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Abstract

In this paper, we present a framework for the design of
minimal power schedulers that satisfy average packet delay
bounds for multiple users in a Gaussian wireless broadcast
channel. We completely characterize the achievable region
in the multidimensional delay-power space, and present
schedulers that achieve the boundary regions. The optimal
schedulers minimize the transmission power by jointly allo-
cating rate and power to the different users based on vari-
ous buffer and channel conditions. Finally, we also present
low complexity scheduler designs that have near optimal
performance.

1. Introduction

Scheduling is an important technique in achieving higher
throughputs or lower powers in wireless networks [1–3, 6,
10–12]. We showed that in the single user scenario, trans-
mission power can be significantly reduced by increasing
packet delays in both fading channels and additive white
Gaussian noise (AWGN) channels with bursty input [15,
16]; this was also independently reported in [4, 7, 13]. In
AWGN channels, when the input traffic is bursty, reduction
in transmission power with increasing delays was demon-
strated by smoothening the input traffic [15] and transmit-
ting nearly constant rate traffic (subject to meeting the delay
and buffer constraints). In this sequel, we explore power ef-
ficient scheduling for multiple users in a Gaussian broadcast
channel with average packet delay constraints.

Consider a system in which packets intended for multiple
users arrive at a single transmitter and are stored in separate
buffers. A scheduler is defined as a mapping from the vec-
tor of buffer states corresponding to the different users, to
the vector of instantaneous transmission rates for each user.
We investigate scheduling in a class of randomized map-
pings (defined in Sec. 2) and show that the average delay
experienced by the users and the total transmission power

using these randomized mappings can be expressed as con-
vex combinations of the average delays and power, respec-
tively, using deterministic mappings. As a consequence
we show that the achievable region (defined in Sec. 2) in
the multidimensional delay-power space is convex; more-
over, we also show that the region is piecewise planar. This
achievable region is analogous to the delay limited capac-
ity region in multiple access fading channels that has a
polymatroidal structure [9]. We also present average delay
bounded multiuser schedulers, that achieve the boundary of
the achievable region, i.e., satisfies the different users delay
constraints with minimal power consumption. The optimal
schedulers, which are computed using a dynamic program,
vary the rate and power for each user based on the joint
buffer and channel states of all the users.

The complexity of the dynamic program used to calcu-
late optimal schedulers is exponentially high for a system
with large number of users and large buffer sizes. We pro-
pose a set of low complexity schedulers, which are shown
to have near optimal delay-power performance. Finally, we
derive a closed form approximation for multiuser power-
delay relationship in a broadcast system. This approxima-
tion gives a coarse estimate of the power needed to support
a large set of users simultaneously with different delay con-
straints. The results presented in this paper are useful in sys-
tem planning, resource allocation and to make call admis-
sion control decisions. Even though power optimization is
more critical in mobile handsets, minimizing the transmis-
sion power at the base station to achieve the desired in-cell
performance results in lowering the intercell interference,
thereby improving overall system throughput. The power
optimization at the transmitter is also useful in other sce-
narios like ad hoc networks in which mobile nodes could
broadcast information to multiple nodes simultaneously.

In this paper, we make some simplifying assumptions to
derive the optimal schedulers. We use an i.i.d. arrival model
for the source traffic and use average packet delay as a mea-
sure of quality of service provided. Although there exists
more sophisticated models which represent realistic sources



more accurately, we found that the analysis was nontrivial
even using these simplified models. Thus, we hope to create
a foundation for power efficient broadcast scheduling using
these simple models and capture the multiuser effects in an
analytical manner. For simplicity, the analysis in this pa-
per is given for AWGN channels using capacity achieving
broadcast transmission. However, all the results presented
can be extended to Markovian fading channels and TDMA
systems in a straightforward manner; see [14] for details.

The remainder of this paper is organized as follows. In
Sec. 2, we introduce some basic notation and formalize the
scheduling problem of interest. The achievable region is
computed and optimal schedulers are presented in Sec. 3.
Low complexity scheduler design is considered in Sec. 4.
Finally, we conclude in Sec. 5.

2. Problem Formulation

We consider a time-slotted system with K flows1 be-
ing transmitted from a single transmitter to K different re-
ceivers over a shared wireless downlink channel. The flows
are arbitrarily labeled from 1 to K. In the nth time-slot,
flow i receives ai,n ∈ {0, 1, 2, . . . ,Mi} equal size packets
at an average rate λi. Further, the arrival process of each
flow, ai,n, is assumed to be independent of other flows, and
independent from one time-slot to another. Let 1 × K vec-
tor an =

[

a1,n a2,n · · · aK,n

]

. Throughout this pa-
per, we represent vector quantities in boldface. We assume
that each flow’s packets are stored in a separate buffer of
size Li for flow i and the maximum arrivals in any slot, Mi,
is less than Li. The number of queued packets at the be-
ginning of the nth time-slot in buffer i is denoted by xi,n;
the set of all buffer states are represented by 1 × K vector
xn =

[

x1,n x2,n · · · xK,n

]

. A schematic of system
is given in Fig. 1. The transmitted signal Xn in the nth

time-slot is given by

Xn =
K
∑

i=1

Pi,nSi,n, (1)

where Pi,n is the power used to transmit the data Si,n

for user i in the nth time-slot. The data Si,n depends
on the number of packets ui,n transmitted for user i and
on the channel coding, modulation and waveform used.
We propose to use information theoretically optimal cod-
ing and modulation to obtain Si,n, which serves two im-
portant purposes. First, we can use a closed form rela-
tion between amount of data ui,n and the minimum re-
quired power Pi,n to transmit it reliably (details in Sec. 2.1).
Second, it gives us a universal lower bound on power re-
quired by any scheduler designed for a specific coding and

1In this paper, we use the terms users and flows interchangeably.

modulation scheme. The total transmit power Pn during
time-slot n equals

∑K
i=1

Pi,n and is computed in (6). Let
un =

[

u1,n u2,n · · · uK,n

]

. The buffer update is
given by,

xk,n+1 = min (xk,n + ak,n − uk,n, Lk) , ∀ k, n. (2)

The received signal Yi,n at the ith mobile node is given by

Yi,n = Xn + ηi,n, (3)

where ηi,n is the additive white Gaussian noise with zero
mean and variance Ni > 0.2 The receiver decodes the
data based on Yi,n and its a priori knowledge of the cod-
ing scheme.

Figure 1. Schematic of Broadcast system.

The main objective of our scheduler design is to min-
imize the expected transmitted power among the class of
randomized stationary zero-loss schedulers, Θ (defined in
Sec. 2.2). Formally,

P ∗(Do) = min
Θ

E{xk,n}≤λkDk,o,∀k

lim
n→∞

E {Pn} , (4)

where Dk,o is the delay bound for the kth user; define Do =
[

D1,o D2,o · · · DK,o

]

as the 1 × K vector of delay
bounds.

Definition 1 (Achievability) A point (D, P ) in the (K +
1)−dimensional delay-power space is achievable if there
exists a scheduler that achieves delays no greater than D

and average transmission power P with zero packet loss.3

Given P ∗(Do), all points (Do, P ) such that P ≥
P ∗(Do) are achievable. In Sec. 3, we compute the entire
achievable region. In Sec. 2.1 we discuss the power con-
trol used and in Sec. 2.2 define some basic properties of the
class of schedulers considered.

2Extensions of this model to block fading channels are direct [14].
3For two vectors d, D we mean d ≤ D iff the inequality holds ele-

ment wise.



2.1. Multiuser Power Control

In each time-slot, after choosing the number of packets
un to be transmitted, the physical layer encoding selects a
power level Pi,n and coding for each user to ensure reliable
reception. A coding and power control scheme is reliable if
the received packets can be decoded with exceedingly small
errors. Instead of relying on any specific coding scheme,
we use code-independent information theoretic bounds giv-
ing us a simple closed form expression for power control.
Though the information theoretic bounds rely on asymp-
totic analysis, state of the art coding schemes (like LDPC
and Turbo codes) closely follow the predicted performance
trends. Lastly, all the results in this section assume that each
packet is reasonably long.

Note that the length of the time-slot is fixed in our sys-
tem model. Thus, if the scheduler chooses more pack-
ets for transmission in any time-slot, the rate of transmis-
sion has to be proportionally scaled. Given a set of rates
R = (R1,n, R2,n, . . . , RK,n) that needs to be transmitted
in a time-slot, the required power using optimal broadcast
coding satisfies the following set of inequalities [8],

Rk,n = uk,nF < W log

(

1 +
Pk,n

WNk +
∑k−1

i=1
Pi,n

)

,(5)

∀k = 1, 2, . . . ,K

where W represents the channel bandwidth and F = S
Ts

represents the normalization factor required to convert from
the number of packets to rate (in bits per second) and de-
pends on the time period of each time-slot Ts and size of
each packet S. The minimum total power required (denoted
by Pbc) is thus given by

Pbc(un) = W

K
∑

i=1

(

e
ui,nF

W − 1
)

Ni

K
∏

j=i+1

e
uj,nF

W . (6)

For simplicity, we assume F = 1 in the remainder of the
paper.

The main observation from this section is that the total
transmit power for each user depends exponentially on the
number of packets un transmitted in a time-slot. Although
based on an asymptotic analysis, any practical low-error
multirate transmission scheme will have similar exponen-
tial relationship between power and information rate. This
nonlinear (convex) relationship is the fundamental reason
why delay can be traded for power even for single flow case
without channel variations [13, 16]. The gains of schedul-
ing without channel time-variations are also present in the
multiple flow case as shown in the subsequent sections.

2.2. Admissible Schedulers

A scheduler α is a mapping from the buffer state xn

to the number of packets scheduled for transmission un,
α : xn 7→ un. If the mapping α is deterministic, i.e., the
scheduler transmits the same number of packets for a given
buffer state, then it is labeled as deterministic scheduler. We
denote by W the set of all deterministic schedulers.

In contrast, a scheduler is randomized if the mapping α
is probabilistic, α : p(un|xn). A scheduler is considered
stationary if the mapping is independent of time index n.
The randomization of the scheduler serves an important pur-
pose. If limited to the class of deterministic schedulers, the
number of possible schedulers is finite and thus the set of
achievable delay vectors Do is finite. Thus, not all delay
tuples can be achieved with equality using only determin-
istic schedulers. Since randomized schedulers subsume the
class of deterministic schedulers, they always require less or
equal power than their deterministic counterparts, and per-
mit achieving arbitrary delay vector Do if at all possible.

Denote by Ω the set of all possible states of the buffer,
{

x
i
n

}

i
, where x

i
n is a particular value (state) of xn. The

cardinality of the set Ω is |Ω| =
∏K

k=1
(Lk + 1). For any

given scheduler α denote by Ci,j the probability of tran-
sition from state x

j ∈ Ω to x
i ∈ Ω (the time index n is

suppressed since the schedulers are assumed to be station-
ary). Denote the stationary probability of being in state x

i

by si. From the assumed stationarity of the schedulers, it
follows that

Cs = s, (7)

where C =
[

Cij

]

, s =
[

si

]

i, j = 1, . . . , |Ω|.
Given a particular scheduler α, we can compute the re-

sulting delays and required transmission power as follows.
The average delay Dk for user k can be computed using
Little’s formula [5] and is given by

Dk =
1

λk

∑

x
i∈Ω

xi
ksi, (8)

where xi
k is the number of packets in the kth buffer when

buffer state equals x
i. The total average transmission power

is given by

Pavg =
∑

x
i∈Ω

∑

u

siPbc(u)p(u|xi), (9)

where p(u|xi) is the probability of transmitting u packets
in state x

i.4

Among the class of randomized stationary schedulers,
we limit our attention to schedulers which do not drop any
packets either intentionally or due to buffer overflow. Buffer

4The dependence of C, s, Pavg , Dk on scheduler α is not explicitly
shown when it is clear from the context.



overflows can be prevented because the maximum burst size
of the input traffic is assumed to be known. Formally,

Θ = {α : α is zero-loss } . (10)

A scheduler is considered zero-loss if it does not drop any
packets, does not allow buffer overflow and uses adequate
power to ensure that receivers can decode packets with arbi-
trarily small probability of error. Using the power as given
by (6) ensures that all transmitted packets are transmitted
with arbitrarily small probability of error. Note that the pro-
posed formulation seeks the power-minimizing scheduler
within the class Θ, but in power-constrained systems, the
resultant scheduler may require more power than available.
Thus, the case where more than available power is needed
implies the power-delay pair is not implementable, thereby
providing a method for admission control, rate throttling or
relaxing delay guarantees. The following theorem charac-
terizes the set Θ.

Theorem 1 (Zero Buffer Overflow) Consider K flows
with independent queues, each with finite buffers of size Lk.
Flow k has a maximum burst size of Mk packet arrivals in
one slot. The buffers are assumed to be initially empty. A
randomized stationary scheduler has zero-loss if and only if
for each state x

i ∈ Ω, one of the following two conditions
are satisfied.

1. The stationary distribution is zero for state x
i, i.e.,

si = 0.

2. If zi
k denotes the minimum number of packets trans-

mitted from the kth queue in state x
i using the given

scheduler, then (xi
k − zi

k) ≤ (Lk − Mk),∀k.

Proof: See Appendix A.1. ¤

3. Optimal Schedulers

In the previous section, we defined the multiuser power
control used and introduced the class of schedulers of inter-
est. In this section we characterize the achievable region in
the (K + 1) dimensional delay-power space in Theorems 2
and 3. We then compute optimal schedulers in the class Θ.

Definition 2 (Convex combination of schedulers) When
scheduler α equals the convex combination of 2 schedulers,
say α ≡ ηαA + (1 − η)αB , 0 ≤ η ≤ 1, it means that the
number of packets u transmitted in each state x

i using
scheduler α equals the number of packets transmitted in
state x

i using scheduler αA with probability η and the
number of packets transmitted in the same state x

i using
scheduler αB with probability 1 − η.

In Theorem 2, we prove that the average power and de-
lays for an arbitrary zero loss randomized scheduler can be
obtained as the convex combination of the power and delays
of zero loss deterministic schedulers.

Theorem 2 (Characterization of delay and power)
Consider a set of K queues with finite buffer sizes Lk and
K independent input processes with no more than Mk

packet arrivals in one time-slot. For any randomized sched-
uler α ∈ Θ, there exists non-negative ηi with

∑G
i=1

ηi = 1,
such that

Dk(α) =

G
∑

i=1

ηiDk(γi),∀k = 1, . . . ,K (11)

Pavg(α) =

G
∑

i=1

ηiPavg(γi) (12)

where γi is a zero loss deterministic scheduler and G =
|Θ ∩ W|. Also, Dk(α) represents the average delay of user
k and Pavg(α) represents the total average power using
scheduler α.

Proof: See Appendix A.2. ¤

In Theorem 3, we prove a converse to Theorem 2, that
there exists a scheduler whose delays and power are the
convex combination of the delays and powers of any two
deterministic zero loss schedulers.

Theorem 3 (Converse to Theorem 2) Let αA and αB

be two zero loss deterministic schedulers with aver-
age delays Davg(αA), Davg(αB) and average powers
Pavg(αA), Pavg(αB) respectively. Then, there exists a zero
loss scheduler which achieves average delay ηDavg(αA)+
(1 − η)Davg(αB) and average power ηPavg(αA) + (1 −
η)Pavg(αB) for all 0 ≤ η ≤ 1.

Proof: The proof follows from time-sharing arguments and
is given in Appendix A.3. ¤

It should be emphasized that the convex span of W ∩ Θ
is larger than Θ (some schedulers in convex span can be
non-zero loss). Given that the randomized scheduler perfor-
mance can be obtained by appropriate linear combination
of deterministic schedulers, the delay-power region can be
characterized as follows.

Corollary 1 (Characterization of delay-power region)
The boundary of the achievable region in the (K + 1)
dimensional delay-power space is piecewise planar with
the vertices achieved by deterministic schedulers.

Proof : The total number of deterministic zero loss sched-
ulers is finite, and the delay-power performance of all ran-
domized zero outage schedulers is given by a convex combi-
nation of delay-power of deterministic zero loss schedulers.
Hence the corollary follows. ¤



To find the achievable delay-power region, we use a dy-
namic programming technique commonly known as Value
Iteration Algorithm (VIA) [17]. The details of the VIA are
given in Appendix A.4. The delay bound Do is reduced
monotonically (one element at a time, in any order) and the
minimal power deterministic policy is found for each Do.
Thus, instead of solving (4), we are required to solve the
following optimization problem,

P †(Do) = min
Θ∩W

E[xk,n] ≤ λkDk,o∀k

lim
n→∞

E {Pn}. (13)

The convex hull of the resulting (Do, P
†(Do)) pairs gives

the delay-power region, using Theorem 2 and Corollary 1.
An example of an optimal scheduler obtained using VIA is
given in Example 1.

Example 1 (Optimal Broadcast Scheduler) Let K =
2, M1 = 2, M2 = 2, L1 = 5, L2 = 5 and N1 = 1

9
, N2 =

1

7
. The scheduler is specified by the following two matrices

representing the mappings xn 7→ u1 and xn 7→ u2. The
number of packets transmitted from queue 1 (or 2) when
x1,n = i and x2,n = j is given by the (i + 1)st row and
(j + 1)st column of matrix u1 (or u2).

u1=

















0 0 0 0 0 0
1 1 1 1 1 1
2 2 2 2 2 1
3 3 3 3 2 1
3 3 3 3 2 2
3 3 3 3 3 2

















u2 =

















0 1 2 2 2 2
0 1 1 1 2 2
0 0 1 1 1 2
0 0 0 0 1 2
0 0 0 0 1 2
0 0 0 0 1 2

















The resulting average delays are D1 = 1.0065 and D2 =
1.8264 time-slots and average power required is 0.1226.
Clearly, buffer 1 is almost always empty except when
buffer 2 is full. In general we noticed that u1 is non decreas-
ing with increasing x1 for a fixed x2. We also found that for
a fixed x2, the increase in u1 is no greater than one when
x1 increases by one, i.e., |u1(x1 +1, x2)−u1(x1, x2)| ≤ 1.

The achievable delay-power region is given in Fig. 2 and
explained in Sec. 4.2.

4. Low complexity scheduling

When there are large number of users in the system and
their buffer sizes are large, the number of possible states
in the VIA increases exponentially and finding the opti-
mal scheduler becomes computationally intensive. Further,
in situations where the optimal scheduler is adapted over
time (say when arrival distributions are measured in real
time) the implementation of the VIA could be difficult. In
this section, we present low complexity near optimal sched-
ulers. We also derive a closed form approximation for the
dependence of power on delay of different users in Sec. 4.3.

4.1. Low complexity CDMA schedulers

One simple and obvious way to design a low complex-
ity scheduler is to make decisions on the number of packets
uk,n to transmit for each user independent of the other users
and dependent only on their respective buffer states xk,n.
We refer to such a scheduler as a non-cooperative sched-
uler and use its performance as a benchmark to compare the
performance of the proposed optimal and low complexity
schedulers. As will be clear from the numerical examples
in Sec. 4.2, there could be a significant difference in the per-
formance of the optimal and non-cooperative schedulers.

We now propose a set of low complexity schedulers
which reduces the number of states in the VIA and consists
of two steps as detailed below.

1. In the optimal scheduler, uk,n is a function of xn. In
the proposed low complexity scheduler, we force uk,n

to be a function of xk,n and fk(xn) where fk(.) is a
discrete function of xn and does not depend on xk,n.
For example, when K = 2, we choose

f1(xn) =

{

1 if x2,n ≤ λ2D2,o

2 if x2,n > λ2D2,o

,

and similarly for f2(xn). In this case, we have chosen
f1(xn) to take on two different values. As the num-
ber of values taken by f1(xn) increases to be equal to
(L2+1) and f1(xn) = x2,n the low complexity sched-
uler approaches the optimal scheduler. At the other ex-
treme, as the number of values taken by f1(xn) equals
1, the low complexity scheduler chooses uk,n only
as a function of xk,n and essentially becomes a non-
cooperative scheduler. Hence, this method defines a
whole range of schedulers in which the performance
can be traded with the computational complexity.

We can modify the VIA to compute pseudo-optimal
solutions with the constraints as imposed in condition
1. However, to further reduce the complexity of com-
puting the schedulers, we propose the following step.

2. For each user, choose uk,n(xk,n, fk(xn)) =
blog(βk,ixk,n)c where fk(xn) = i and b.c represents
the largest integer no greater than the argument. We
further impose the constraints that 0 ≤ uk,n ≤ xk,n

and uk,n ≥ Mk − Lk + xk,n (needed to maintain
zero buffer loss). For example, with f1(xn) defined
as in condition 1 above, we let u1,n(xk,n, f1(xn)) =
blog(βk,1xk,n), blog(βk,2xk,n)c when f1(xn) = 1
and 2 respectively. The motivation for this step 2,
comes from the near optimality of the log-linear
scheduler in the single user scenario [14, 16].

We now prove that these low complexity schedulers can
achieve the whole range of delays for the different users.



Proposition 1 (Achievability of entire delay range)
There exist parameters {βk,i}k,i

such that the whole range
of delays are achievable for all users.

Proof : By imposing the constraint that βk,i = βk∀i, we can
easily see that the resulting delay for user k depends only
on βk and not the other βj , j 6= k. For very small value
of βk such that blog(βk,1Lk)c < 1 the resulting scheduler
will have largest possible average buffer length while still
maintaining zero buffer overflow (because we ensure that
uk,n ≥ Mk − Lk + xk,n.). Also for very large value of βk

such that blog(βk,1Mk)c = Mk, a delay of exactly one can
be achieved. Now, by monotonically increasing βk in the
range suggested above, the whole range of possible delays
for user k can be achieved [16]. ¤

We now present a method for choosing the βk,i parame-
ters given a particular set of delay constraints in the special
case of 2 users and fk(.) as illustrated in step 2 above.

The structure of the optimal schedulers computed using
the VIA indicates that in general for a given buffer state
of user 1, we transmit more (or equal) packets when buffer
state of user 2 is sparsely filled than when buffer of user 2
is almost full, i.e., u1(x1, i) ≥ u1(x1, j) if i < j: This
scheduling behavior is also intuitive since the total power
depends exponentially on both rates. Hence, we further im-
pose the constraint that β1,1 ≥ β1,2 in the low complexity
scheduler in the two user case.

Now, βk,1 is varied by a predetermined fixed steps start-
ing from βk:min to βk:max. For each value of βk,1, the
value of βk,2 is varied using the same fixed step size be-
tween its minimum and maximum value with the further
constraint that βk,1 ≥ βk,2. For each value of βk,1 and
βk,2 the required transmit power and the delays achieved
are computed using (9) and (8) respectively. Now from
the total available delays and powers, find the largest de-
lay achieved that is no greater than the delay bound spec-
ified; the corresponding power is the required transmis-
sion power using the low complexity scheduler. The val-
ues for βk:min and βk:max are determined based on sim-
ple discrete properties of blog(.)c functional and ensuring
that uk,n ≤ xk,n. For the simulation results shown in
Sec. 4.2, we chose βk:min = e

Lk−Mk
and βk:max = 1

Lk
eLk .

The delay-power profile achieved using this low complex-
ity scheduler is shown in Fig. 2 and is explained in the next
section.

4.2. Numerical Results

A cross-section of the achievable delay-power region is
given in Fig. 2 for a two-flow (K = 2) system. The delay
of user 2 (QoS flow) is fixed at 1 time-slot and the variation
of the total power with the delay of user 1 (elastic flow)
is plotted. Again, it should be reiterated that the optimal

scheduler achieves the delays and powers on the boundary
of this achievable region.

For unity delay bound, Dk,o = 1 for both flows, the
scheduling action is straightforward; all packet arrivals dur-
ing a slot must be transmitted during the next slot. As the
delay of user 1 increases, the total transmit power reduces
and the reduction in power is significant for the initial in-
creases in delays. The reduction in power is due to two
components: i) Convex relation between power and rate of
transmission for each user (9). Transmitting more packets
requires exponentially increasing amounts of power. As the
delay deadline of user 1 increases, its packets are delayed
so that transmission of large values of u1, is minimized and
thus average power consumption is reduced. In this case,
user 2’s packets have to be instantaneously transmitted since
it has unit delay bound. ii) Statistical multiplexing of the
packets of different users. Since the power depends expo-
nentially on the sum rate of all users (9), when user 2 has
a large number of packets to transmit, user 1 throttles back
its transmissions and sends small u1. Similarly, when u2 is
small, user 1 increases its transmission rate (since its pack-
ets are buffered) to meet its delay bounds. Clearly, the sta-
tistical multiplexing gain is larger for larger delays. As the
delays of all users increases, the optimal scheduler, trans-
mits close to the average arrival rate (subject to availability
of packets and meeting of delay bounds) for each user in
each time-slot and the required power equals the Shannon
limit Pbc(λ), where λ=[λ1, . . . , λK ] is the vector of average
arrival rates. In Fig. 2, even as delay of user 1 increases, the
average power does not reach Pbc; it is achieved only when
the delay of both users asymptotically go to infinity.

The performance of the noncooperative and low com-
plexity schedulers are also shown in Fig. 2. The non-
cooperative scheduler requires appreciably more power
than the optimal scheduler for all D2,o > 1.1. In fact, as
the delay of the elastic flow increases, the non-cooperative
scheduler requires approximately 30% more power than the
optimal scheduler (L1 = L2 = 20,M1 = M2 = 6, N1 =
0.01, N2 = 0.25). The reasons for such large power dispar-
ity are as follows. For larger delays, the non-cooperative
scheduler will transmit close to mean arrival rate for the
elastic flow, irrespective of how many packets are transmit-
ted for the QoS flow. In contrast, for the optimal scheduler,
whenever the QoS flow is forced to transmit a large number
of packets to meet its delay bound, the scheduler only trans-
mits a small number of packets for the elastic flow. Alter-
nately, when the QoS flow has few packets to send, the elas-
tic flow can be opportunistic and send more packets. Thus,
as noted earlier, the optimal scheduler statistically multi-
plexes the two flow-data.

A sample realization, in Fig. 3, of the number of pack-
ets transmitted by the different schedulers for both flows
confirms the above observation. The total number of pack-
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Figure 2. Performance of optimal, low com-
plexity and noncooperative schedulers for
two users. The delay for user 2 is fixed at
1 time-slot. (L1 = L2 = 20, M1 = M2 = 6).

ets transmitted by the optimal scheduler is almost a con-
stant, thereby avoiding large power swings. However,
the non-cooperative scheduler transmits approximately con-
stant number of packets in each time-slot for the elastic flow,
leading to large variations in the total number of transmit-
ted packets and hence the total required power. The optimal
scheduler decisions for the elastic flow are strongly tied to
the the decisions made for the QoS flow, which is not the
case in the non-cooperative scheduler. The low complex-
ity CDMA scheduler achieves a balance between approach-
ing the performance of optimal scheduler and increasing the
complexity of computing the optimal scheduler. By choos-
ing βk,1 > βk,2 the low complexity scheduler transmits
more packets for user k for the same buffer state of user
k, when the other users buffer is less full and vice versa.
Although the total number of packets transmitted using low
complexity scheduler (see Fig. 3) is not a constant (like in
optimal scheduler), it has much lesser variation than in non-
cooperative scheduler. The sample variance of (u1 + u2)
in the optimal, low complexity and non-cooperative sched-
ulers are 0.44, 2.6 and 4.2, respectively, confirming our ex-
planation. The power-delay performance of the low com-
plexity scheduler is near optimal as is evident from Fig. 2.

4.3. Closed form approximation

We now derive an approximate relationship between the
total transmission power, the delays and rates of each user
in a broadcast system. One of the motivating factors in de-
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Figure 3. Sample run for non-cooperative,
optimal and low complexity CDMA sched-
ulers for two-flows with different delay re-
quirements. (L1 = L2 = 20, M1 = M2 = 6).
The variance of u1 + u2 in this sample run
for the joint optimal, low complexity and non-
cooperative schedulers are 0.44, 2.6 and 4.2
respectively.

riving such a relationship is to allow coarse approximation
of the power required to support a set of users with a given
set of delay constraints. This approximate power could be
used to make admission control decisions based on the to-
tal available power. Alternatively, one could calculate the
excess delay needed to support the users under given aver-
age power constraints. The relationship (derivation in Ap-
pendix A.5) is given by

Po ≈ W

K
∑

i=1



e
λi+

σ2
ai

4λiDi−2

W − 1



Ni

K
∏

j=i+1

e
λj+

σ2
aj

(4λjDj−2)

W ,

(14)
where σ2

ai
represents the variance of the arrival process {ai}

of user i. The effect of random source arrivals is clearly

highlighted in (14) by the factor
σ2

ai

λi
. Sources which exhibit

large variations in their arrivals compared to their mean rate

and are “more” bursty, have large
σ2

ai

λi
. For more bursty

sources, even small increase in Davg allows considerable
power savings; practical examples of such sources include
web and email traffic. Asymptotically, as Davg → ∞,
the high delay approximation gives (6) with transmission
rates λ, which is the same as the Shannon limit. As
Davg → ∞, the random arrivals of the source are com-



pletely smoothened and hence well known information the-
oretic analysis applies. The numerical accuracy of the ap-
proximation is studied in [14].

5. Conclusions

In this paper, we presented optimal power efficient
packet schedulers for broadcast channels that meet certain
average delay bounds. We also introduced an approxi-
mate relation between power, rates and delays for multiuser
broadcast Gaussian channel that is accurate for high delays;
To the best of our knowledge its the first such closed form
relationship.

This paper assumes a simple memoryless model for
source arrivals. Extensions to more complicated traffic
models and situations where source arrival statistics are
measured need to be addressed in future work. Also, the
schedulers presented in this paper could form the basis for
efficient scheduling in multihop networks.
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A Appendix

A.1. Proof of Theorem 1: Zero Buffer Overflow

If xi
k,n ≤ Lk − Mk then from (2), xj

k,n+1
≤ Lk

and as a result, there will be no buffer overflow. So a
buffer overflow is possible only if xi

k,n > Lk − Mk, thus
we will focus on the case when xi

k,n = Lk−Mk+1, ..., Lk.

Direct (if) : We will first prove that if either of Condition 1
or 2 is satisfied, then the scheduler will be zero loss. If
xi

k,n ≥ Lk − Mk, and Condition 2 is satisfied, then using
(2) we get

xj
k,n+1

≤ xi
k,n − zk + Mk

≤ Lk − Mk + Mk = Lk.

Therefore there will be no buffer overflow. On the other
hand, if Condition 1 is satisfied for state xi

k,n ≥ Lk − Mk,
then there is zero probability for the buffer to be in that state.
Thus, no buffer overflow is possible. Note that we have
assumed that the buffer starts from the zero state, xi

k,0 = 0

(if the buffer was initialized from a state xi
k,n = y such that

si = 0 and (y − zk) > Lk − Mk + 1 then there will be a
buffer overflow with finite probability).
Converse (only if) : We prove by contradiction that if there
exists state xi

k,n = y ≥ Lk − Mk that does not satisfy both
Conditions 1 and 2, then the corresponding scheduler will
not be zero loss. If state i of the buffer does not satisfy
Condition 1, with finite non-zero probability the buffer will



be in state i. Since state i also does not satisfy Condition 2,
using (2) with finite probability

xj
k,n+1

= y − zk + Mk

> Lk − Mk + Mk = Lk.

Consequently, a buffer overflow occurs. ¤

A.2. Proof of Theorem 2: Characterization of delay
and power

The proof consists of 3 main steps as follows.

1. We first provide a constructive method of expressing
a randomized zero loss schedulers α in terms of the
deterministic schedulers.

(a) Set user number k = 1.

(b) Set state i = 1; If k = 1, let the parent sched-
uler (denoted β) be the original scheduler.

(c) For each state x
i, the parent scheduler of inter-

est can be written as convex combination of xi
k

different children schedulers (denoted ρj) which
are identical for all states for all users except user
k and for user k identical in all states except state

x
i, i.e., β ≡

∑xi
k

j=1 τjρj , where
∑

τj = 1, τj ≥

0. In state x
i, the output for user k in children

scheduler ρj is j. The factors τj in the convex
combination equal the probability of transmitting
0, 1, . . . , |xi

k| packets for user k in state x
i using

parent scheduler β, i.e., τj = p(uk = j|xi).

(d) Let i = i + 1; Repeat Step c for each of the chil-
dren scheduler in the previous step if i < |Ω|.

(e) Let k = k + 1. Repeat Steps b-d for each of the
children scheduler in the previous step if k < K.

Further in the above expansion of the scheduler α, the
coefficients of all non-zero loss deterministic sched-
ulers can be shown to be zero. (Proof of this follows
directly from Proposition 6 of [16].)

2. We now prove the following Lemma.

Lemma 1 (D-P of 2 “almost” identical schedulers)
Let αA and αB be two zero outage schedulers which
have identical output for all users in all buffer states
except in the x

i buffer state. Moreover, in the ith

buffer state let schedulers αA and αB differ in the
output of only one user (we refer to such schedulers as
“almost” identical schedulers). The delay and power
of scheduler α which is given by a convex combination
of αA and αB , equals a convex combination of the
delays and powers of αA and αB , respectively. In

other words, if α ≡ ηαA + (1 − η)αB , η ∈ [0, 1]
then Dk(α) = ηDk(αA) + (1 − η′)Dk(αB) and
Pavg(α) = η

′

Pavg(αA) + (1 − η
′

)Pavg(αB), where
0 ≤ η

′

≤ 1.

Proof: It is easy to see that CαA
and CαB

differ in
only the ith column where x

i is the state in which
scheduler actions αA and αB differ. Moreover, C

i
α

which represents the ith column of Cα is given by
C

i
α = ηC

i
αA

+ (1 − η)Ci
αB

. Using simple alge-
braic manipulation, the stationary probability sα us-
ing scheduler α (given by (7)) can be shown to be
sα = η

′

sαA
+ (1 − η

′

)sαB
where

η
′

=
ηsαA,i

ηsαA,i + (1 − η)sαB ,i

. (15)

It follows from (8) that the average delay of user k
using scheduler α, is given by Dk(α) = ηDk(αA) +
(1− η′)Dk(αB). Clearly, the delays of the other users
are the same in schedulers αA, αB and consequently
in α.

Now it remains to show that the average power of
scheduler α follows a similar convex combination.
From (9) we find that

Pavg(α) =
∑

x
i

∑

u

sα,iPbc(u)pα(u|xi)

= η′Pavg(αA) + (1 − η′)Pavg(αB)

which follows after simple manipulation and applica-
tion of (15). Hence, the lemma is proved.

3. In our construction of the basis expansion of scheduler
α in the first step, we have a convex combination of
schedulers which differ only in the output of a single
user k for a particular buffer state x

i. Hence, using
Lemma 1 the delay and power of scheduler α is given
by a convex combination of the delays and powers
of two schedulers (which need not be deterministic).
Each of these schedulers is further written in terms of
schedulers which are “almost” identical and hence its
power and delay are convex combinations of delay and
power of some schedulers. Repeating this process till
the resulting schedulers are deterministic, the theorem
is proved. ¤

A.3. Proof of Theorem 3: Converse of Theorem 2

Since scheduler αA achieves average delay Davg(αA)
and average power Pavg(αA), it implies that for any ε > 0,
there exists an N > NαA

such that using scheduler αA

for N time-slots gives average delay D̂αA
and average

power P̂αA
satisfying |D̂avg(αA) − Davg(αA)| < ε and

|P̂avg(αA)−Pavg(αA)| < ε. Similarly NαB
exists for αB .



Now, we time share between schedulers αA and αB in
the ratio η : (1−η) to get scheduler α. Given any ε > 0 find

N = max
(

NαA

η
,

NαB

1−η

)

. While switching from scheduler

αA to αB , we additionally flush the buffer in time-slot ηN .
Now,

|D̂avg(α) − Davg(α)| ≤ η|D̂avg(αA) − Davg(αA)| +

(1 − η)|D̂avg(αB) − Davg(αB)| +
Lmax

Nλmin

≤ ηε + (1 − η)ε +
Lmax

Nλmin

= ε +
Lmax

Nλmin

,

where Lmax = max(L1, L2, . . . , LK) and λmin =
min(λ1, . . . , λK). In the limit as N → ∞, Lmax

Nλmin
→ 0.

Hence, D̂avg(α) → ηDavg(αA)+(1−η)Davg(αB). Sim-
ilarly,

|P̂avg(α) − Pavg(α)| ≤ η|P̂avg(αA) − Pavg(αA)| +

(1 − η)|P̂avg(αB) − Pavg(αB)| +
1

N
Pbc(L)

≤ ηε + (1 − η)ε +
1

N
Pbc(L)

= ε +
1

N
Pbc(L),

where L = [L1, L2, . . . , LK ]. In the limit as N →
∞, 1

N
Pbc(L) → 0. Again, if we consider K consecutive

blocks of N time-slots, the total average delay and power is
given by the average of the delays and powers in each block
of N time-slots. Hence, by time-sharing between sched-
ulers αA and αB we can achieve all delays and powers given
by the convex combination of the delays and powers of αA

and αB . ¤

A.4. Value Iteration Algorithm (VIA)

Let C(i, a) represent the cost incurred in doing action
a in state i. Let Pij(a) is the probability of transitioning
from state i to state j under action a. Also, let x denote
a predetermined state and ε is a small positive number that
determines the stopping criterion. The general steps in the
Value Iteration Algorithm [17] are

1. Initialize v0 ≡ 0, δ = 1 and k = 0 .

2. Evaluate wk(i) = min
a

{

C(i, a) +
∑

j Pij(a)vk(j)
}

.

3. Set δ = |wk(x) − wk−1(x)| and vk+1(i) = wk(i) −
wk(x).

4. Repeat steps 2 and 3 above till δ < ε.

5. The optimal actions for each state i are obtained as

a∗(i) = arg min
a







C(i, a) +
∑

j

Pij(a)vk(j)







.

In the above, k represents the kth iteration of the VIA.
In the case of schedulers which bound average delay, the
different VIA symbols have the following correspondence,
i ≡ xi, a ≡ u(xi). Also, Pi,j(a) depends on the arrival
distribution p(an) and C(i, a) = Pbc(un) + εxn where ε is
the Lagrangian used in (13).

A.5. Multiuser power-delay approximation

The derivation of the multiuser power-delay approxima-
tion is based on two simplifying assumptions: the packets
are infinitely divisible (fluid model) and the output distri-
bution of number of packets transmitted in a time-slot for
each user is Gaussian and independent of other users. The
fluid model allows us to divide packets arbitrarily, and thus
avoid the discrete nature of scheduler decisions, which is a
significant reason for intractability of closed-form analysis
of the optimal scheduler.

As discussed in Sec. 4.2, for large Dk,o, the optimal
scheduler transmits at rates close to average arrival rate
λk if buffer overflows can be avoided. The scheduler ac-
tion uk,n(xn) for user k can thus be approximated around
E{xn} by the following linear relation,

uk,n = µkxk,n + νk. (16)

For a stable system, the average arrival rate should equal the
average departure rate and hence E{uk,n} = λk. Using (2)
and the stationarity of xk,n we find µkE[xk,n] = −νk +λk.
The slope of the scheduler, νk, at E{xk,n} is given [16] as
µk = 1/E{xk,n}. The variance of the output process, uk,n,
denoted by σuk

, is found using (16) as,

σ2
uk

=
σ2

ak
µk

2 − µk

=
σ2

ak

2E[xk,n] − 1
, (17)

where σ2
ak

is the variance of the arrival process {ak,n}.
Using the Gaussian approximation for the distribution of
uk,n ∼ N (λk, σ2

uk
), the average transmit power is

E{Pn} =

(

K
∏

k=1

1
√

2πσ2
uk

)

∫ ∞

−∞

. . .

∫ ∞

−∞

W
K
∑

i=1

(

e
ui,n

W − 1
)

Ni

K
∏

j=i+1

e
uj,n

W

K
∏

l=1

e
−

(ul,n−λl)
2

2σ2
ul,n du1,n . . . duK,n

which can be evaluated and shown to equal (14).


