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Abstract—LambdaGrid applications as typified by data-intensive 

collaborative visualization are likely to be the first users of 

terabit-level networking. This paper features a main enabler of 

collaborative visualization over LambdaGrid, the Scalable 

Adaptive Graphics Environment (SAGE) in particular, and 

anticipates the future needs of LambdaGrid applications in 

general. We present a scalable architecture called LambdaBridge 

to ‘bridge’ LambdaGrid applications with the terabit optical core 

networks. LambdaBridge will provision and control predictable-

performance networks for end-systems (i.e. Grid clusters) using 

on-demand lambda/VLAN provisioning and end-system traffic 

shaping. The chief contribution of LambdaBridge is a deep 

understanding of how to synergistically bridge provisionable 

networks, end-systems, and future generation distributed terabit 

applications. This paper also introduces Scalable Visualcasting – 

a multicasting service for LambdaGrid that incorporates IP 

multicasting and optical multicasting. 

I. INTRODUCTION

In a decade’s time, high-performance computing has 
proven its value in Science, Homeland Security, Medicine, 
Engineering, Education, and Filmmaking. These data-intensive 
domains rely on the Grid to process terabytes of raw data to 
produce meaningful insight. Typically, these large-scale 
datasets must flow among a Grid of instruments, physical 
storage devices, visualization displays, and computational 
clusters. These applications have a real need for tens to 
hundreds of gigabits-per-second of bandwidth and 
deterministic QoS that are best satisfied by interconnecting 
Grid resources with dedicated networks dynamically created by 
concatenating optical lightpaths (lambdas). This is called a 
LambdaGrid [1-4]. 

One of the pioneering LambdaGrid applications is 
collaborative visualization which allows users from 
geographically distant institutions to interactively visualize and 
analyze the shared data. A fundamental goal of data-intensive 
collaborative visualization on LambdaGrid is to enable users to 
collectively interpret large-scale (e.g. multi-terabyte) remote 
datasets in real-time at extremely high resolutions, thereby 
dramatically increasing the productivity of data interpretation. 

We envision that in the future it will become routine for users 
to work and collaborate in rooms whose walls are made from 
seamless ultra-high-resolution displays that are fed by data 
streamed over ultra-high-speed networks from distantly located 
visualization, storage servers, and high-definition video 
cameras [3-4]. We have taken the first steps towards this vision 
by building LambdaVision – a tiled display built from 55 LCD 
screens with a total resolution of 100 megapixels (see Figure 1). 
LambdaVision is primarily enabled by the Scalable Adaptive 
Graphics Environment (SAGE) [5], a middleware system for 
managing visualization and high-definition video streams that 
are presented on scalable displays. Specifically, SAGE allows 
remote groups of users to simultaneously display imagery of 
multiple remote visualization applications on high-resolution 
tiled displays, thereby providing an ideal distant collaborative 
visualization environment with multiple endpoints. 

LambdaGrid applications as typified by SAGE applications 
routinely access remote large-scale datasets and visualize the 
rendered pixels on high-resolution displays. The network 
bandwidth requirement is in the range of several tens to 
hundreds of gigabits per second. In addition to the huge 
bandwidth usage, these applications usually generate hundreds 
to thousands of parallel flows. These flows emanate from 
network interfaces in the endpoints (i.e. the compute clusters) 
to communicate with other endpoints over multiple lightpaths. 
More complex flows include multiple parallel endpoints, inter-

Figure 1. LambdaVision driven by SAGE 
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communicating over known, but arbitrary, physical network 
topologies. These flows impose differing demands on the 
host’s system resources, such as memory, bus bandwidth and 
CPU. However, as the exponential growth of bandwidth now 
far exceeds storage and computing, a significant impedance 
mismatch exists between these high-capacity lambda-based 
networks and the endpoints that must absorb the bandwidth, 
resulting in inadequately performing applications. At the 
LCA06 (Linux Conference Australia 2006) conference, 
keynote speaker Van Jacobson resonated a similar sentiment 
“The end of the wire isn’t the end of the net,” – that is, the 
future challenges of high-performance networking reside at the 
edges [6]. While much prior work has focused on Quality of 
Service for the networks, this has not been the case within the 
edge devices, most notably the computers that must send, 
receive and process the network payload. On-demand networks 
built with optical technologies allow significantly better bounds 
on “competing” traffic and can therefore enable more-
aggressive transmission protocols. However, parallel endpoints 
still face contention and resource sharing issues.

This paper anticipates the future needs of LambdaGrid 
applications by addressing key issues toward enabling terabit-
per-second network flows. These issues include: how to 
affordably and practically terminate hundreds of gigabits of 
bandwidth at the edges while minimizing the penalties 
associated with optical-to-electronic translation; how to 
efficiently manage the myriad parallel data flows among and 
within the endpoints; and, does treating these parallel 
communication channels as a single problem rather than as 
entirely uncoordinated flows allow either better utilization or 
more predictable performance? 

We examine these issues and present a scalable architecture 
called LambdaBridge to support future generation LambdaGrid 
applications. In section II, we feature data-intensive 
collaborative visualization - a pioneering LambdaGrid 
application and its main enabler – the SAGE middleware. After 
briefly describing the SAGE framework and its typical 
applications, we present the specific network requirements 
made by LambdaGrid applications. In section III we give an 
overview of the LambdaBridge architecture which bridges 
LambdaGrid applications with the optical core networks. The 
two research programs: a traffic-to-lambda mapping scheme 
called LambdaBridging, and an end-system & network 
resource-aware flow management mechanism called 
Synergistic Flow Framework are elucidated. Section IV 
introduces the concept of Visualcasting - a specifically 
designed image multicasting service for ultra-definition 
visualization. We present several approaches including both IP 
multicasting and optical multicasting; the LambdaBridge 
multicast support issue is also discussed. Section V concludes 
the paper. 

II. SCALABLE ADAPTIVE GRAPHICS ENVIRONMENT

A fundamental goal of visualization and collaboration on 
LambdaGrid is to enable users to collectively interpret 
enormous data-sets in real-time at extremely high resolutions. 
An increasingly important model is to conduct the visualization 

using large pools of computing resources (such as clusters of 
powerful computers equipped with high-performance graphics 
processors) and streaming the results to the collaborating end-
points. These end-points may range from PDAs all the way up 
to ultra-high-resolution display walls such as those built from 
stitching together dozens of LCD panels. The image streams 
shown on these display devices may consist of offline rendered 
movies as well as real-time visualizations, and high-definition 
video. This approach provides significant advantages: firstly 
the pooling of computing resources increases utilization, 
especially when they are cast as Grid services that can be 
combined with other services to form a pipeline that could link 
large-scale data sources with visualization resources. Secondly, 
since networking is diminishing in cost at a rate exceeding that 
of computing and storage, it becomes more cost-effective for 
users to build low-cost, networked thin-clients than to have to 
purchase and maintain their own rendering farms, storage 
repositories, etc. 

We developed the Scalable Adaptive Graphics 
Environment (SAGE) to put this model into practice. SAGE is 
specialized middleware for enabling data, high-definition video 
and extremely high-resolution graphics to be streamed in real-
time from remotely distributed rendering and storage clusters to 
scalable displays over ultra high-speed networks. Each 
visualization application (such as real-time or offline rendered 
visualizations, remote desktop, high-definition video streams, 
2D maps etc.) streams its rendered pixels (or graphics 
primitives) to the virtual high-resolution frame buffer of SAGE, 
allowing user-definable window position and size on the 
displays (e.g. the output of arbitrary M by N pixel rendering 
cluster nodes can be streamed to X by Y pixel display screens). 
Furthermore, SAGE enables users to freely move, resize and 
overlap the application windows by dynamically reconfiguring 
pixel streams. 

The most unique feature of SAGE is the high-speed 
graphics streaming capability over wide-area networks as 
shown in Figure 2. SAGE can use various streaming protocols 
such as LambdaStream [18-19], that are designed for high-
bandwidth and high round-trip time networks. By decoupling 
graphics rendering from graphics display, visualization 
applications developed on various environments can easily 

Figure 2. SAGE over Wide Area Network 



migrate into SAGE by streaming their pixels into the SAGE 
virtual frame buffer. Also, SAGE provides scalability by 
supporting any number of rendering and displaying nodes, 
number of tiles, and screen resolution. The SAGE visualization 
applications have extremely fast access to huge datasets at 
remote or local sites taking advantage of affordable ultra-high-
bandwidth networks. Moreover, we are extending SAGE to 
scalably support distance collaboration with multiple endpoints 
by streaming pixels to all the participating endpoints using 
either traditional IP multicasting or optical multicasting. We 
will discuss more about the multicast issue later. 

SAGE has successfully supported our high-resolution-
display LambdaVision (Figure 1 ) that is a 17-foot wide, tiled 
display built from an 11x5 array of LCD screens with a total 
resolution of 100 megapixels. A high-resolution display like 
LambdaVision is essential in visualizing large datasets without 
losing details. Geoscientists working with aerial and satellite 
imagery (365Kx365K pixels maps) and neurobiologists 
imaging the brain with montages consisting of thousands of 
pictures from high-resolution microscopes (4Kx4K pixels 
sensor) are good examples of SAGE and LambdaVision users. 
SAGE now runs across most Global Lambda Visualization 
Facility (GLVF) [2] research sites as well as industrial sites 
including Rincon Research Corporation and Nortel.  

A. SAGE Framework 

The SAGE framework consists of various components: 
Free Space Manager (FSManager), SAGE Application 
Interface Library (SAIL), SAGE Receiver, synchronization
channel, and UI Clients as shown in Figure 3. The Free Space 
Manager (FSManager) is the window manager of SAGE. This 
is akin to a traditional desktop manager in a windowing system, 
except that it can scale from a single tablet PC screen to a 
desktop spanning over 100 million pixel displays. The 
FSManager receives various user commands from UI clients 
such as application execution, window move, resizing or z-
order change (overlapping windows) and then executes the 
commands by sending control messages to SAIL and (or) 
SAGE Receivers. SAIL is a very simple API Library that 
allows SAGE applications to communicate with the 
FSManager and stream pixels to SAGE receivers. A SAGE 
Receiver is a software object running on each display node that 
is in charge of receiving pixel streams of one application 

instance. The received pixels then are loaded into the graphics 
card memory and drawn on the screens driven by the display 
node. To display an application image on the tiled display, we 
need to synchronize the sub-images on each tile and make one 
large consistent image. We designed the display 
synchronization channel among SAGE receivers and the 
rendering synchronization channel among SAIL instances for 
parallel applications. UI Clients are provided to allow users to 
control the Free Space Manager and monitor the status of 
SAGE. UI Clients can be Graphical User Interface, text-based 
console or tracked devices. Any UI client can execute, 
shutdown, move, and resize SAGE applications in a manner 
very similar to a typical contemporary windowing system. 
Furthermore, UI clients can reside on any machine (laptop, 
tablet, desktop etc.) that can be connected to the Free Space 
Manager over any network. 

B. Demonstration of SAGE Applications 

Figure 1 shows four real applications used for a typical 
SAGE demonstration. The display in the figure is located in the 
Electronic Visualization Laboratory (EVL) in Chicago. 
MagicCarpet on the right is an interactive ultra-high-resolution 
multi-resolution image viewer. It was streaming Blue Marble 
dataset created by NASA from San Diego to EVL using UDP. 
JuxtaView [7] in the middle is a high-resolution image viewer 
that can pan and zoom over a huge image dataset such as 
356Kx356K aerial photography. It was locally streaming the 
aerial photography of downtown Chicago using TCP. Bitplayer 
on the top-left is an HD animation player developed by the 
National Center for Supercomputing Application (NCSA). It 
was streaming an animation of a tornado simulation from the 
StarLight facility (located three miles away in downtown 
Chicago) to EVL using UDP. Scalable Visualization Consumer 
(SVC) on the bottom-left developed by Gwang-ju Institute of 
Science and Technology (GIST) was locally streaming HD 
camera live feed using TCP. Table I shows the sustained 
bandwidth consumption, frame rate, rendering resolution and 
the number of rendering nodes of these applications in this 
experiment. SAGE can simultaneously support these 
applications without decreasing their performance. 

C. Requirements of LambdaGrid Visualization Applications 

Interactive ultra-high-resolution LambdaGrid visualization 
applications routinely access remote datasets spanning multiple 
terabyte and visualize the rendered pixels on high-resolution 
displays. The network bandwidth requirements for browsing 
these datasets or pushing the rendered pixels to remote displays 
are in the range of several tens to hundreds of gigabits per 
second. In addition to the huge bandwidth usage, these 
applications usually create hundreds of bidirectional streams 
between distant endpoints, each with differing flow 

Figure 3.  SAGE  components 

TABLE I. PERFORMANCE OF SAGE APPLICATIONS

Application
Bandwidth 

(Mbps) 

Frame 

Rate (fps) 

Rendering

Resolution

Node

Num 

MagicCarpet 6737.3 33.7 3200x3000 10

JuxtaView 850.6 4.0 3200x3200 8

Bitplayer 516.8 11.3 1920x1080 1

SVC 538.4 24.9 1440x1080 1



requirements operating over differing transport protocols.  
Table II quantifies the broad variety of flows that 
simultaneously emanate from SAGE.  A single visualization 
rendering on a cluster of 8 computers streaming to a remote 
tiled display of 55 tiles (driven by 28 computers) will create as 
many as 96 visualization flows, 36 control flows, and 34 
synchronization flows for a total of 166 flows. In a 
collaborative session of 3 remote sites sharing 3 visualizations, 
the number of flows could reach as high as 1500; and all of 
these flows can compete simultaneously for networking, 
memory, system bus, and CPU resources. These flows must be 
synergistically coordinated and intelligently mapped to the 
available resources so that the desired end-to-end performance 
is achieved. Currently this is managed by intuition on a 
configuration-by-configuration basis. What is needed instead is 
an automated means to provide systemic quality of service. 
Explicitly coordinated, resource-aware network flows will lead 
to more predictable performance and enable both uniform and 
non-uniform distribution of network resources among the 
parallel endpoints. 

III. LAMBDABRIDGE ARCHITECTURE

Driven by the insatiable and diversified traffic demands 
made by LambdaGrid applications, we present a 
LambdaBridge architecture enabling applications to more 
efficiently access lambda-based networks. Whereas much of 
the work thus far has focused on creating and provisioning the 
core network infrastructure, LambdaBridge focuses on a much-
needed edge-based strategy to “bridge” applications on future 
terabit wide-area networks. The LambdaBridge architecture 
will provision and control predictable-performance networks 
for clustered endpoints using on-demand lambda/VLAN 
provisioning and endpoint traffic shaping. This will be realized 
using LambdaBridging and Synergistic Flow Framework.

LambdaBridging investigates how to enable bridging 
points between end nodes and core networks to map 
parallel application data flows into parallel lambda paths 
so that both efficient data transport and optimized lambda 
utilization can be achieved. 

Synergistic Flow Framework investigates how to enable 
applications running on parallel computer nodes to 

generate/receive coordinated flows so that the resource of 
both networks and computer nodes can be shared and 
exploited efficiently. 

There is much related prior work in this area: coordinated 
congestion control [8-10]; explicit feedback-based control, 
such as those in XCP, TeXCP, ECN and NetX; adaptation of 
real-time (non-commodity) systems for application 
performance [11-12]; feedback-based application adaptation on 
commodity end-systems (such as Active Harmony, Prophesy); 
provisionable user-controlled networks (such as UCLP, 
PIN/PDC, DRAGON, CHEETAH, OMNInet, EnLIGHTened, 
OptIPuter); network Quality of Service [13-14]; high-
performance transport protocols [15-20]. The chief contribution 
of LambdaBridge is a deep understanding of how to 
synergistically bridge provisionable networks, end-systems, 
and future-generation distributed terabit applications. 

Figure 4 envisions a scenario of LambdaBridge-empowered 
LambdaGrid computing. Two applications (“A” and “B”) run 
on cluster nodes at three sites: UIC/Chicago, UCSD/San Diego 
and UvA/Amsterdam. These sites are interconnected via 
national and international optical links. The applications, 
cluster nodes and optical links are currently in place; the 
controller and hardware of LambdaBridge are under 
development. LambdaBridge will manage and adapt all flows 

TABLE II. NETWORK FLOWS CREATED BY ULTRA-HIGH-RESOLUTION GRID VISUALIZATION APPLICATIONS

Type of Flow Number of Flows Bandwidth per 

Flow 

Latency

Sensitive

Jitter

Sensitive

Reliability

Requirement 

Burstiness Message

Size

Protocol 

Audio Stream 1 per user Low 1Mbps Yes Yes Medium Constant Small UDP-based

HD Video 

Stream 

1 per user Medium to High 

25Mbps-1.5Gbps 

Yes Yes Medium Constant Small to 

Medium 

UDP-based

Application

Stream 

1-100 per application High 1-2.5Gbps Yes Variable High Application

Dependent

Large UDP-based

Bulk Data 1 per render node High No No High Application

Dependent

Large UDP/TCP-

based

Annotations/

Static Content 

1-10 per user Low 1Mbps No No High One Burst Small TCP-based 

Control Channel 1 per rendering node 

+ 1 per display 

Low 64Kbps No Yes High Short Burst Small TCP-based 

Synchronization 

Channel

1 per rendering node 

+ 1 per display 

Low 1Mbps Yes Yes High Constant Small TCP-based 

SAGE UI 1 per user Low 64Kbps No No High Short Burst Small TCP-based 

VNC Streams 1 per user Low 1Mbps Yes Yes High Small Burst Small TCP-based 
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of each application and provide site-to-site lambda connections 
for them. To seamlessly support these functions, the 
LambdaBridge architecture will necessarily consist of the 
following key components: SYNOPTIC, Synergistic End Node 
Controller, LambdaBridge Controller, and LambdaBridge 
Hardware.

SYNOPTIC is a high-performance, application-level 
protocol framework. It provides applications with the 
ability to compose desired flow characteristics and the 
power to express the relationship between its many flows. 
It communicates with SYNOPTICs on every other remote 
computer node with whom this node exchanges flows 
(end-to-end control).

Synergistic End Node Controller (SENC) resides on each 
computer node. It elicits the network condition from the 
LambdaBridge Controller. It provides network and end-
system-aware flow management for all SYNOPTIC flows 
sourcing and sinking at a node.  

The LambdaBridge Controller, present at each site, 
provides traffic management for all application traffic 
going in and out the site. It interacts with every local 
Synergistic End Node Controller to adapt the rate of all 
flows in its site. It maps flows into site-to-site traffic 
demands and then maps them onto lambda connections. It 
interacts with Optical Network C-plane (Optical Network 
Controller in the figure) for lightpath provisioning. It also 
controls LambdaBridge Hardware for appropriate traffic 
forwarding/switching.  

LambdaBridge Hardware is the physical device that 
provides traffic-to-lambda bridging for application data. It 
gathers traffic from all the computer nodes of the local site 
and maps it to multiple lambdas connected to different 
remote sites. It can be realized using a number of 
technologies, including Layer 1/2/3 devices, or a 
combination of them. 

A. LambdaBridging 

A LambdaBridge consists of a software component- the 
LambdaBridge Controller; and a hardware component- the 
LambdaBridge Hardware. 

1) LambdaBridge Controller 
LambdaBridge Controller manages all traffic of its local 

site and provides lambda connections for them. It exchanges 
site information with other LambdaBridge Controllers through 
the Control Plane (C-plane) so that each LambdaBridge 
Controller knows the list of Grid clusters that are connected to 
other LambdaBridge Controllers in the network. The 
LambdaBridge Controller consists of three functional modules: 
a Synergistic Network Controller, a VLAN Provisioner and a 
Lambda Provisioner.

Synergistic Network Controller consists of a collection of 
Synergistic Group Controllers (SGCs) and an Inter-group 
Coordinator (IGC). SGC is responsible for all the flows of an 
application at a given site. There is a SGC controlling each 
application at each site. The SGC receives requests for 

bandwidth, jitter, etc., from all the flows of an application. The 
communication between SGCs and SENCs is realized via 
signaling protocols, such as RSVP and SBM. Each SGC 
clusters the requests into site-to-site (LambdaBridge-to-
LambdaBridge) traffic demands according to the destination. 
These traffic demands will be passed on to the VLAN 
Provisioner for network resource allocation. The IGC manages, 
optimizes and coordinates traffic demands of multiple SGCs to 
enforce efficient resource sharing among applications. It 
advises each SGC on how it must adapt its bandwidth usage 
based on overall network conditions. Then, each SGC interacts 
with corresponding Synergistic End Node Controllers to adapt 
flows. The flow adaptation and optimization mechanism will 
be explained in detail in subsection B.

VLAN Provisioner provides VLAN connections for site-to-
site traffic demands. It manages a Connection Table containing 
current lambda connections and their VLAN setups. Each 
traffic demand is managed as a VLAN entity on a particular 
lambda connection. The VLAN-to-lambda mapping can be 
optimized using a channel allocation algorithm that seeks to 
satisfy QoS requirements of individual traffic demand, while 
maximizing overall lambda usage. For each new traffic demand, 
the VLAN Provisioner checks the Connection Table to see if 
there is an available lambda connection(s) to the remote site 
LambdaBridge. If YES, it sets up a VLAN and reserves the 
required bandwidth on it (them). If the requested bandwidth 
exceeds the available bandwidth of a single lambda, a group of 
VLANs on multiple lambdas is provided for the traffic demand. 
Note: The VLAN Provisioner does not actually reserve 
bandwidth; it only keeps track of the intended bandwidth usage 
of each VLAN (bandwidth control is performed by the 
Synergistic Flow Framework (SFF), which will be explained in 
the next subsection.) However, the VLAN Provisioner may 
incorporate a traffic monitoring mechanism and provide 
feedback to SFF. If there is no existing connection to the 
remote site or the total remaining bandwidth of existing 
connection(s) to it is not enough to accept the new traffic 
demand, the VLAN Provisioner will ask Lambda Provisioner 
for new or additional lambda connections. 

Lambda Provisioner provides automatic lambda 
provisioning for site-to-site connections. It communicates with 
the optical network C-Plane to request lightpath setup, 
teardown or reconfiguration. It reports information about 
lambda connections (such as available bandwidth and duration) 
to the VLAN Provisioner for Connection Table update. 
Lambda provisioning can be triggered by requests from VLAN 
Provisioner for integrated VLAN/lambda configuration, or by 
requests from the optical network C-plane for domain-wide 
lightpath optimization. The Lambda Provisioner will leverage 
existing Control-Plane research and standards (such as 
GMPLS, UCLP, PIN/PDC, DRAGON) for scheduling and 
provisioning lightpaths. Authorization, authentication and 
accounting functionalities [21] can be integrated to enable 
policy and security enforced network resource utilization. 

2) LambdaBridge Hardware 
LambdaBridge Hardware is a device to bridge application 

traffic and lambdas. A variety of existing Layer 2/3 commodity 
products for terminating lambdas at the edges can be 



architected to build a LambdaBridge with sufficient capacity to 
scale to a Terabit. Also, it is important to examine the 
feasibility of alternative novel hardware configurations using 
Layer 1 technologies, commodity PCs and hybrid 
configurations to terminate lambdas. In this paper, we present 
two of these solutions. 

L2 LambdaBridge. An approach using today’s commodity 
networking technology is to implement the LambdaBridge 
using Layer-2 (L2) switches with optical interfaces attached 
and a controlling service. In this case, LambdaBridging is 
realized using VLANs. In the LambdaBridge architecture, each 
site-to-site traffic demand (a group of flows) will incur a series 
of VLAN configurations. Specifically, all end nodes and 
LambdaBridges involved need to be assigned common VLAN 
IDs and/or (virtual) subnet IP addresses. Currently there is no 
practical way to automatically configure large numbers of 
VLANs among parallel endpoints connected by parallel paths 
in accordance with application flows dynamics. An automatic 
VLAN configuration tool is therefore needed to enable 
automatic, fast and secure VLAN configuration for both 
LambdaBridges and end nodes by means of autonomous and 
unified VLAN ID (and IP subnet addresses for L3 VLANs) 
assignment and signaling. Various allocation policies including 
centralized allocation, subset pre-allocation, and peer-to-peer 
negotiation can be applied. Prior work, such as Rbridges [22] 
and the IEEE L2 Scaling Enhancement activities (e.g. 802.1ah, 
802.1ad, 802.1s), and IETF activities (e.g. [23]) are leveraged 
to address the L2 scalability-related issues. For scalable 
LambdaBridge hardware design, L1+L2 hybrid switches used 
in next-generation high-performance interconnects [24-25] will 
be implemented. 

PC LambdaBridge. A more radical approach would be 
using PCs that are normally part of a Grid computing cluster, as 
direct termination points for lambdas, and using the cluster 
backplanes to switch the packets to their final destinations. We 
call this configuration the PC LambdaBridge. We conducted an 
analysis of terminating 1Tb using clusters of PCs [26] with an 
Infiniband/Myrinet backplane to achieve full bisection 
bandwidth, compared to a commercially available 1Tb switch, 
and found that the cost savings could potentially reach 80%. 
We realize that the PC-based solution is unlikely to perform to 
the degree of a dedicated switch; however, if the assumption is 
that lambdas will become cheaper than electronics, then it is 
not too far fetched to “waste” lambdas to compensate for the 
performance loss in a PC-based solution. The PC solution also 
has other advantages; it can bridge different Layer 2 
technologies where no commercial devices exist and, as new 
lightpaths are added, it can utilize more cluster nodes as serve 
bridge nodes and switch incoming traffic. This approach lets us 
prototype capabilities that might be useful to include in future-
generation L2 switches. A PC LambdaBridge can be realized 
using PCs with multiple-attached NICs. Both conventional 
NICs and WDM NICs can be used for lambda connections. 
WDM NICs are available now; wavelength-convertible WDM 
NICs are ready to implement and estimated to be available 
within the next few years. It would be important to evaluate the 
performance of PC LambdaBridges built with difference 
system specs (CPU, Memory, etc.) and NICs (such as high-end 

network processor-based NICs and WDM NICs). PC 
LambdaBridge also has the potential to take advantage of both 
L2 forwarding and IP addressing, which can be realized by 
implementing a PC router integrated with a new kernel driver 
that bypasses most of a CPU’s packet-by-packet forwarding 
processing. XORP [27] could be a good starting point for such 
implementation. 

B. Synergistic Flow Framework 

In hybrid high-bandwidth networks, the main bottleneck is 
the commodity-off-the-shelf end-systems (i.e. computers) that 
are either unable to keep up with incoming packets or source 
more data than their receiver(s) can handle. The problem goes 
even deeper, as each sending node typically sends and receives 
multiple streams simultaneously and applications have 
expectations about how those streams should behave 
(illustrated in Table II). 

The Synergistic Flow Framework consists of SYNOPTIC, 
the Synergistic End Node Controller (SENC) and the 
Synergistic Network Controller (SNC). Synergy for a 
LambdaGrid computing application is achieved by:  

The SYNOTPIC protocol framework, which strives to 
provide systemic Quality of Service for applications by 
taking network and systems conditions into account. 
Network conditions are obtained from the SNC, and 
systems conditions are obtained from the SENC. We 
define systemic QoS as (1) the ability of an application 
to compose desired flow characteristics and (2) the 
ability of the system to deliver those characteristics by 
negotiating the necessary network (bandwidth, latency, 
jitter) and system constraints (priority, processor 
affinity, scheduling heuristics).  

The SENC monitors and synthesizes the end-systems’ 
conditions, provides feedback to SYNOPTIC and 
schedules SYNOPTIC flows. 

1) SYNOPTIC 
SYNOPTIC is a high-performance, application-level, end-

to-end, configurable, composable and extensible protocol 
framework. SYNOPTIC leverages our prior work in Quanta 
[28] (a cross-platform networking toolkit for supporting the 
diverse networking requirements of latency-sensitive and 
bandwidth-intensive applications), and related work in 
composable protocols [29]. Quanta provides a rich set of 
features, such as reliable transmission, unreliable transmission, 
forward error correction, streaming transfer, and reliable bulk-
data transfers that are built on top of existing TCP and UDP 
transport protocols. SYNOPTIC extends Quanta to make it 
end-system, network-resource and group aware. SYNOPTIC 
provides applications with the ability to compose desired flow 
characteristics and the power to express the relationship 
between its many flows. SYNOPTIC is self-monitoring and 
provides timely feedback to applications. 

SYNOPTIC can take the form of an application-level 
“native” SYNOPTIC that takes advantage TCP, UDP and 
DCCP and their native congestion control algorithms or an 
application-level UDP-based SYNOPTIC. The UDP-based 



SYNOPTIC has an UDP-based data channel and a control 
channel that could be a TCP or UDP control channel.  The 
UDP-based SYNOPTIC leverages the configurable congestion 
control work done in UDT and extends it to express 
configurable congestion control for a group of flows of a 
parallel application. SYNOPTIC that takes advantage of 
explicit signaling-based group coordinated congestion control. 
A key research issue here is evaluation of explicit signaling-
based feedback approaches versus traditional probing based 
approaches on ultra-high-speed networks. An advantage of an 
explicit-signaling based scheme over traditional probe-based 
approaches is that as a physical path is subdivided into multiple 
VLANs, explicit signaling enforces traffic restrictions over 
shared physical paths.  

2) Synergistic End Node Controller (SENC) 
The SENC monitors and synthesizes the end-system’s 

conditions and provides feedback to SYNOPTIC. It adapts and 
schedules SYNOPTIC flows based on the Network conditions 
elicited from the Synergistic Group Controller (SGC) and the 
system conditions of an end-node. The SENC, as shown in 
Figure 5, consists of: 

a) Kernel and User-Space Monitoring (MAGNET) 

 We are currently developing Monitoring Apparatus for 
Generic Kernel Event Tracing (MAGNET) v3.0 [30-31] to 
monitor Linux kernel subsystems, such as memory, I/O, 
network stack and scheduler. MAGNET leverages the 
dynamic-probes mechanism available in the Linux kernel and 
supports adaptive event filtering, event instrumentation and 
event sampling. This mitigates the overhead by limiting the 
monitoring to only those parameters that are most relevant to 
the application. In the future, we plan on extending MAGNET 
to incorporate user-space probes that can non-intrusively 
instrument and monitor applications. 

b) End-System Performance Synthesis and Prediction 

(ESPSP) 

We are modeling the end-system subsystems and designing 
a performance model of an end-system based on its load and 
flow characteristics. We are evaluating load-dependent queuing 
model [32] and a Discrete-Time Stochastic Control System 
[33] based on the synthesized feedback and the response 
latency. 

c) End-System Flow Adaptation and Scheduler (ESFAS) 

The ESFAS calculates a schedule for all the flows based on 
system synthesis from the ESPSP and the network feedback 
from the SGC and schedules the flows according to the 

computed Inter Packet Gap [34-35].  The flow scheduling can 
take place at the kernel layer, at an application layer or a hybrid 
combination of both. The scheduling of flows at the kernel 
layer can be achieved using IPROUTE2 in Linux. The kernel–
based flow scheduling has the advantage of controlling all the 
flows of the system, whether they are SYNOPTIC or not. Flow 
scheduling at an application layer via a user-level scheduling 
daemon makes the scheme more portable and deployable. 
However this scheme suffers the scheduling and other effects 
of a normal user-level process in a commodity operating 
system. This can be mitigated by increasing the priority of the 
scheduler as a soft real-time process.  

d) End-System Flow Monitoring and Accounting 

This is responsible for keeping track of the end-node 
capacity that has been provisioned and used. This facilitates 
admission control based on the end-system's capacity, i.e. even 
if the network can support the flow, we need to ensure that the 
end-system can support it as well. 

3) Synergistic Network Controller (SNC) 
As described in subsection A, the SNC consists of a 

collection of SGCs and an IGC. The SGC receives requests 
from application nodes through SYNOPTIC and SENC 
regarding network provisioning. This request could range from 
a best-effort bandwidth request to a network-QoS request that 
specifies parameters such as bandwidth and latency. SGC 
aggregates and groups the request according to the destination 
site and type of traffic that needs to be provisioned. A traffic 
demand is made in terms of discrete quantas to the VLAN 
Provisioner, which facilitates traffic optimization and 
provisioning. 

SGC also performs group traffic-to-VLAN bandwidth 
optimization and combined heuristics with the VLAN-to-
Lambda optimization will likely be needed. As a bandwidth 
request of an application can be potentially satisfied by 
multiple VLANs based on the traffic provisioning heuristic of 
the VLAN Provisioner, adequate VLAN address configuration 
of the end-hosts is needed to satisfy the flow. The SGC informs 
SENC of the VLAN address to be configured. SENC then 
advises SYNOPTIC on how a flow should be split and the 
allowable bandwidth on each VLAN. SYNOPTIC stripes the 
payload into blocks to reduce the overhead of re-ordering at the 
receiver. We are investigating adaptive striping of payload 
(buffers) based on the individual path characteristics. 

The SGC enables enforcement, i.e. it informs the SENC 
about the bandwidth usage of the application flows. The 
SENCs collectively ensure that the flows of an application do 
not use more than their provisioned bandwidth. This is 
especially needed when a lightpath is shared by multiple 
applications. The usage of an application can be monitored 
either by collecting statistics from SENC or by querying the 
VLAN usage on compliant L2 switches which provide per-
VLAN traffic statistics. 

The SGC provides SYNOPTIC with an interface to 
dynamically provision bandwidth. SGC monitors the 
bandwidth usage of an application and can pre-provision 
bandwidth for an application before it is needed. This helps in 
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overcoming signaling latency, a key issue associated with 
typical bandwidth provisioning heuristics. 

An application can configure SYNOPTIC to use any rate-
based congestion control algorithm to manage the flows of the 
application as a group.  The application could for instance 
apply TCP-friendly congestion control or any algorithm that 
achieves Max-Min, proportional fairness criteria, etc. as long as 
it satisfies the constraints of the network and end-system 
capacity. It is possible to build an application level rate-based 
congestion control framework wherein an application can 
plugin any suitable congestion control heuristic. An application 
could also specify different traffic shaping heuristics for flows 
with differing properties. 

IV. SCALABLE VISUALCASTING

An essential requirement of all collaboration systems is the 
ability to broadcast or multicast information to all collaborating 
sites so that all participants can simultaneously see and interact 
with the data. Displays such as LambdaVision are expected to 
support such collaborative visualizations. In the next few years, 
a crucial goal for GLVF [2] is to develop a capability where 
high-definition video and ultra-definition visualizations can be 
scalably multicasted, in real time, across all the distributed 
sites.  Typical uncompressed HDTV streams at 30 frames per 
second require 1 Gbps of network bandwidth and cluster driven 
tiled displays can render video up to several tens to hundreds of 
gigabits per second. Although a variety of techniques exist for 
supporting reliable multicast, high-bandwidth and low-latency, 
reliable multicast is an unsolved problem and an active area of 
research within the Grid community [36]. It is a particularly 
challenging problem at the endpoints that must receive the 
multicast traffic; and must be solved for any applications that 
seek to use networked tiled-displays. A scalable solution is 
needed for distribution of video and rendered graphics streams 
to multiple tiled-displays at the order of several tens of gigabits 
per second. 

We investigate this problem by developing a scheme called 
Scalable Visualcasting that is specifically designed to provide 
the kind of image multicasting service needed for ultra-
definition visualization. The Scalable Visualcasting scheme 
will be built on top of SAGE. In the SAGE model, the image 
generation source is decoupled from the display and fed by a 
high-speed network. The bandwidth utilized is dependent on 
the image resolution of the rendering source. As images on the 
tiled display are resized or repositioned on the walls, SAGE 
must re-route the multiple streams from the rendering source to 
the computers that drive the displays. When multicasting in 
introduced, the problem becomes much more complex. This is 
because the end-points of the streams may comprise entirely 
different display configurations (See Figure 6: top diagram). 
The image generation source must now scalably replicate and 
route the pixels to the correct destinations on all the tiled 
displays, not just one. 

IP Multicast. There are two main approaches to solving 
this problem. The first approach uses layered IP-multicasting to 
interleave each source stream over multiple multicast addresses 
and coordinates the receivers so that each display knows which 

layered stream to subscribe in order to assemble the images for 
the desired screen resolution (Figure 6: middle diagram). The 
second approach uses a cluster of PCs to replicate the streams 
on behalf of the rendering cluster (Figure 6: bottom diagram). 
These replication services can be dynamically scaled in 
proportion to the number of remote sites that are participating 
in a collaborative session. Understanding the requirements, 
benefits and limits of each approach will provide valuable input 
into future Internet systems design. 

Optical Multicast. A more innovative solution to Scalable 
Visualcasting is optical multicast. With the fast growing 
interest in bandwidth-intensive visualization and collaboration 
over all-optical networks, supporting multicast in the optical 
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layer is becoming an important topic. Multicasting in optical 
domain requires light splitting functionality, which means that 
a given incoming optical channel can be split to multiple copies, 
with each copy able to be switched to a different output 
channel. Optical splitter is the key component to realize 
multicast in optical networks. Optical multicast is becoming 
possible since 1:2 and 1:4 splitters are widely available and 
more recently 1:8 splitters have been developed. To 
compensate the power penalty introduced during the optical 
signal splitting, signal repeaters (either all-optical or O-E-O) 
are necessary to push the power levels back up. By using 
multiple signal repeaters and optical splitters in a tree hierarchy, 
it is possible to build a multicast tree and create as many copies 
of the original signal as possible. DWDM units can be used to 
multiplex streams from multiple sources (or multicast groups) 
on the same distribution tree. This concept is illustrated in 
Figure 7. 

We carried out a proof-of-concept experiment to test the basic 

functionalities of optical Visualcasting. Figure 8 shows the 

experimental setup. We used a Glimmerglass REFLEXION 

RFX-64 optical switch with its optical multicast module, 

which allows replication of a light signal into up to four copies 

of itself. As shown in the figure, the sending NIC is connected 

in full duplex with receiver 1 so that the sender’s link is 

operational fully in both directions. Not doing so causes the 

sender NIC to report that the link was down during 

transmission. For the other two receivers (receivers 2 and 3) 

we forced the Auto-Negotiation to be switched off and the 

NICs were working in half duplex mode. We used SysKonnect 

SK-9841 GigE NICs for our experiments. All receivers get the 

senders transmit signal after it was replicated by the multicast 

module. For the actual data transfer, TeraVision [37] was used 

to send high-resolution uncompressed video at about 750 

Mbps over the testbed. The video data was successfully 

distributed to 3 receivers and video images properly displayed. 

We plan to continue exploring optical multicasting and its 

impact on distributed collaborative applications. In addition to 

experimenting on optical multicast with 10Gb NICs, we will 

also run tests on national and international optical network 

testbeds to examine methods for wide-area multicasting. 
LambdaBridge Multicast Support. Various solutions can 

be conceived to incorporate multicast functions into 
LambdaBridge. One of the most straightforward approaches is 
to let the LambdaBridge at the sender site work as ‘broadcast 
stations’ as those shown in the bottom diagram of Figure 6. 
This can be realized by integrating SAGE image (pixel) 
streaming functionality with the LambdaBridge (in short, 
“SAGE LambdaBridge”). The SAGE LambdaBridge intercepts 
each image stream and performs replication using either IP 
multicast or optical multicast. In the case of IP multicast, the 
SAGE LambdaBridge is also possible to perform re-routing 
operations on behalf of display clients by means of 
dynamically routing desired layer of image streams to 
destination display nodes. For the case of optical multicast, the 
SAGE LambdaBridge can use embedded multicast unit (optical 
splitters) to generate multiple optical streams, or work jointly 
with multicast-capable core optical switches to replicate 
streams in the core optical network. Note that in this case, pixel 

re-routing is realized at the endpoint. An IP-optical hybrid 
multicast approach is also conceivable for achieving enhanced 
flexibility and scalability. The multicast functionality is closely 
tied together with the traffic management and lambda 
provisioning mechanism of LambdaBridge, thereby providing 
improved application performance while optimizing the 
network resource utilization. 

V. CONCLUSION

This paper described the insatiable and diversified traffic 
demands made by LambdaGrid applications as characterized 
by SAGE-based collaborative visualization and presented the 
LambdaBridge architecture, a scalable and demonstrable 
approach for enabling LambdaGrid applications to efficiently 
run on terabit wide-area networks. LambdaBridge will work 
cohesively with end nodes and core networks to provide 
network-wide application flow coordination and unified 
resource management that includes end-systems and the 
network. This achieves desirable end-to-end performance while 
optimizing the resource utilization. LambdaBridging 
contributes to a deep understanding of the factors that influence 
the performance of data-intensive applications from the point 
of view of application data flows and their interaction with 
backplane, OS, memory, CPU, system bus, and network 
elements. This paper also introduced the concept of Scalable 
Visualcasting, a way of providing high-bandwidth multicasting 
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service needed for ultra-definition visualization. Several 
approaches including both IP multicasting and optical 
multicasting are presented and the ways of incorporating 
various multicasting strategies into the LambdaBridge 
framework are discussed. Work is underway to build a 
prototype LambdaBridge and develop a variety of protocols, 
software and tools necessary for LambdaBridge control and 
management.  

There remain numerous research problems for future 
investigation. These include: understanding how 
LambdaBridge software and hardware will scale in practice to 
Terabits of bandwidth; how to develop transport protocols that 
are both end-system and network-aware; how to monitor end-
systems performance at tens of gigabits per second rates with 
minimal overhead; how to scalably manage and 
coordinate thousands of simultaneous flows of varying 
characteristics; how to efficiently aggregate flows and 
provision VLANs to Lambdas. These challenging issues will 
be addressed in future work. 
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