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Abstract—Authentication with username and password is be-
coming an inconvenient process for the user. End users typically
have little control over their personal privacy, and data breaches
effecting millions of users have already happened several times.
We have implemented a proof of concept decentralized OpenID
Connect Provider by marrying it with Self-Sovereign Identity,
which gives users the freedom to choose from a very large pool
of identity providers instead of just a select few corporations,
thus enabling the democratization of the highly centralized
digital identity landscape. Furthermore, we propose a verifiable
credential powered decentralized Public Key Infrastructure using
distributed ledger technologies, which creates a straightforward
and verifiable way for retrieving digital certificates.

Index Terms—authentication, self-sovereign identity, verifiable
credentials, distributed ledger technologies

I. INTRODUCTION

Many websites support Facebook and Google single sign-
on (SSO) solutions for end users. Unfortunately, this induces
a cost in terms of privacy. Often, the business interests of such
centralized service providers like Facebook and Google are not
aligned with the users’ interests. This may lead to the users’
data being used beyond their intention when initially sharing
it [1]. Users could still seek the benefits of the SSO customer
experience of not having to register at each web site, without
sacrificing their privacy.

The idea of Self-Sovereign Identity (SSI) aims at a solution
for this by decentralizing digital identities. The W3C stan-
dardization efforts on verifiable credentials and decentralized
identifiers serve this vision of SSI. Currently, distributed
ledger technology (DLT), such as Sovrin and Hyperledger
Indy, is favored for implementing SSI frameworks. With these
approaches, end users gain more privacy and more control over
their data, yet are able to have more trust online than we have
today. NIST defines authentication as verifying the identity of
a user, process, or device and authorization as the right or
a permission that is granted to a system entity to access a
system resource [2] [3].

The industry standards behind SSO solutions are OAuth 2.0
and OpenID Connect (OIDC) [4]. OIDC is an authentication
layer on top of OAuth 2.0 [5], an authorization framework,

as defined on the official OIDC website1. By default, there
is an OIDC Provider such as Facebook or Google providing
information about the identity holder towards an OIDC Client.
A self-sovereign version of OIDC is to ask the user for the
personal information without actually having a user account
at the SSI OIDC Provider. Thus, there is no central database
with personal data that the user has to rely on and that is prone
to be hacked.

Additionally, there are valid concerns about the security
of existing authentication systems. Even certain two factor
authentication methods are not secure enough for use cases
like online banking in 20192, since powerful frameworks like
Muraena and NecroBrowser are able to attack time-based one-
time passwords (TOTP) generated via software (e.g., Google
Authenticator) or hardware (e.g., RSA SecurID). Furthermore,
the widely used SMS tokens can be intercepted with SIM
swap attacks and used for replay attacks [6]. Data breaches
effecting millions of users already happened even at companies
like Facebook and Google, and end users typically have little
control over their data.

SSI can give the control back into the end user’s hands
and potentially help alleviate those issues of privacy concerns,
security, and data breaches. When combining SSI and OIDC
for user authentication, numerous possible approaches could
be followed. In this paper, we perform a thorough analysis for
finding a suitable method for our scenario.

SSI can facilitate user authentication and authorization
in multiple scenarios. Besides OIDC, we can also use SSI
technology for integrating with, extending, and modifying
existing digital identity standards like X.509 [7], and thus
delivering enhanced interoperability. There have been several
initiatives aiming to establish and improve online identification
processes. The Domain Name System (DNS) and Public
Key Infrastructure (PKI) rely on X.509 and the centralized
system of Certificate Authorities (CA) enabling websites to
authenticate themselves toward people browsing the Internet.
Unfortunately, the current PKI can induce high certificate
costs, and CA malfunctioning, like in the case of DigiNotar,
can cause tremendous problems.

1https://openid.net/connect/
2https://en.secnews.gr/182810/phishing-taftotita-parakampsi/
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The main contributions of this paper are (1) reviewing
SSI authentication methods, (2) implementing and evaluating
self-sovereign authentication for OIDC, and (3) analyzing the
benefits of an SSI-powered PKI.

In the following, we start by giving background information
on SSI, decentralized identifiers, and verifiable contracts in
Section II. In Section III, we survey related work in the field
of user authentication and PKIs utilizing distributed ledgers.
In Section IV, we present an overview about the design
of our approach. Section V gives an overview about the
implementation and in Section VI, we evaluate our approach
before concluding in Section VII.

II. BACKGROUND

Decentralizing the currently highly centralized digital iden-
tity ecosystem to deliver more control, privacy, and security
for the end users with blockchain has been on the agenda of a
select subgroup of startups, large organizations, and research
institutions alike.

SSI has started back in 2016 with the blog entry of
Christopher Allen3. Allen proposes 10 principles guiding the
design of identity systems focusing on the benefit of end users
serving as the ideological foundations of SSI. The 10 prin-
ciples, existence, control, access, transparency, persistence,
portability, interoperability, consent, minimalization, and pro-
tection, formulated by Allen emphasize privacy, independence,
and rights of the identity owner, also called identity holder,
alongside the interoperability and the transparency of identity
management systems. Furthermore, Allen is also a proponent
of decentralization. Examining the current identity ecosystem,
we could even deem Allen’s vision of self-sovereignty utopian.
There are startups, institutions, and foundations intending
to decentralize digital identity, such as the European self-
sovereign identity framework (eSSIF). The members of the
Decentralized Identity Foundation4 (DIF) include IBM, Mi-
crosoft, Mastercard, Sovrin, evernym, Jolocom, uPort, Auth0,
the Ministry of Citizen’s Services in British Columbia, and
others.

A. Decentralized identifiers

A Decentralized Identifier (DID) [8] provides a verifiable
and decentralized means for interacting with a DID Subject
controlling the DID. A DID can be resolved to a DID Doc-
ument, which can contain cryptographic material, verification
methods, and service endpoints. An example DID is:

did:sov:WRfXPg8dantKVubE3HX8pw

where did tells us that it is a DID, sov is the DID Method
Name for Sovrin DIDs, and WRfXPg8dantKVubE3HX8pw
identifies the DID subject. A DID by itself is not designed
to provide trusted personal information about the DID subject
on its own but to enable self-sovereignty of the holder and
facilitate privacy.

3http://www.lifewithalacrity.com/2016/04/the-path-to-self-soverereign-id
entity.html

4https://identity.foundation/

For example, with Sovrin, an identity holder like Jane Doe
is expected to have a different DID for each connection. As
Jane has a different DID when interacting with her bank from
the one she uses with an online shop, the bank and the online
shop cannot use Jane’s DID to correlate personal information
collected about her.

B. Verifiable credentials

DIDs let users authenticate themselves online in a privacy-
preserving and decentralized manner but in many use cases we
need to obtain trusted information about one’s identity to carry
out certain transactions, such as buying alcoholic beverages
online. When Jane is ordering her favorite wine in an online
store, she also needs to prove that she is legally an adult. This
can be achieved by using Verifiable Credentials (VC) which
complement DIDs by providing means for receiving trusted
identity information from end users, which is cryptographi-
cally verifiable.

In general, VC [9] provide us with a digital equivalent of
credentials we use in our daily lives like a driver’s license, a
passport, or a university degree in a secure, privacy-preserving,
and machine-verifiable manner.

VCs support selective disclosure, so end users can prove
claims about their identity without revealing more information
than they intend and need for performing a specific action. For
example, when Jane orders her preferred wine in an online
wine store, she only proves to the seller that she is older than
18 (assuming 18 to be the legal drinking age), which can be
achieved by generating a proof about this date of birth using
her passport VC. Furthermore, Jane does not even have to
share the exact date, as it is sufficient for her to generate a
zero-knowledge proof stating that she is older than 18.

VCs can express any information that a physical credential
contains, but the usage of digital signatures from both the
issuer and holder make them tamper-evident and more trust-
worthy to the verifier. We show an illustration of the VC data
model in Figure 1.

III. RELATED WORK

In this section, we discuss online authentication of end users
using OIDC and domains with the PKI.

A. User authentication

Authentication is often discussed together with authoriza-
tion. OAuth 2.0 is the current industry standard authorization
protocol, and also serves as the foundation of OIDC. OAuth
2.0 enables applications to gain access to already existing
accounts at another HTTP web service such as Facebook.
The authentication is thereby delegated to a third party that
is already in contact with the user. There are 4 roles in the
OAuth 2.0 model, namely (1) resource owner, (2) client, (3)
resource server, and (4) authorization server.

OIDC is then placed on top of the OAuth 2.0 authorization
layer in order to establish a standardized way of receiving
information about user accounts from identity providers (IdPs).

http://www.lifewithalacrity.com/2016/04/the-path-to-self-soverereign-identity.html
http://www.lifewithalacrity.com/2016/04/the-path-to-self-soverereign-identity.html
https://identity.foundation/
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Fig. 1. The Verifiable Credential (VC) role model includes an issuer, an identity holder, and a verifier. In addition, there is a publicly readable verifiable
data registry, which can be a blockchain, a distributed ledger, or any secure decentralized storage. For example, a municipal office (issuer) issues a passport
credential to Jane Doe (identity holder), who then presents it to her bank (verifier), when opening a new account.

VCAuthN for OIDC5 is a project from the government of
British Columbia using the DIDComm protocol between the
identity holder and the OIDC Provider. The OIDC Provider
takes the verifier role in the SSI terminology. DIDComm
is currently being incubated under the Hyperledger Aries
project6. The VCAuthN project integrates with both the im-
plicit and authorization code flows. VCAuthN relies on VC
presentations to extract attributes for the ID token containing
user information. The VC presentations are presented either
through a QR code or a deep link to the identity wallet mobile
app.

However, user authentication can be approached with a
focus on DIDs as well. The DID Auth document [10] writ-
ten by Sabadello et al. describes 10 different architectures
for DID-based authentication and relations of DID Auth to
other identity technologies like biometrics, OpenPGP [11],
WebAuthn [12], and OIDC. The authors propose DID Auth as
a possible local authentication method for an OIDC Provider
and as an alternative OIDC provider discovery method through
the service endpoint attribute of the DID Document
obtained through DID resolution.

The did-auth-jose library7 hosted in the GitHub reposi-
tory of the DIF provides decentralized authentication with
Javascript Object Signing and Encryption8 (JOSE) following
the OIDC authentication flow with self-issued ID tokens. The
did-auth-jose library needs access to a Universal Resolver9

instance for obtaining the cryptographic keys of DIDs for
authentication.

5https://github.com/bcgov/vc-authn-oidc
6https://github.com/hyperledger/aries
7https://github.com/decentralized-identity/did-auth-jose
8https://jose.readthedocs.io/en/latest/
9https://uniresolver.io/

The DIF has also created a specification of DID authen-
tication for OIDC10. In this variant, the OIDC Client does
not rely on a preconfigured OIDC Provider but uses a Self-
issued OIDC Provider (SIOP). The proposed SIOP DID AuthN
method does not utilize the Authorization Code Flow, as
integrating DID Auth with an OIDC Provider is deemed un-
wanted for achieving maximum decentralization and privacy.
On the other hand, requiring OIDC Clients that implement the
SIOP flow makes it more difficult to adapt SIOP DID AuthN.
Nevertheless, SIOP is part of the OIDC specification.

Grüner, Mühle, and Meinel have also proposed a possible
way for integrating OIDC with two SSI platforms [13], namely
Jolocom and uPort. The architecture of their solution includes
a trust engine component, which determines whether the issuer
of a credential is trustworthy. This is a notable difference
from our implementation11, as with Sovrin, we do not have to
rely on a difficult to verify central trust engine for evaluating
the creditworthiness of a claim, as the Sovrin foundation
takes the necessary steps to ensure that all Sovrin issuers
are legally entitled to issue the credentials they are offering.
However, Grüner et al. address interoperability by introducing
an SSI broker component, which handles the complexity of
interacting with various platforms, like Jolocom and uPort.

B. Blockchain-secured Public Key Infrastructure

Publications, patents, and whitepapers also exist that de-
scribe blockchain and distributed ledger applications for man-
aging X.509 certificates.

Won [14] imagines the implementation of a blockchain-
based PKI, which enables faster certificate verification com-

10https://github.com/decentralized-identity/did-siop
11Our implementation is publicly available at https://github.com/TU-Berl

in-SNET/DIMS-openid-ssi login

https://github.com/bcgov/vc-authn-oidc
https://github.com/decentralized-identity/did-auth-jose
https://jose.readthedocs.io/en/latest/
https://uniresolver.io/
https://github.com/decentralized-identity/did-siop
https://github.com/TU-Berlin-SNET/DIMS-openid-ssi_login
https://github.com/TU-Berlin-SNET/DIMS-openid-ssi_login


pared to the current state-of-the-art using X.509 certificates
issued by certificate authorities for managing public keys for
IoT devices. Won argues that the current PKI infrastructure
is not suitable for IoT devices because (1) the consequences
of failures in terms of security and (2) the difficulties with
governing certificates due to the lack of standard protocols for
managing the life cycle of public keys. Won argues that if the
secret keys of a root CA are compromised by an attacker,
then all entities must update their trusted root certificate
lists accordingly. This was the case, for example, with the
DigiNotar hack in 2011 [15].

Certificate Transparency12 (CT) provides a mechanism for
reducing these risks by extending the current CA and PKI
architecture. CT proposes a concept that combines three pub-
lic services, consisting of a certificate log, log monitoring,
and certificate auditing. These public services can run in a
decentralized fashion by multiple providers, e.g., CDNs, ISPs,
browser vendors, or DNS providers. Since 2018, browsers
and search engines started to include additional certificate
verification mechanisms, such as CT. Stark et al. show in [16]
that CT has been significantly adapted, but they also point
out the danger that end users react incorrectly to, e.g., system
warnings and thus the added value of CT is at risk. Another
mechanism to strengthen the current CA infrastructure is the
introduction of Extended Validation13 (EV) certificates which
demands the verification the entity’s legal identity prior to
granting a certificate. Only a subset of the current CAs are
allowed to implement this approach.

Won [14] further explains that Online Certificate Status
Protocol14 responders can easily be overloaded due to the
computationally intensive nature of generating responses, thus
it is relatively easy to carry out successful distributed denial-
of-service attacks on them. Won aims to replace CAs with a
blockchain network based on Emercoin15 utilizing a Proof-of-
Stake consensus algorithm.

Originally, Blockstack [17] envisioned a global naming and
storage system using the Bitcoin blockchain. In 2016, Block-
stack served as a PKI system using Namecoin for its 40,000
users with over 33,000 entries and 200,000 transactions.

Blockstack PBC has then filed a patent application [18]
for a decentralized global naming system using a distributed
hash table for realizing a virtual blockchain serving as a
tamperproof registry for a global naming system.

DIDs can also be married with a DNS like naming system.
The draft version of a DID method specification for Web16 is
already available, which empowers DIDs by linking them to
meaningful information behind already existing domains, thus
helping mass adoption of the technology. An example is:

did:web:w3c-ccg.github.io.

12https://www.certificate-transparency.org/
13https://cabforum.org/extended-validation-2/
14https://tools.ietf.org/html/rfc2560
15https://emercoin.com/enm
16https://w3c-ccg.github.io/did-method-web/

IV. CONCEPT AND DESIGN

A. Integrating the OpenID Connect standard claims with self-
sovereign identity

As there is a predefined set of claims17 for OIDC (see
Table I, all of them are strings, except for * verified which
are booleans, the address which is a JSON object, and the
updated at which is a number), we should include these
attributes into the OIDC schema and credential definitions. The
claims include an identifier named sub, and several personal
claims such as name, gender, phone_number, email,
picture, website, and address, birthdate.

Phone number and email can be verified. As phone numbers
are in general linked to physical identities, we could use them
for trusted identity verification.

For supporting the OIDC standard claim set in a trusted
manner, all we need with Hyperledger Indy is a SCHEMA and
CLAIM_DEF including all attributes. In this scenario, the end
user does not even need an account at the SSI OIDC Provider,
and would be able to log in with credentials from any issuer,
e.g., via using the Sovrin network or others.

B. DID Auth with OpenID Connect

For authorization with our SSI-powered OIDC provider, we
can rely on an authcrypted, i.e., a public key authenticated
encrypted and DID-signed message. Thus, we propose an
additional VC-based authentication factor, where the requested
VCs contain the necessary user information. There are three
main benefits for the aforementioned process. First, the user
data sent to the relying party is retrieved directly from the
user. Second, we have the opportunity to gather additional
information about our user. Third, VCs can establish more
trust in user account information.

Receiving and verifying data from the holder in the form of
a proof request would be a benefit from a trust, privacy, and
flexibility perspective. If the verifier receives a proof, where
the attributes are signed by a specific government, she could be
virtually sure that the holder’s real identity is revealed. Yet,
the holder would also have the chance to send self-signed
credentials for privacy reasons. Furthermore, this would also
enable any Sovrin issuer to be part of the SSI OIDC Provider,
thus help us achieving the goal of decentralizing identity, and
giving end users a real opportunity to choose their preferred
carrier from a much larger number of candidates than they

17https://openid.net/specs/

TABLE I
LIST OF OIDC STANDARD CLAIMS.

sub name given name
family name middle name nickname
profile picture website
email email verified gender
birthdate zoneinfo locale
phone number phone number verified address
updated at

https://www.certificate-transparency.org/
https://cabforum.org/extended-validation-2/
https://tools.ietf.org/html/rfc2560
https://emercoin.com/enm
https://w3c-ccg.github.io/did-method-web/
https://openid.net/specs/


have today. Still, application developers would only need to
integrate the SSI OIDC provider with their web services, and
yet they would be able to support login with accounts from
more than one IdP.

A design decision about DID authentication for OIDC is if
we conduct the VC proof and DID exchanges in one or two
steps. Note, that a single step VC exchange can only be done
once the SSI OIDC Provider has already established a pairwise
DID connection, i.e., unique DIDs and related keys are already
exchanged, with the end user, or if both parties have a public
DID written on the distributed ledger. Furthermore, the SSI
OIDC Provider also needs to know the DID of the user
beforehand, so the proof request can be sent to the holder.
For the one-step proof exchange communication between the
holder and verifier can be encrypted and decrypted with the
public and private keys of their DIDs.

1) Authentication via an SSI mobile wallet app: We need
three things when using Hyperledger Indy: (1) an established
pairwise connection between the IdP (issuer) and the user
(holder), (2) knowledge about matching VC types, and (3)
knowing which user we are authenticating. A pairwise connec-
tion between the SSI IdP and the holder can be established via
scanning a QR code displayed on the SSI IdP’s website with
an SSI smartphone wallet app. For starting the authentication,
we could use HTTP cookies or a challenge response based
authentication scheme via scanning a QR, provided that no
previous session information about the DID of the user exists.
Then the identity holder receives a proof request and a push
notification and sends the proof to the SSI OIDC provider
upon consent by using biometric identification functions of the
smartphone. Then the IdP can forward the received attributes
in the form of a JSON Web Token to the relying party.

C. A distributed ledger-based Public Key Infrastructure and
Domain Name System

A public permissioned ledger like Sovrin is a promising
candidate for a PKI, as the number of entities who need write
access is orders of magnitude smaller than those with read
access. The nodes running the consensus protocol need to
be widely trusted organizations, for example the most trusted
SSL certificate authorities (CA). Ordinary CAs can also have
write access to the ledger. Mir-BFT [19] is capable of ordering
more than 60000 signed Bitcoin-sized transactions per second
on a widely distributed 100 nodes. Nowadays, web browsers
rely on a predefined set of trusted root certificates. With a
decentralized PKI, we could use the genesis transaction of
a public permissioned ledger for initial verification of the
authenticity of the retrieved certificates.

1) NYM transaction-based PKI: The creation of a DID
known to the Ledger is an identity record itself, also called a
NYM transaction. A NYM transaction can be used for creation
of new DIDs that is known to a ledger. As NYM ledger
transactions of Hyperledger Indy include both a verkey and
an optional alias field, we can use them for binding a human
readable name and a public key together for a specific DID. A
DID verkey is a public key for an Edwards-curve Digital

Signature Algorithm (EdDSA) signature scheme using SHA-
512 hashing with the Ed25119 curve, i.e., an elliptic curve
offering 128 bits of security, also suitable for generating X.509
certificates. Revocation of X.509 certificates can be supported
by updating NYM transactions and the respective DIDs.

2) Verifiable-credential-inspired PKI: VCs are not stored
on the public ledger but are held privately in the wallet of
the identity holder with Hyperledger Indy. If websites would
hold X.509-structured VCs with revocation support privately,
we would not necessarily improve the transparency of the
current PKI system, but we would still have a standardized
way for obtaining the public keys of certificate authorities.
Nevertheless, public access to proofs of VCs containing the
same information as X.509 certificates is not an absolute must.
It would be sufficient to have the public keys of certificate
authorities on the Indy Ledger in NYM transactions, creating
credential definitions recorded in CLAIM_DEF transactions
based on a X.509 certificate SCHEMA without making proofs
publicly available.

V. IMPLEMENTATION

We have a proof-of-concept implementation of the SSI
OIDC Provider, and we have identified essential libraries for
realizing the VC-based PKI.

A. OpenID Connect provider with verifiable credential-based
DID Auth

For implementing the preferred SSI and OIDC integration
we use the Indy Edge Agent API18, an extended Node.js OIDC
Provider, a test OIDC Client mocking the functionality of an
online shop. Furthermore, a mobile SSI wallet application is
also an important part of the workflow. Figure 2 shows the
implementation and the login process. In the following, we
describe each component.

1) Indy edge agent API: We have an own Indy edge agent
REST API, that wraps the functionality of the Indy SDK,
and is deployable on a server, where clients can use the
functionality of the Indy SDK by using simple REST calls.
Our Indy API can connect to any Indy ledger including the
Sovrin MainNet. The API is written in Node.JS, and it also
needs a MongoDB instance to serve as a persistent storage for
identity wallets.

2) SSI OpenID Connect provider: For our proof of concept
implementations of the SSI OIDC Provider we can base our
solution on already existing, certified software. When working
with OIDC we have several open source implementations
to choose from. We have selected a certified Node.js OIDC
Provider19 with a 100% successful test matrix for token
signing and verification on jwt.io, which is provided by the
underlying JOSE library.

Our current implementation is using the implicit flow,
but this can be changed relatively easily by configuring our
selected OIDC Provider for the authorization code flow.

18https://github.com/ID-Chain/IEA-API
19https://github.com/panva/node-oidc-provider

https://github.com/ID-Chain/IEA-API
https://github.com/panva/node-oidc-provider
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Fig. 2. Sequence diagram of integrating OIDC-Authorization-Code-Flow-based SSO with SSI. In this variant, the DID authentication is performed in a single
step with the proof exchange, where the sent proof contains the attributes for the id token in the form of a VC. First, the user initiates the login on a website.
Then, the website (OIDC Client) redirects him/her to the SSI OIDC Provider. If the user does not yet have a connection, then this can be established by
scanning a QR code with the identity wallet mobile app. The OIDC Provider then sends a proof request to the end user (identity holder). Next, the identity
holder can decide whether to respond to the proof and thereby perform the login.

3) SSI mobile wallet app: We have developed a React
Native Android app that serves as an SSI identity wallet for
the identity holder using Hyperledger Indy. The React Native
app relies on the Java wrapper for the Indy SDK. The app
can establish pairwise connections with DIDs by scanning a
connection offer QR code, and can acquire and store VCs.
Furthermore, the app can also send proofs to verifiers upon
receiving a proof request and giving consent from the identity
holder.

4) OpenID connect client: In order to test our prototype,
we have created a website, where the user logs in with his/her
SSI credentials. The website then redirects the user to the
SSI OIDC Provider, where the authentication is performed.
If the process succeeds, then the client website receives the
ID token. Currently, the implicit flow is used, where the client
application receives the ID token as part of the redirected URL.

Currently, we use the Node.js OIDC Client with the implicit
flow, which enables easy integration with OIDC Providers.

B. Towards a distributed-ledger-powered PKI

Attributes of an X.509 certificate can easily be incor-
porated in a VC as well instead of the Abstract Syn-
tax Notation One (ASN.1) structure. In case of Hy-
perledger Indy, the CLAIM_DEF would need to include
most attributes in the certificate explicitly. The information
found in the Certificate_Signature_Algorithm
and Certificate_Signature attributes would here be
provided by the values found under the reqSignature field.
In order to enable widespread usage of VC-based certificates
we would have to integrate them with TLS and SSL libraries
such as OpenSSL20 and Rustls21.

20https://www.openssl.org/
21https://docs.rs/rustls/0.17.0/rustls/

https://www.openssl.org/
https://docs.rs/rustls/0.17.0/rustls/


VI. EVALUATION

There are various aspects for comparing blockchain and
distributed-ledger-based authentication methods and central-
ized approaches for both the PKI and end user authentication
scenarios. In the following, we perform a qualitative evalua-
tion. Future work is to perform simulations and experiments
regarding the real-world performance of our methods.

A. Distributed-ledger-based PKI

As Won [14] wrote, there is no standard protocol for man-
aging the life cycle of X.509 certificates. A major advantage of
a distributed-ledger-technologies-powered PKI system is more
transparency and interoperability, where we could easily find
all existing X.509 certificates and domain names on a public,
permissioned, and tamper-proof registry.

A question to investigate is, if we are able to support the
storage of all X.509 certificates on the ledger, or just the
certificates of CAs. BuiltWith detected more than 145 million
SSL certificates22 as of March 2020. If we assume that all
certificates will get renewed every 3 months, this would still
result in an average transaction throughput of less then 17
transactions per second. If our distributed ledger supports
10,000 transactions per second, than we can expect our system
to be able to record more than 124.5 million SSL certificates
in less than 3.5 hours.

However, we still need more proof, research, and innova-
tion to see if a distributes-ledger-based PKI can be a better
alternative compared to the state-of-the-art. Nonetheless, the
Sidetree protocol, platforms like Hyperledger Fabric, high
throughput consensus algorithms like Mir-BFT [19], and the
Sovrin architecture capable of serving a large volume of read
requests by introducing observer nodes [20] all point in the
direction that a distributed-ledger-based PKI system will soon
become a viable solution at global scale.

B. Self-sovereign OpenID Connect Provider

We identify four major advantages of the SSI OIDC
Provider, namely (1) interoperability, (2) privacy, (3) trust, and
(4) richer client data.

First, it enables SSO with any Sovrin VC following the
standard OIDC claims schema, yet the OIDC client only has
to integrate with one OIDC Provider. This is a benefit for
OIDC clients, as it is impractical for the user to manually
select from a possibly high number of IdP, and it also reduces
development efforts. For example, the client has to integrate
with Google, GitHub, Microsoft, Yahoo, and Amazon logins
individually, and then the user also has to pick his/her preferred
choice. Integration overhead and the list of different login
options to display for the user scale linearly in the number of
OIDC Providers on the OIDC Client side. But with our SSI
OIDC Provider, it would always just be one, yet the number
of different accounts supported could be arbitrarily high.

Second, as end users get a proof request about the data
they disclose, they have more control over what personal
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information they share, and the whole process becomes more
transparent. Furthermore, the identity wallets of end users are
stored by themselves on their preferred devices, and not by
third parties. The SSI and OIDC integration protocol from
DIF leveraging self-issued ID tokens offers the most possible
privacy, however, it requires OIDC clients to support a special
feature. Our proposed SSI OIDC provider does not require any
non-default feature from OIDC clients.

Third, VCs with Sovrin come from trusted issuers, which
are onboarded by the Sovrin foundation. As the Sovrin ledger
is permissioned, schemas and credential definitions can be
written on the Sovrin MainNet only by trustworthy entities.
This guarantees that verifiers can trust Sovrin credentials.

Finally, regular OIDC Providers might not support all
attributes of the standard claim set according to the OIDC
specification. However, if such attributes would be backed by
VCs, then an SSI OIDC provider could serve its clients with
a rich claim set if the user owns matching credentials.

VII. CONCLUSION

Decentralizing authentication with SSI benefits the end user
in IoT, PKI, and OIDC scenarios.

Marrying OIDC with SSI and retrieving the account claims
as VCs not only gives more freedom to end users, but also
enables login with a single SSI OIDC provider without an ac-
count by presenting any matching VC. Possible next steps for
our SSI OIDC provider prototype would be providing support
for login using VCs and DIDs from more SSI platforms like
Jolocom and uPort, and not only from Sovrin and Hyperledger
Indy.

The result of our analysis is, that in the IoT PKI scenario,
the deployment of a permissioned ledger could serve as a
publicly verifiable registry for the necessary cryptographic
public data. Such data include X.509 certificate metadata
needed for verifying verifiable credentials.

In conclusion, the SSI movement has already contributed
several feasible variants for authentication with OIDC, includ-
ing our proof-of-concept SSI OIDC provider. Furthermore, a
distributed ledger-based PKI for IoT devices could technically
become viable at scale.
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