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Abstract—Graphs are useful structures that can model several
important real-world problems. Recently, learning graphs has
drawn considerable attention, leading to the proposal of new
methods for learning these data structures. One of these studies
produced NetGAN, a new approach for generating graphs via
random walks. Although NetGAN has shown promising results
in terms of accuracy in the tasks of generating graphs and
link prediction, the choice of vertices from which it starts
random walks can lead to inconsistent and highly variable results,
specially when the length of walks is short. As an alternative to
a random starting, this study aims to establish a new method
for initializing random walks from a set of dense vertices. We
purpose estimating the importance of a node based on the inverse
of its influence over the whole vertices of its neighborhood
through random walks of different sizes. The proposed method
manages to achieve a significantly better accuracy, less variance
and lesser outliers.

Index Terms—graph learning, density based random walks,
NetGAN

I. INTRODUCTION

One of the main obstacles in artificial intelligence applica-
tions is to discover valuable hierarchical models that represent
probability distributions over the types of data encountered [1].
The most remarkable results in deep learning have involved
discriminative models, often used to map data into high-
dimensional, rich sensory input to a class label [2], [3].

Recently, there has been renewed interest in evaluating
graphs with machine learning due to a collection of practical
applications in which they can be employed. Nonetheless,
it is quite challenging to obtain a model that captures all
the essential properties of real graphs. As a particular non-
Euclidean data structure for machine learning, graph analysis
generally concentrates on node classification, link prediction,
and clustering [4].

Graphs can be utilized to describe numerous processes
across diverse fields, such as social sciences (social net-
works) [5], [6], natural sciences (physical systems [7], [8]
and protein-protein interaction networks [9]), knowledge
graphs [10] as well as other researching areas [11].

Regarding graph learning, Graph Neural Networks
(GNN) [12], [13] are deep learning methods which have been
widely applied due to its convincing performance and high
interpretability.

As a result of the complications on approximating many
intractable probabilistic computations that arise in maximum
likelihood evaluation and related strategies, and also due of
the difficulty of leveraging the benefits of piece-wise linear

units in the generative context, Goodfellow [14] has proposed
Generative Adversarial Networks (GAN) as a new generative
model estimation procedure.

GANs promoted significant advancements in the state-of-
the-art over the classic prescribed approaches like Gaussian
mixtures [15]. The method also achieved great results in
other scenarios such as image generation and 3D objects
synthesis [16]–[18].

Associating the concepts of both GNN and GAN, Net-
GAN [19] was proposed as one of the first methods to produce
neural graph generative models. The essential idea behind
it is to convert the problem of graph generation into walk
generation, employing random walks from a specific graph as
data input, and training a generative model using the GAN
architecture. The generated graph tends to preserve important
topological features of the original graph, including the initial
amount of nodes [4].

NetGAN approach offers strong generalization features,
as indicated by its competitive link prediction performance
on several data-sets. It can further be used for generating
graphs well-suited to capture the complex nature of real-
world networks [19]. On the other hand, in spite of the
above-mentioned aspects, the method scalability is related
as one of its drawbacks. NetGAN takes numerous generated
random walks to generate representative transition counts for
large graphs. Accordingly, instead of determining an arbitrary
amount of random walks, a probable enhancement of NetGAN
would be the adoption of a conditional generator capable of,
given a starting node, provide a more even graph walking
coverage and better scalability.

In this work we introduce a method to learn graphs through
short random walks originated from dense vertices. We specif-
ically emphasis on using short random walks because as the
size of random walks is increased, the proportion of number
of separate observations n to the number of predictors p tends
to decrease, resulting in over-fitting problem. This is more
evident when the training graph has small size. In order to
be able to use short random short walks, it is necessary to
start them from the vertices which provide more information
for the learning algorithm. Thus, we propose a new procedure
to compute the importance of a node based on the inverse
of its influence over all vertices in its neighborhood, through
random walks of varied sizes. Ultimately, the most important
nodes are used as the starting points.
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II. PROBLEM STATEMENT

NetGAN initializes its random walks from a set of ran-
domly chosen nodes. Although this approach is appropriate for
sampling from different regions of the graph, it also leads to
having different results with high variance after each training
session. This becomes more noticeable for random walks of
short length, producing less generalized trained models. We
propose a method for determining the best nodes for initial-
izing random walks instead of choosing them randomly. By
limiting the possible start points and adopting better random
walk initializers, our method reduces the variability of results
and enhances the learning accuracy.

A graph is denoted as G = (V,E,W ), where V is the set
of vertices, E represents the edges between the vertices and
W is the weight of edges. The problem of finding adequate
start points for initializing random walks is to find a set of
vertices that decrease the entropy of walks which itself results
in a higher information gain. A desired set of vertices should
achieve a better graph generation accuracy and a training
model which is less dependent on the random choice of
initializers.

In the problem of finding best random walk initializers,
there exist two main issues: (1) measuring the influence of
a vertex on a set of neighbors through random walks, and
(2) converting this influence to a metric which determines the
adequacy of a vertex for initializing a random walk. In the next
session, we will explain our proposed method for tackling each
of these issues.

III. METHOD

Good initializing points are important for learning the
structure of a graph through random walks. In a scenario when
the beginning vertex has limited access to its neighborhood
through different paths, the amount of information gained
while visiting the nodes through distinct random walks is not
significant. Instead of selecting the starting point randomly, we
follow the motivation of [20] for initializing the random walks
from graph centroids from density point of view. We assume
that if a vertex has several access to a group of graph vertices
through l − steps of random walks, this vertex is located in
a dense region of graph, providing better information for an
algorithm like NetGAN. On the other hand, if a vertex is in a
sparse region, it has access to less number of regions and as
a result supplies less information.

We follow the definition of neighborhood distance proposed
in [21], although, instead of using this distance for finding the
closeness of two nodes, we take advantage of the probabilistic
characteristic of this distance so as to find the dense regions of
the graph. First, the transition probability matrix is calculated
as following:

Pvi,vj =

{ wvi,vj
wvi,v1+wvi,v2+...+wvi,vm

(Vi, Vm)εEG

0 otherwise
(1)

where wvi,vm is the weight of the edge between vi and vm
and m is the number of neighbors of vi. Here, we assume that

all the weights are equal to 1, although the proposed method
is applicable for weighted graphs.

Having the transition probability, the distance between two
nodes is defined as

dvi,vm =
∑

l:vi vm

p(l)c(1− c)l (2)

where l is the length of random walk path from vi to vm, c
is the probability of returning to the initial state and p is the
probability of reaching from vi to vm.

Then the neighborhood random walk distance matrix on a
structure graph is

Rvi,vm =

l∑
η=0

P ηvi,vmc(1− c)
η (3)

Theorem 1. Given a graph G and a set of vertices V , if vertex
vi is located in a denser region than vj , initiating a random
walk from the first results in a lower entropy than the later,
carrying more information.

Proof. The entropy of an event is defined as

S = −
∑
i

Pi logPi (4)

For a sub-graph S = G(Vs, Es) the density of S is defined
to be

d(S) =
| Es |
| Vs |

(5)

If vertex vi is located in a denser sub-graph than another
vertex, say vj , vi has higher degree than vj . Based on the
equations 1 and the definition of density function in [21],
denser nodes have access to more other vertices through
distinct random walks, meaning that the sum of all degrees
in a dense region is higher than the sparse one. Therefore, if
m and n are number of neighbors of vi and vj respectively,
therefore

wvi,v1+...+wvi,vm > wvj ,v1+...+wvj ,vn ⇒ Pvi,vm < Pvj ,vn
(6)

From equation (2) we defined the distance between two
nodes as sum of the transition probabilities of a random walk
through all the middle edges. Thereby, considering (6)

l∑
η=0

c(1− c)η×
m∏
k=0

Pvi,vk <

l∑
η=0

c(1− c)η×
n∏

k′=0

Pvi,vk′ (7)

The influence of vertex vi on another vertex vm is defined
as

fvmB (vi) = 1− e−
dvi,vm

2σ2 (8)

where fvmB (vi)ε[0, 1].



The density function is calculated as following

fDB (vi) =
∑
viεV

1− e−
dvi,vm

2σ2 (9)

Based on equation (8), the influence metric is proportional
to the random walk distance between two nodes. Then the
lesser the sum of all the random walk distances of vi the
denser it is. Since we defined the distance as the probability
of successive walks, the entropy of a random walk is calculated
as

S = −
∑
i

fDB (vi) log f
D
B (vi) (10)

Consequently, the denser a vertex, the lower the distance
and entropy and as result the more information gain.

Notice that by accessibility we mean the probability of
walking on different paths through a random walk. If a node
is located on a sparse region, the probability of walking
on the same randomly chosen path is more than a denser
region. Also, we defined the density in terms of accessibility
through random walks of length l. Without this constraint, the
theory would be wrong (consider a dense node in a small
component that is disconnected from a large component or
perhaps connected to a large component via a single link
and consider a sparse node in the large component which is
connected to a node in a dense region).

IV. RESULTS AND DISCUSSION

In this section, we evaluate the quality of generated graphs
via random walks started from dense nodes in terms of link
prediction precision and ROC curve. We compare all the
results with those of NetGAN. For all the experiments, we
followed all the preprocessing steps of the original paper. The
CORA-ML [22] was used in all the conducted experiments.
As in [19], we treat the graph as undirected. We randomly
used one of the connected components of CORA-ML with
303 vertices and tested our algorithm against the performance
of original NetGAN when applied on the same graph.

In order to find the best nodes to start a random walk, we
first sampled 100 random walks from each vertex in order
to find the graph paths. After forming the transition and the
distance matrix, the densities were calculated and then the
vertices were ordered in ascending fashion. Since NetGAN’s
authors did not inform the motivation of the choice of the
configurations they used for analyzing the results, we first
tested the original NetGAN with diverse configurations. We
found out that the choice of batch size, length of random walks
and the initial vertices of random walk can significantly change
the results. The more the batch size and the higher the length
of the random walk, the higher the precision.

Although there is a high correlation between the perfor-
mance of NetGAN with batch size and random walk length
separately, we could not find any meaningful correlation
between batch size and random walk directly. This comes from
the fact that based on our tests setting a high random walk

length can compensate the small size of batch and vice-versa.
Furthermore, when the batch size is chosen to be small, the
choice of initial random walk points becomes more crucial. On
the other hand, if both random walk length and batch size are
set to be big, this may cause over-fitting. Thereby, we chose
the configurations that are proportional to the tests carried out
by authors of NetGAN (see Figures 1 and 2).

Figure 1. Edge overlap during the training for random walks of different
lengths.

Figure 2. The effect of random walk length on average precision and ROC-
AUC score

In order to evaluate the proposed method, we calculated the
vertex density for random walks of length equal to 2 to 4 and
batch size of 13, 19, 25, respectively. As it was mentioned
before, these configurations are proportional to the original
configuration used by authors in [19].

Unlike the random approach proposed in [19], our approach
limits the choice of vertices to those with a higher chance
of representing new information through each random walk.
As seen in Figure 3, for all the configurations, the proposed
method yields a higher accuracy and lesser variance for the
most part. As illustrated, the original method has a poor



performance for short random walks, although as the length of
walks is increased, the accuracy of original method becomes
closer to our method.

Figure 3. The accuracy for both randomly and density based chosen initial
vertices for several configurations (A: batch size = 13, random walk length =
2; B: batch size = 19, random walk length = 3; C: batch size = 25, random
walk length = 4;)

As shown in Figure 4, our method also results in a better
edge overlap during the training and a less average variance
through a variety of configurations.

Figure 4. The edge overlap for both randomly and density based chosen
initial vertices for several configurations(A: batch size = 13, random walk
length = 2; B: batch size = 19, random walk length = 3; C: batch size = 25,
random walk length = 4;)

We finally investigate the performance of our method in

terms of ROC-AUC score and average precision score. Based
on our results, the proposed method has better average link
prediction precision and ROC-AUC scores (see Figure 5).

Figure 5. The link ROC-AUC score for both randomly and density based
chosen initial vertices for several configurations (A: batch size = 13, random
walk length = 2; B: batch size = 19, random walk length = 3; C: batch size
= 25, random walk length = 4;)

Figure 6. The link prediction precision for both randomly and density based
chosen initial vertices for several configurations (A: batch size = 13, random
walk length = 2; B: batch size = 19, random walk length = 3; C: batch size
= 25, random walk length = 4;)

As shown by several different metrics, starting random
walks from dense vertices lead having better performance in



Table I
THE PERFORMANCE OF NETGAN IN TERMS OF AVERAGE ACCURACY DURING TRAINING, AVERAGE LINK PREDICTION AND AVERAGE ROC-AUC

SCORES FOR DIFFERENT THREE DIFFERENT CONFIGURATIONS OF DENSE AND RANDOM INITIALIZERS.

Batch size Random walk length Average training accuracy Average precision Average ROC-AUC
Random Dense Random Dense Random Dense

13 2 0.52 0.60 0.64 0.82 0.61 0.80
19 3 0.69 0.82 0.83 0.87 0.82 0.87
25 4 0.82 0.86 0.85 0.89 0.85 0.88
40 5 0.88 0.90 0.89 0.89 0.86 0.85

NetGAN. Also as illustrated in Table I, using dense vertices
result in significantly better average accuracy during the train-
ing phase, average link prediction precision and average ROC-
AUC scores. Using the current method, we managed to get
link prediction precision up to 92.8% and an average score
of 89%. Although the objective of the proposed method is
to improve the performance of NetGAN for short random
walks, we compared the performance of our method with
the random initializer approach. Based on our results, when
the size of random walks is increased (when the random
walk length becomes bigger than 6), the performance of the
random approach in terms of average ROC-AUC and average
link prediction precision is slightly better compared to our
method. Nevertheless, the performance of our method in terms
of average accuracy during the training phase is always better
independent of the size of the random walk.

Although this was not our intention in this research, there
are two possible ways to improve the performance of the
current method for random walks of even larger size than 6.
As we mentioned earlier, we sampled the graph using 100
random walks of size 8 for each vertices in order to find the
possible paths of the graph. This means that our sample is just
an approximation of the real graph paths and finding all the
paths of size l between every two nodes may return a slightly
better set of dense vertices and improve the performance of
current method for longer random walks. The second possible
way is to add a percentage of randomly chosen vertices to
the set of dense vertices and also choosing the random walk
paths based on the importance of each vertex in terms of its
density (for now the probability of each vertex to be chosen
is equal for all the vertices existing in the set of n most dense
vertices).

V. CONCLUSION

NetGAN uses a random strategy to choose vertices that
initialize the random walks. This approach raises the variance
in accuracy and precision of link prediction and compels
the use of more steps in the random walk to compensate
the possible poor initializers, thus getting more information
through larger walks.

In this paper we develop a new method dedicated to
determine better starting points so that NetGAN can get
less variant results and more precise predictions by learning

graphs via short random walks. Applying the probabilistic
distances, we demonstrated that if the random walks starts
from denser regions they may have lower entropy, culminating
in more information gain. All the vertices are ordered based
on its calculated density value. Since denser vertices have
an abundance of connections, starting a random walk from
those nodes minimizes the chance of reiterating through the
same path, and consequently provides more information for
NetGAN.

We tested our hypothesis with various configurations and
with multiple performance metrics including accuracy, ROC-
AUC score, edge overlap during the training and average
link prediction precision. Compared with NetGAN random
approach, our method had better results in all experiments.
More specifically, our results show that starting the random
walk from dense vectors significantly increases the accuracy
and link prediction precision. Using short random walks not
only decreases the training time, but unlike the large random
walks it makes the trained model less prone to over-fitting.
Nonetheless, the performance of the random strategy becomes
closer to our method as the length of random walks increases.
One possible future work could concentrate on the investiga-
tion of combining some randomly determined vertices with
the dense ones in order to have even better sampling strategy.
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