Wobcke [11] and of Hindriks and Van der

Hoek [12] propose ways to connect the semantics of a given

programming language to some appropriate logic to reason

about agent’s mental attitudes. These logics, however, cannot

represent the mental actions that characterize the practical rea-

soning process of the agent, i.e. the agent program execution.

As such, it is not clear how to establish connection between

the logic and agent programs.

Perhaps the work most related to ours in spirit is that of

Hindriks and Meyer [13]. They propose a dynamic logic for

agents and show that this logic has an equivalent semantics

based on the operational semantics of the programming lan-

guage. The main difference between from our approach is that

they choose to work in the framework of Situation Calculus

and, as such, mental actions are only implicitly defined in their

framework, while the inclusion of such actions in the language

is exactly the main advantage advocated by us. In some sense,

our work can be seen as a generalisation of their work, since

by employing Dynamic Preference Logic the equivalence they

seek between operational semantics and declarative semantics

can be automatically achieved by the results of Liu [6].

VI. FINAL CONSIDERATIONS

Our work has investigated the use of a Dynamic Preference

Logic to encode BDI mental attitudes and its connections to

Agent Programming. We provided an expressive fragment of

the logic for which reasoning about agents’ mental states is

tractable and how this can be computed by means of agent

programs. With this, we believe we provided a roadmap to

use Dynamic Preference Logic as a semantic framework to

specify and also implement the formal semantics of BDI agent

programming languages with declarative mental attitudes.

While we provide a fairly simple encoding of the mental

attitudes in this work, the logic discussed here is expressive

enough to encode different notions of desires, goals and

intentions. For example, we can represent the semantics of

goals as proposed by Van Riemsdijk et al [7] in our framework.

As a future work, we aim to implement a simple fragment

of an agent programming language implementing declarative

mental attitudes in this language by means of the codifications

proposed in this work. We believe such an implementation can

be used to understand the notions of mental attitudes imbued

in the language.
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