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Abstract—It is widely accepted that Ethereum mining is
highly centralized. Nonetheless, centralization has been mostly
characterized by exclusively looking at the influence that inde-
pendent miners or mining pools can have over the network.
Moreover, models of mining behavior assume that miners are
either unrelated or only relate via mining pools under highly
structured and transparent agreements. If these assumptions and
the predictions they entail were to be completely accurate, there
would not be any evidence of on-chain transactions between min-
ers, other than the ones expected from mining pool payouts. By
looking at on-chain transactions between miners in the Ethereum
Network we find that aside from the payouts from mining
pools to small miners, there are also transactions that define
relationships between mining pools, independent miners and
between independent miners and mining pools. Furthermore, by
characterizing the topology of the network of miner transactions,
we find the emergence of highly connected clusters that control
significant amounts of hashing power and exhibit relationships
in the opposite direction of what theoretical models predict. This
more nuanced characterization of mining centralization can help
identify network vulnerabilities and inform protocol redesigns.

Index Terms—blockchain, ethereum, network analysis

I. INTRODUCTION

A. Evolution of mining centralization

Blockchain technology was first introduced with the Bitcoin
network as a way to allow transactions between individuals
without the need for trusted intermediaries to validate or store
funds [1]. To guarantee this, it relies on public key cryptog-
raphy to enable users to store and spend funds safely. Ad-
ditionally, it introduced a decentralized Proof of Work (PoW)
mechanism where independent validators (miners) compete for
the right to validate transactions by solving a computational
challenge. They then follow a protocol to reach a consensus on
the validated set of transactions, and the miner that performed
the validation is rewarded with a fee.

This trustless and permissionless model was intended to
incentivize anyone to become a miner and create a system
that was not dependent on a small number of centralized
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institutions, with the hope of making it more resilient and
inclusive. Nonetheless, the specific design of the PoW mech-
anism quickly lead to a specialization in mining where only
people with access to specialized hardware and low electricity
costs could profitably participate in the mining process. By
2016 8 large Bitcoin miners controlled about 90% of the
mining (hashing) power in the network [2].

With the hope of building on top of Bitcoin’s design and
improving many of its features, including making it more de-
centralized, the Ethereum Network was launched in 2015. To
avoid concentration, Ethereum designers tried to democratize
access to mining by introducing a hashing algorithm that made
it more challenging to produce specialized hardware to mine
[3]. Although this allowed independent small miners to partici-
pate in higher proportions, other forms of mining consolidation
emerged. In particular, given that smaller miners had less
chance of winning the computational challenge, it was in their
interest to find ways to mitigate their risk by forming mining
pools. Mining pools aggregate miners that contribute hashing
power to find the solution to the computational challenge.
Once they collectively find a solution to the computational
challenge, they share the fee proportionally to the amount of
hashing power each miner contributed. Albeit mining pools
are made up of independent miners, they are centrally operated
and, in many ways, can be considered as a single miner that
concentrates substantial hashing power [4].

B. Issues with mining centralization

The concentration of mining power is problematic, not only
because it undermines the values of equal and open access that
blockchain systems promote but also because it makes them
more susceptible to random failures, targeted attacks, and mis-
behavior from bad actors. In particular, a high concentration
of mining power can allow miners to manipulate the system to
double-spend funds [5]; selfish-mine to earn disproportionate
rewards [6]; delay transactions and take advantage of smart
contracts [7]; or even censor specific transactions [8]. Some
attacks like double-spending [5] require the control of 51% of
the mining power, but others can be performed with less than
20% [6].978-1-7281-7091-6/20/$31.00 ©2020 IEEE
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C. Relationships between miners

Disproportionate control of mining power (centralization)
does not exclusively take the form of large miners or min-
ing pools controlling significant amounts of hashing power;
coalitions of miners, mining pools, or a combination of both
can combine their hashing power to collude and potentially
undermine Blockchain-based systems in the ways mentioned
above. Coalitions of this sort can be permanent or ad-hoc and
are probably a more pressing threat than the straightforward
abuse of power that might be exerted by single large miners
or mining pools. Vitalik Buterin, one of the designers behind
Ethereum, stated in 2017 that Blockchain protocols should be
designed ”in such a way as to reduce the incentive for valida-
tors/miners to engage in one-to-one ’special relationships’”[9].

Despite miner relationships being a pressing concern for
protocol designers, these have been understudied in academic
literature. Existing analysis assume that miners are either un-
related or only relate via mining pools with a well-defined and
transparent structure. If these assumptions and the predictions
they entail were to be completely accurate, there would not
be any evidence of on-chain transactions between miners,
other than the ones expected from mining pool payouts. This
paper contributes to the existing literature by analyzing on-
chain transactions between miners and uncovers economic
relationships that are neither assumed or predicted by existing
mining models. By applying network analysis in the way it
has been utilized to examine banking systems, we characterize
economic relationships between miners and provide:

• Key topological metrics of the network formed by trans-
actions between miners.

• Identification of the roles assumed by different miners in
this network.

• Description of clusters with highly connected miners.
• Identification of implicit dependencies derived from these

relationships and the vulnerabilities they might create.
We hope our characterization can help researchers formulate

better models of mining behavior and inform improvements in
PoW protocols.

This paper is divided into nine sections. The current section
introduced our research problem and highlighted our spe-
cific contributions; Section 2 surveys related work; Section
3 presents our methodology; Sections 4 to 7 present our main
results; sections 8 and 9 offer a discussion and present some
conclusions.

II. RELATED WORK

A. Network analysis in Blockchain

Existing network analysis of Blockchain systems has mainly
focused on analyzing fundamental properties of the over-
all transaction network, de-anonymizing entities, or tracking
malicious activity. Initial approaches like [10], [11] perform
statistical analysis summarizing the transaction history of the
network in its initial four years. Some more recent work [12],
[13] has extended this analysis using a larger dataset and
leveraging on better frameworks and computation capabilities

to calculate other properties of the transaction graph and
their evolution. Research has also focused on analyzing the
evolution of transactions by comparing transaction data with
external data (i.e., geographic, pricing, entity labels, forum
sentiment analysis) [14], [15] and showing that transaction
behavior is consistent with traditional monetary theory. As
for community analysis, the most recent literature focuses on
applying Machine Learning techniques to cluster addresses
into users or assign them to specific classes (e.g., exchanges,
gambling, mining) [16]–[18]. Some other literature concerned
with tracking malicious activity uses specific clustering heuris-
tics to follow the transactions of specific accounts [19], [20].

More recent approaches have explored the network structure
of ERC20 tokens in Ethereum [21] and compared it to that of
social networks, while other work has analyzed the transaction
activity associated with different types of smart contracts [22].

B. Understanding the mining ecosystem

Existing literature has attempted to understand blockchain
mining ecosystems, both empirically and theoretically. On
the empirical front, the approaches have been limited to
either quantifying the mining power controlled by different
individual miners or pools or by looking at the activity of
the Peer-2-Peer (P2P) network that connects miners. Initial
approaches by [23], [24] calculate the number of Bitcoins
mined by different mining operations to estimate the hashing
power controlled by each of them and effectively conclude that
Bitcoin mining is centralized in very few miners and mining
pools.

More recent approaches, such as [25], [26], have analyzed
the underlying P2P network that connects both Bitcoin and
Etherum miners to evaluate its activity, the geographical
location of different nodes and their level of connectivity.
They conclude that mining operations are highly centralized in
China with significant traffic activity originating in the US and
EU and that albeit Etherum is more geographically dispersed,
both miner networks exhibit a high degree of geographical
clustering and concentration of mining power.

Theoretical approaches to understanding the structure of
mining ecosystems have consistently taken a dichotomous
approach that tries to explain the emergence of mining pools
from independent miners. The models offered by [27], [28]
show that given certain starting conditions and structural
technology parameters, mining ecosystems will tend to evolve
from independent miners to coalitions of mining pools. Simi-
larly, [29] models Bitcoin mining as a market with oligopolis-
tic competition where cost asymmetries can lead to a small
number of participants to control most of the mining power.
Finally [30] models mining pools as mechanisms for risk-
averse miners to share risks and shows that given specific
initial conditions in the ability of pools to capture loyal,
independent miners, mining pools will grow, but there will
be endogenous mechanisms that limit their growth.



C. Intermediary relationships in financial networks

Although there is no consensus among regulators about how
to categorize the role of miners, some researchers argue that
they play a role akin to that of banks or other intermediaries
in traditional financial systems. Under this interpretation, it
is useful to see how the financial literature has explored
intermediary relationships in financial systems. [31] studied
the topology of the Federal Funds market in the US and found
that relationships between banks are predictive of the way
they specialize as either primarily borrowers or lenders and
the interest rate they charge.

More recent work has focused on understanding specific
network properties of interbank systems, in particular, the
extent to which the system can be controlled by influencing
a subset of banks. In this line of work, [32] explored the
controllability of a section of the European interbank lending
system and found that if the network is analyzed at large
enough time scale, the percentage of nodes required to drive
(control) the system is less than 10%. They also found that
the system’s potential drivers tend not to be the largest lenders
or those that have most connections.

As shown above, existing attempts to understand mining
ecosystems are limited to analyzing very coarse relationships
(e.g., geographical location) or highly structured and limited
ones (e.g., mining pool agreements). We believe that by
applying some of the network analysis methods that have been
used to study financial networks, we will be able to uncover
more functional relationships between Ethereum miners to
understand the structure of the ecosystem better.

III. METHODOLOGY

To uncover economic relationships between miners, we
parsed on-chain transaction data to extract transactions that
only involved miners and defined a directed graph. A node
in the graph represented a miner, and weighted directed edges
were defined between two nodes if there had been transactions
going from one to the other. We then used this graph to calcu-
late centralization properties, identify relationship clusters, and
analyze the flow of transactions between miners. We present
the data and formal graph definitions below.

A. Data

To explore transactions between miners in the Ethereum
Network, we used the dataset hosted in Google’s Big Query
platform, which parses data from the Ethereum blockchain and
offers a SQL interface to explore block and transaction history.
We queried all 8,863,264 blocks generated between the launch
of the system on July 30, 2015, and November 3, 2019, to
obtain all the addresses of miners that had mined those blocks
and found that in this period 4,895 different addresses were
involved in mining blocks. We then queried all 574,423,867
transactions within these blocks to extract those transactions
where both the sender and receiver addresses corresponded
to miners that had validated blocks in this same period. The
method above led us to extract 292,882 transactions where
only miners where involved. In addition to the BigQuery data

used to extract block and transaction information, we used a
time series of the daily exchange rate between Ether (ETH)
and US Dollars (USD) provided by Etherscan for the relevant
study period [33]. We used the ETH to USD exchange rate to
convert all the relevant transactions to their value in USD at
the time the transaction happened to make the value between
transactions more comparable.

B. The Miner Transaction Network

Given the lack of exact dates on our dataset we analyze in-
cremental slices pk of the 8,863,264 blocks with k = 1, ..., 51,
where every slice gets B̂ blocks added, where B̂ is the
average number of blocks mined every 30 days. For each
slice pk we looked at the miners that mined blocks in that
period as well as the miner transactions that took place. For
each period pk, we define a directed graph Gk = (Vk, Ek)
where Vk is the set of all miners (vertices) and Ek is the
set of all ordered tuples (mi,mj)k (edges) where mi,mj are
miner addresses and there has been at least one transaction
from mi to mj in the blocks between the genesis block and
the block |pk| . In addition, we define an attribute function
A((mi,mj)k) : E → R+0 × R+0 that maps every edge in
the graph (mi,mj)k to a tuple (vkij , n

k
ij) where vkij is the total

value (in USD) of all transactions between mi and mj in the
period |pk| and nk

ij is the total number of transactions between
these two miners in that same period. We call these edges
(mi,mj)k that summarize all the transactions in one direction
between two miners an ’economic relationship’ from miner i
to miner j.

IV. CONCENTRATION IN ETHEREUM MINING

For the final aggregation of the network k = 51, we found
that the distribution of blocks mined per miner is highly
unequal and follows a power law distribution. The number of
blocks mined per miner has a mean of 1,778 but a median of 4.
Furthermore, the distribution is highly unequal with the Gini
Coefficient of 0.991, meaning that 1% of the miners active
in the network mined over 99% of the blocks. To evaluate
concentration from a different perspective, we calculated the
Herfindahl–Hirschman Index (HHI), which is used to measure
the concentration of a given industry and is calculated as
follows:

HHI =

n∑
i=1

s2i

Where si is the percentage market share of the ith company
in the industry, an HHI very close to 0 represents a market
with no concentration, while an HHI of 10,000 is a fully
concentrated market with one monopolistic firm. For the final
period of analysis (k = 51), we found the HHI to be 846
for the Ethereum mining ecosystem. This value is higher than
the HHI for the US banking industry in 2018 (523-617) but
lower than what US regulation considers to be a concentrated
industry (above 1500) [34]. As Figure ?? shows, after a slight
hike in concentration in the first 5-10 periods of analysis,



the concentration of mining in the network has maintained
relatively stable levels.

Fig. 1. Evolution of mining concentration indicators.

The top 10 mining addresses in the whole aggregate period
mined 76.5% of all blocks. According to the way addresses are
identified by etherscan.io, all of the top 10 mining addresses
correspond to mining pools (see Table I).

TABLE I
PERCENTAGE OF BLOCKS MINED BY TOP 10 MINING ADDRESSES IN

ETHEREUM BETWEEN JUL 2015 AND NOV 2019

Miner Percentage of Blocks mined
Ethermine 18.9%
Nanopool 10.9%

DwarfPool1 10.5%
Spark Pool 9.7%

F2Pool 9.0%
F2Pool: Old 5.4%

MiningPoolHub 5.0%
EthPool 2 3.1%
ethfans.org 2.1%
Cointron 1 1.8%

V. NETWORK OF TRANSACTIONS BETWEEN MINERS

A. Network Size

When analyzing the final aggregate period for the miner
transaction network (k = 51), we found a total of 5, 293
economic relationships between miners. Out of the 4, 895
miners that mined blocks in that period, 2, 899 (represent-
ing 96% of the historical hashing power) have at least one
economic relationship with another miner. The density for
this network, measured as the number of existing edges over
the total number of possible edges, is 0.0213%. Even though
this density is lower than that of the Interbank Federal Funds
market in the US, which is around 0.7% [31], it is at least

Fig. 2. Evolution of mining share for the top 10 miner addresses in the
Ethereum network.

2, 325 times greater than the density of the transaction graph
for all of the Ethereum Network1.

Fig. 3. Economic relationships (transaction connections) ranked by transaction
value

We found that the 5, 293 economic relationships established
over the whole analysis period amount to $92, 115, 984 US
Dollars transacted between miners. As shown by Figure 3, the
distribution of value transacted in the economic relationships
for the whole period, follows a power law distribution. The
average value transacted in a relationship is of $17, 403, while
the median is $136. The Gini coefficient of this distribution
is 0.98. The value transacted by relationships from or to the
top 10 miners amounts to $70, 925, 800 (see Table I), which
is equivalent to 77% of all the value transacted. The number

1According to [35] and [36] by November 1, 2019, there were 79,001,882
unique addresses and 573,691,673 transactions in the Ethereum Network.
Hence the density of the whole network by this time was 9.19× 10−6%



Fig. 4. Value transacted between miners in tens of millions of USD for
every period. Each period represents approximately 30 days of transactions.
For example in the period with the highest amount of transactions (Period
28, between November and December 2017), the total value of transactions
between miners was 21.4 Million USD.

of economic relationships rose sharply in the initial months of
the network, but after that, the miner transaction network has
become increasingly sparse, as shown by Figure 5.

Fig. 5. Evolution of the density of economic relationships.

B. Degree distribution and correlation

The weighted in-degree and out-degrees measures of a
node in a directed network are defined as the number of
incoming and outgoing edges to and from that node, multiplied
(weighted) by the value of each edge. For any directed
network, the average in-degree is equal to the average out-
degree, and hence it is called the average degree. As Figure
6 shows, both the distribution of the in and out degrees are
highly skewed, while the average weighted degree is equal
to $18, 479, the median weighted degree is $0. Figure 6

also reveals that there appears to be a marked specialization
amongst miners where most nodes are either only receivers
(out-degree = 0) or only senders (in-degree = 0), while a
smaller group of miners engages in both sending and receiving
transactions.

Fig. 6. Correlation between in and out degrees of nodes in the network.

VI. NETWORK COMPONENTS

A. Specialization in the Great Weakly Connected Component

To better understand the topological features associated with
the part of the network that has the most activity from the most
relevant actors, we analyzed the structure of the Great Weakly
Connected Component (GWCC). In a directed graph a weakly
directed component is a maximal sub-graph where for every
pair of vertices mi, mj there is either a path from mi to mj

or from mj to mi. The GWCC is the largest of all the weakly
connected components. For the period of study, we found that
there are 2, 244 weakly connected components, but most of
the network activity happens in the GWCC. The GWCC has
2, 422 miners that account for 91% of the historical hashing
power in the network. The value of the transactions in the
GWWC is $86, 242, 569, which accounts for 94% of all the
transacted value. Since nodes out of the GWWC show isolated
connections and do not represent a significant percentage of
the transacted value, we focus our analysis on the GWCC. By
highlighting specialized nodes in the GWCC, we can map out
the relevant topological routes taken by transactions. Figure
7 shows this detailed view of the GWCC with the three
types of nodes: those that only send transactions (senders),
those that only receive (receivers), and those that send and
receive (mixed). The sender component has 876 nodes that
represent 4% of the hashing power in the GWCC, the receiver
component has 1, 136 nodes that represent 4.5% of the hashing
power in the GWCC, and the mixed component has 410 nodes,
that represent 91.5% of the hashing power in the GWCC.
The sender component has sent $4, 107, 145 to the mixed
component and $1, 215, 589 to the receiver component, while



the mixed component has sent $48, 194, 301 and has internally
transacted $32, 725, 534.

B. Topology of the Strongly Connected Components

To further characterize the topology of the network within
the GWCC, we look at the sub-components in the mixed
component, in particular at the Strongly Connected Compo-
nents (SCCs). A Strongly Connected Component (SCC) is a
sub-graph with a path that connects every pair of vertices.
There are 73 strongly connected components within the mixed
component formed by 179 different miners that represent 44%
of the hashing power in the GWCC. The mean and median
size of an SCC is 2 miners, and the largest one has 9 miners
and represents 16% of the hashing power in the GWCC.
SCCs have transacted $33, 198, 960, and six of the top 10
miners belong to one SCC, with only two SCCs having two
top 10 miners while the other four are in separate SCCs
with no other miners from the top 10. There is a positive
and highly significant positive correlation (Pearson r=0.69, p-
value=1.37×10−11) between the hashing power of the miners
in SCCs and the value they have transacted (see Figure 8).

VII. CONTROL AND DOMINANCE

A. Transactions and hashing power hierarchy

Given the dominance of mining pools in the Ethereum Net-
work, one would expect that the transaction graph’s topology
would be mostly characterized by transactions from large min-
ing pools to smaller miners representing the payouts from the
former to the latter. In the previous section, we showed that this
is not what is found when looking at the network’s topology. In
particular, Figure 7 shows that there seems to be a significant
amount of transactions that go against this expected pattern.
To further quantify this behavior, we calculated how many of
the economic relationships connected miners with other miners
ranked higher than them in terms of hashing power. We call
these relationships against the hierarchy. We found that in
the GWCC 1, 088 relationships that amounted to $10, 578, 921
(11% of the total value transacted) were against the hierarchy.
On average, these relationships connected miners with other
miners ranked 78% higher in the hierarchy than them.

B. Driver nodes

The fact that an economic relationship exists between min-
ers can be indicative of many different things. One such possi-
bility is that an economic relationship could create a potential
for influence. In this section, we venture into exploring how
vulnerable the system would be under the current topology if
the existing economic relationships were used by some miners
to exert a specific influence over others.

To explore this possibility we first model this potential for
influence as a canonical control problem over the transaction
network. Say that the transaction network has linear time-
invariant dynamics that can be modeled by:

dm(t)

dt
= Am(t) +Bu(t)

Where m(t) = (m1(t), ...mN (t))T are the balances of the
mining addresses of the system, A is an N × N matrix that
defines the strength of the economic relationships between
miners and B is an N ×M (M ≤ N ) matrix that identifies
which of the (driver) nodes are controlled by an external con-
troller via a time-dependent vector u(t) = (u1(t), ...uM (t))T .
[37] showed that the minimum number of driver nodes needed
to control the system described above is exactly the set of
’unmatched nodes’ for a ’maximum matching’ as long as all
there are paths from the unmatched nodes to the matched ones.
A ’maximum matching’ is the maximal set of edges that do
not share start or end nodes, while a node is said to be matched
if an edge in the ’maximum matching’ points to it; otherwise,
it is said to be unmatched. Our results yield that under this
model and given the topology of the transaction network,
1, 945 nodes of the GWCC would need to be controlled (47%
of the hashing power of the GWCC), in order to potentially
have full control over it.

C. Dominant sets with minimal hashing power

Taking the previous section’s exploration a step further,
we model the potential for influence in a more direct way.
We now try to understand how many (and which) nodes
would be necessary to have direct influence over the whole
network. More formally, we find a dominant subset D of
nodes in the GWCC such that for every node in the GWCC
not in D, there is a node in D that has sent a transaction
to it. By naively exploring different dominating sets starting
from different points in the GWCC and using the algorithm
presented in [38], we found the set composed of the nodes
with the minimum hashing power needed to dominate all of
the GWCC. This set is composed of 1, 398 nodes representing
25% of the hashing power in the GWCC and only contains 3
miners from the top 10.

We also explored the maximum vulnerability of the network
under the current topology, assuming that miners could exert
influence over other miners that were recipients of their
transactions. We found that the set of nodes with the minimum
hashing power needed to dominate a set with over 51%
(51.07%) of the mining power is a set with only 7 nodes
representing 0.88% of the total hashing power.

VIII. DISCUSSION

A. Evolution of the transaction network

The miner transaction network exhibits a much higher den-
sity than expected from sampling a set with similar size from
the overall Ethereum Network, which leads us to think that
these relationships do have some practical significance. It is
particularly interesting how large players have primarily driven
this network. Figure 2 shows how quickly the ecosystem
consolidated, placing some miners at the top, indicating that
shifts in power distribution are not the cause for the observed
unexpected transaction patterns. The volume of transactions in
this market does not seem to be diminishing in absolute terms,
as Figure 4 shows, yet it does seem to be decelerating. The
existence of this network of transactions reveals that there are



Fig. 7. Great Weakly Connected Component. Green dots represent miners that only have outgoing transactions, yellow dots represent miners that have
incoming and outgoing transactions, and red dots represent miners that only have incoming transactions. The size of the dot represents its (scaled) hashing
power.

Fig. 8. Hashing power vs. Internal value transacted in SCCs.

economic relationships beyond the simple miner-mining pool
relationship assumed and predicted by previous work.

B. Transaction activity amongst large miners

The particular structure of relationships between miners
revealed by our analysis is indicative of underlying hierarchies
and dependencies between different players. In particular,
there seem to exist strongly connected groups that involve
both independent miners and mining pools. These strong
relationships are not explainable exclusively under models that
assume that miners just come together in mining pools. It
could be the case that some of these clusters of relationships
and the roles of different miners within and between these
clusters reveal fixed coalitions, ad-hoc alliances or different
control structures (e.g., a single entity running multiple miner
operations). Further identifying the influence of these clusters
and the implications of the underlying hierarchies on the

reliability and efficiency of Ethereum can be an area for future
work.

C. Potential backdoors for control

The advent of mining pools in PoW systems is argued
by many, introduces decentralization because it allows more
individuals to participate in the mining process. Nonetheless,
mining pools centralize all of these resources under a central
operator. This degree of control over the process can make
mining pools as centralized as traditional large mining op-
erations. The fact that large mining pools can potentially be
subordinate to smaller players as suggested by some of the
transaction analysis presented above should be a matter of
concern. The nature of these asymmetric relationships should
be better understood to evaluate the ways in which they could
be exploited by malicious actors.

IX. CONCLUSION

By using network analysis to evaluate over 8 million blocks
in the Ethereum network, the miners that validated them, and
the transactions between them, we were able to characterize
important patterns of how miners are economically related.
Our approach had not been used in previous empirical work,
and it revealed that relationships between miners are structured
in ways that are not completely explained by existing theoret-
ical models. Aside from the expected relationships between
mining pools and small miners, we found transactions that re-
veal other types of coalitions and hierarchies between miners.
We expect this characterization motivates further research into
miner relationships and inspires potential protocol redesigns.
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