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Abstract

The Markov chain model can be found in the main-
tenance and repair problems since the early 60’s, is in-
troduced to the maintenance of road infrastructure in the
1980’s, and is made to drive the current bridge maintenance
optimization systems. While this model results into solvable
programming problems and provides a solution, there are
a number of criticisms associated with it. In this article,
we highlight the shortfalls of the Markov model for bridge
infrastructure lifetime assessment and promote the use of
stochastic processes. We use examples from a study for the
modeling of the condition of bridges that considers more
than 15 years of data. We argue for the applicability of the
gamma process and other stochastic processes.

1. Introduction

Bridge maintenance optimization was applied these past
decades due to the large costs associated with the man-
agement of networks of ageing structures. In the United
States, more than 70% of the bridges were built prior to
1935, and a large percentage of the United Kingdom’s cur-
rent bridge stock was built between the late 1950s and early
1970s. In the state of New South Wales, Australia, around
70% of the operating bridges were built before 1985, with
a significant proportion before the 1940’s. With the near
completion of most of the road networks and the ageing of
bridges, the emphasis shifted to the maintenance and reha-
bilitation of the existing infrastructure. A concerted effort
was made in the 1970’s after the collapse of several bridges

in the United States in the late 60’s [1]. A number of man-
dates by governments introduced standards and computer-
ized maintenance optimization approaches. These software
tools, known as Bridge Management Systems (BMS), con-
sist of formal procedures and methods for gathering and an-
alyzing bridge condition data. The purpose of a BMS is
to predict conditions for bridge stocks and estimate main-
tenance funding. Pontis [2], one of the most widely used
systems, was designed and developed at the request of the
US Federal Highway Administration. A similar BMS is the
BRIDGIT bridge management system [3]. A bridge in a
BMS is represented by structural elements defined as a set
of common bridge components. For each bridge, the con-
ditions of these elements are assessed visually during pe-
riodic inspections, and reported into the BMS. The condi-
tion data at each inspection consist of the total quantity of
the element being divided through a number of condition
states; from the ‘as good as new’ condition to the most se-
vere state of deterioration. This is a common practice for
representing infrastructure condition data, starting with the
discrete condition rating scale from 0 to 9 adopted by the
U.S. Federal Highway Administration [4], and followed by
the Pontis condition rating scale, and that of most other
bridge inspection procedures. This process simplifies the
inspections, but more importantly the modeling of the el-
ement/bridge/network condition and the maintenance opti-
mization. The condition assessment and prediction is done
by the application of a Markov chain model. The Markov
chain model can be found in the maintenance and repair
problems since the early 60’s [5]. It is introduced to the
maintenance of road infrastructure by Golabi et al. (1982)
[6], and is made to drive the Pontis bridge management sys-
tem. In the Markov model, the condition of a bridge ele-



ment takes discrete states and the transitions from one state
to the other are modeled with a Markov chain. While this
approach has become standard, there have been a number of
criticisms associated with it. In this article, we discuss the
fundamentals and argue for the applicability of the gamma
process and other stochastic processes for modeling struc-
tural deterioration.

2. The Markov Chain model

Markov model formulations are appealing to manage in-
frastructure because they provide a framework that accounts
for the uncertainty and the optimal policies can be obtained
by solving simple programming problems. A number of
criticism points have been made against the usefulness of
the model [1]; (i) bridge element performance is not ad-
dressed from a reliability viewpoint, (ii) the Markovian as-
sumption does not take into account the history of the bridge
deterioration, and (iii) bridge system performance is not
generally addressed. Among these limitations, a most im-
portant one is the inability of the Markov model, by assump-
tion, to capture the time effect of deterioration. It is clear
to many practitioners that the deterioration rate tends gen-
erally to increase with time, and amount of deterioration.
This observations conflicts with the stationarity assumption
of the Markov model where the transition probabilities do
not change with time. In the context of the estimation of
the Markov model transition probabilities, Madanat, Misha-
lani & Ibrahim (1995) [7] make a number of observations.
They point to the fact that the methods used in estimat-
ing these probabilities are ad-hoc and suffer from impor-
tant methodological limitations; (i) the change in condition
from one inspection to the next is not modeled explicitly,
failing to capture the structure of the deterioration process,
(ii) consequently, the model fails to capture the inherent
non-stationarity of the deterioration process, and (iii) the
approach does not recognize the latent nature of deteriora-
tion. Since deterioration is an unobservable process, it is not
the state of the observable condition that should be modeled,
but rather the process that generates these conditions.

A practical difficulty with the estimation of the transition
probabilities is the lack of data for some condition states.
The severe conditions of elements of a bridge are rarely ob-
served, due to the maintenance effort. Only the first states
transition probabilities are estimated properly. Figure 1
shows the frequency of units of different elements in the
possible condition states. These elements are taken from
a network of bridges in the study we describe in the next
section. Most of the element units are in state 2 when they
deteriorate, that is leave the ‘as good as new’ or ‘full’ condi-
tion state 1. While it depends on the element and on budget,
many elements are brought back to the full condition state
from state 2. This implies that little data are available about

transitions to more severe conditions. Pontis supplements
the data with expert knowledge at the beginning of system
implementation due to the scarcity of data at that stage. As
more data becomes available, the probabilities are to be up-
dated using a Bayesian method. This is a major shortfall,
as many managers are reticent about the use of subjective
assessment, particularly if there is little chance that enough
data will appear to adjust the subjective input.
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Figure 1. Condition state frequency

The theoretical weakness of the Markov model is the as-
sumption of stationarity. The model assumes that the time
of transition from one state to another is distributed expo-
nentially. This assumption allows the application of the
Markov model by which an old unit of element and a newer
one are equally likely to move to the next condition state [2].
This is a rigid structure imposed on the deterioration model.
This weakness is acknowledged in most studies, and yet the
Markov model has been adopted from the beginning and re-
mains in most bridge management systems. It provides a so-
lution for the estimation of future conditions and prescribes
how to invest maintenance funding. However, a predictive
solution relies on the validity of the underlying deterioration
model. Scherer and Glagola (1994) [8], Wirahadikusumah
et al. (2001) [9] and Morcous (2006) [10], among others
have studied the validity of the state independence assump-
tion of the Markov model. This assumption assumes that
the future condition of a bridge element depends only on
its present condition and not on its past condition, imply-
ing that bridge deterioration is a stationary process. While
the simplifying assumption holds in some studies, it is not
substantiated with a lot of evidence, the available condition
data not providing adequate information about all possible
condition transitions.

3. The RTA Level-2 Inspection Data

The goal in our study is to develop deterioration
models for the assessment of future conditions of ele-
ments/bridges/networks in the state of New South Wales,
Australia. The Roads and Traffic Authority (RTA) of the
state of New South Wales, provided data that consist of in-
spection records conducted periodically on all bridges in



their jurisdiction. The inspections are visual for most ele-
ments and the condition states are discrete. An element con-
sists of a number of quantity units. Each unit is judged to be
in one of n states, n = 3, 4 or 5, depending on the element.
Condition state 1 represents the ‘as good as new’ condition,
no-deterioration state, while condition states 2, . . . , n mark
increasing levels of deterioration. There are 4,945 struc-
tures and 66 elements considered in the study, for which
over 230,000 inspection records exist. The records go back
to 1989, up to the present time. Among the recorded en-
tries are q, the total quantity of the element, q1 the quan-
tity in condition state 1 on the day of that inspection for
that particular element, q2 the quantity in state 2, to qn the
quantity in condition state n. The inspected quantities for
each element are measured either in square meters (m2) if
it is a surface, in meters (m) for some elements such as
railing and joints, or units (ea) for timber elements. The
structures have on average about ten elements, with more
than 30 in some cases. Each element was inspected ap-
proximately every two years. The elements are concrete
elements, steel elements with lead based paint, steel el-
ements with other protective treatment, timber elements,
joints, bearings, railings and others. Some of the more com-
mon types are concrete pre-tensionned girder, concrete re-
inforced prestressed pile, concrete deck slab, concrete cul-
verts, steel rolled beams/I girders with lead based paint
protective coating, timber beam/cross girder, pourable/cork
joint seal, elastomeric bearing, metal bridge railing and ma-
sonry/brick/reinforced earth.

Deterioration in elements of bridges is best measured as
a continuous variable representing for example the percent-
age of degradation. Given the large surfaces and number
of items to be inspected, it is hard to measure visually per-
centages. The condition data at each inspection therefore
consists of the total quantity q of the element being divided
through judgement into n states. q =

∑n
i=1 qi is satisfied in

all inspection records. The percentage of undamaged quan-
tity is q1/q × 100%. The corresponding proportion of dete-
riorated element is qd =

∑n
i=2 qi/q, qd = 1− q1/q. If one

was to ignore the degree of deterioration and consider only
the proportion of damaged quantity, then C = 100 q1/q
provides a first level of information on the condition of the
element. In our study, the condition data (q1, . . . , qn) of an
element is converted to a univariate measure C, using the
notion of ‘Condition Index’. A number of condition indices
were formulated. These indices can be related to the Cali-
fornia bridge health index [11], a ranking system that takes
values in [0,100]. The California Department of Transporta-
tion was involved in the development and implementation
of Pontis. A condition index has two functions; (i) its use
in a cost/benefit analysis where the condition history of a
structure can be estimated with the inspection data of its el-
ements, through the use of a weighted sum of the conditions

of the elements, and (ii) its use in the study of deterioration
by modeling the univariate measure in time.

4. Estimating the Deterioration Rate

In turning the vector of quantities (q1, . . . , qn) into a sin-
gle value Celem(t), where t is the time, the dimensionality
of the problem is reduced and one can apply mathematically
tractable models. This univariate quantity can be studied
over time using a stochastic process. The element condition
is a value between 0 and 100%, 100% being the ‘as good
as new’ condition (no deterioration) state. The deteriora-
tion is defined as Z = 100 − C, [C ≡ Celem(t)]. For the
states where the deterioration has increased, and the differ-
ence provides information for the estimation of the stochas-
tic process, the variables Z1, Z2, Z3, Z7 and Z8 represent
the deterioration. These states are:

Z1: The element condition is 100% and 100% at the previ-
ous inspection

Z2: The element condition is less than 100%, but positive,
while 100% at the previous inspection

Z3: The element condition is 0% while 100% at the previ-
ous inspection

Z7: The element condition is less than 100%, but positive,
and less than at the previous inspection where it was
less than 100%, but positive

Z8: The element condition is 0%, while it was less than
100%, but positive at the previous inspection

These variables are of relevance when studying the deterio-
ration process, along with their inter-inspection times. The
time at which a deterioration increase (dZ in a time interval
dt) occurs is important. The pairs {(dt, dZ)}, for dZ ≥ 0,
and the time at which dt starts is information used to esti-
mate the parameters of stochastic deterioration processes.

In order to study the distribution of the deterioration
variables Z2 and dZ7 (the increase associated with Z7),
we needed data that occur at the same time. The inter-
inspection times were adjusted so that they can be grouped
together, making it possible to study the probabilistic be-
havior of deterioration as a random variable at different
times. Judgement was also used in eliminating data for in-
spection time intervals that exceed 4 years. Beyond 4 years,
the data start thinning. In the case of one element example,
from the original 913 conditions, C = 100 − Z2, 836 ad-
justed in time are plotted in Figure 2. Next, we used a least
squares approach in fitting the data to a nonlinear deteriora-
tion curve 100−µtq , with parameters µ and q. Figure 2 dis-
plays the least squares results using (i) the condition means
at times 1, 2, 3 and 4, (ii) all the adjusted data, and (iii) the



actual data. q was found to be 2.7, 2.4 and 2.4 respectively,
and µ = 0.29, 0.404, 0.408, showing that the adjustment to
the data was minimal. The time pattern of the deterioration
of the element fits the behavior of a stochastic process such
as the gamma process.
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Figure 2. Condition of a concrete element

The distributions of Z2 at different points in time char-
caterize the stochastic process. In the case of most of our
elements, the probability distribution showed a good fit to
the gamma distribution (Fig. 3). This concords with the
properties of the gamma deterioration process, where the
distributions of incremental deteriorations are gamma dis-
tributed [12]. This was observed for the concrete and steel
elements, as well as railing and joints and some timber ele-
ments. The lognormal was also found to be a good fit (Fig-
ure 4) and in most cases with enough data, a better fit. In
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Figure 3. Probability distribution fits

the gamma process, not only is the distribution a gamma
distribution when measured from the start of time, but any
incremental distribution is also a gamma distribution. That
is, if taking an interval in time and measuring the differ-
ence, increase, in the quantity of interest, the distribution
of such an increase is also a gamma distribution. In ad-
dition, the increases in non-overlapping time intervals are
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Figure 4. Lognormal probability fit

independents. This makes for a number of assumptions to
be checked and is the subject of ongoing work in our study.
However, we have already observed, whenever dZ7 data are
abundant enough, that these assumptions can be accepted.
The data of this study show the behavior of a stochastic pro-
cess with selected probability distributions. At this point,
the data have not been stratified according to influencing
factors such as traffic load, age of bridge and location, ex-
cept in some examples. The observations of distribution fit
held in those cases. The observation also held when the
data were stratified into different structure (bridge) classes,
according to exact and major components similarity.

For the purpose of building a statistical model, these ob-
servations promote the use of the gamma process with mean
deterioration function µtq that includes the stationarity case
of q = 1.
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Figure 5. Gamma process estimation, q̂ = 3.3

The gamma process is defined by van Noortwijk (2007)
[12] in the context of the deterioration of structures. To
illustrate the estimation procedure, we apply it to a concrete
element on two different bridges and observe a rate q̂ =
3.3 (Fig. 5). Two data points are used; (15.81,99.69) and
(17.75,95.46) with the renewal at year 13.92 since the start
of the database. This example was chosen for illustrative
purposes. In many cases, the bridge elements showed lower
rates.



5. The Gamma Process

The gamma process can capture the temporal variability
of degradation. The argument is made in a series of papers
by Pandey and Noortwijk (2004) [13], Noortwijk, Kallen
and Pandey (2005) [14] and Pandey, Yuan and Noortwijk
(2007) [15]. The gamma process can be found in its mod-
ern application to structures in the late 90s by van Noortwijk
(1998) [16] and van Noortwijk and Klatter (1999) [17].
The idea of the use of a gamma process can be found ear-
lier in the Netherlands where generalized gamma processes
were used to model decision problems for optimizing main-
tenance of the sea-bed protection of the Eastern-Scheldt
barrier, berm breakwaters, and dykes (van Noortwijk &
van Gelder, 1996) [18]. Empirical studies showed that the
expected deterioration in some cases followed the power
law atb, where t is the time. This function of time is
incorporated into the gamma process and used to model
structural deterioration. The advantage of the gamma pro-
cess is recognized and applied in many structural studies
[19, 20, 21]. van Noortwijk (2007) [12] provides a com-
prehensive overview of the use of the gamma process in the
maintenance of structures. In the context of structural dete-
rioration, the gamma process is defined as follows: Let v(t)
be a non-decreasing, right continuous, real-valued function
for t ≥ 0, with v(0) = 0. The gamma process with
shape function v(t) > 0 and scale parameter u > 0 is a
continuous-time stochastic process {Z(t), t ≥ 0} with the
following properties:

1. Z(0) = 0 with probability 1

2. Z(τ)− Z(t) ∼ G(v(τ)− v(t), u)

3. Z(t) has independent increments

where G(z|v, u) = uvzv−1e−uz/Γ(v) is the gamma prob-
ability density function defined for z ∈ (0,∞). The pro-
cess can be parameterized. Letting v(t) = µ2tq/σ2 and
u = µ/σ2, the mean and variance of the deterioration Z(t)
are:

E(Z(t)) = µtq and V (Z(t)) = σ2tq.

Given a set of observations of the deterioration process
Z(t), {zi}n

i=1 for times {ti}n
i=1, the maximization of the

likelihood function provides estimates of the three param-
eters µ, σ and q. This involves the search, q fixed, for the
zero of a function, where σ̂ is solution of

n∑

i=1

wi{Ψ(
ˆ̂µ2

σ2
wi)− logδi} = tqnlog(

xn

tqnσ2
)

where δi = zi − zi−1, i = 1, . . . , n, z0 = 0, and wi =
tqi − tqi−1, i = 1, . . . , n, with t0 = 0, and ˆ̂µ = zn/tqn. Ψ
function is the Digamma function.

The data for each individual bridge aren’t enough to es-
timate the parameters µ, σ and q properly. Often, the path
{zi}n

i=1 for times {ti}n
i=1 does not extend beyond n = 1 or

2, before the element is brought back to the full condition
state (Z=0). One way around this problem, and the advan-
tage of using the gamma process, is to aggregate the data
by dividing the bridges into similarity classes. Bridges of-
ten can be grouped through the identification of some major
elements. Then within the classes of similar bridges, a sec-
ond stratification occurs according to influencing factors,
such as traffic load, age, region and environmental stress.
The estimation of the parameters within the class structures
results in better assessment and prediction. Due to the in-
dependent increments property and with the assumption of
independence between elements on different structures, the
likelihood function can be written and maximized to esti-
mate the parameters µ, σ and q [21]. In the special case
where only the first deteriorations, observed at the first in-
spection after a renewal, are available, then the solution is
similar to that seen above, but the search for σ̂ involves the
equation

n∑

i=1

wi{Ψ(
ˆ̂µ2

σ2
wi)− logδi} = (

n∑

i=1

wi)log(
ˆ̂µ
σ2

)

where zi, i = 1, . . . , m, this time is the deterioration of the
ith element in the class of structures, δi = zi and wi = tqi ,
and ˆ̂µ =

∑n
i=1 zi/

∑n
i=1 tqi .

6. Conclusion

Structural deterioration assessment and condition predic-
tion of bridges is a subject of interest that has far reach-
ing consequences, both in terms of public safety and state
budgeting. We discussed the theoretical foundations of the
model most used for assessing structural deterioration in
bridge elements. We propose a modern view using the
gamma process that has already proved successful in struc-
tural deterioration assessment. We experimented with the
process using simulation, estimating the parameters with
the maximum likelihood approach. With few data points,
the model captures the deterioration process efficiently. We
also observed in our study a distribution for the deteriora-
tion other than the gamma distribution. This leads to the
application or development of other stochastic deterioration
processes.
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