
LambdaBridge: A Scalable Architecture for Future

Generation Terabit Applications
(Invited Paper)

Xi Wang*, Venkatram Vishwanath, Byungil Jeong, Ratko Jagodic,

Eric He, Luc Renambot, Andrew Johnson, Jason Leigh

Electronic Visualization Laboratory

Department of Computer Science

University of Illinois at Chicago

* xiwang@uic.edu

Abstract—LambdaGrid applications as typified by data-intensive

collaborative visualization are likely to be the first users of

terabit-level networking. This paper features a main enabler of

collaborative visualization over LambdaGrid, the Scalable

Adaptive Graphics Environment (SAGE) in particular, and

anticipates the future needs of LambdaGrid applications in

general. We present a scalable architecture called LambdaBridge

to ‘bridge’ LambdaGrid applications with the terabit optical core

networks. LambdaBridge will provision and control predictable-

performance networks for end-systems (i.e. Grid clusters) using

on-demand lambda/VLAN provisioning and end-system traffic

shaping. The chief contribution of LambdaBridge is a deep

understanding of how to synergistically bridge provisionable

networks, end-systems, and future generation distributed terabit

applications. This paper also introduces Scalable Visualcasting –

a multicasting service for LambdaGrid that incorporates IP

multicasting and optical multicasting.

I. INTRODUCTION

In a decade’s time, high-performance computing has
proven its value in Science, Homeland Security, Medicine,
Engineering, Education, and Filmmaking. These data-intensive
domains rely on the Grid to process terabytes of raw data to
produce meaningful insight. Typically, these large-scale
datasets must flow among a Grid of instruments, physical
storage devices, visualization displays, and computational
clusters. These applications have a real need for tens to
hundreds of gigabits-per-second of bandwidth and
deterministic QoS that are best satisfied by interconnecting
Grid resources with dedicated networks dynamically created by
concatenating optical lightpaths (lambdas). This is called a
LambdaGrid [1-4].

One of the pioneering LambdaGrid applications is
collaborative visualization which allows users from
geographically distant institutions to interactively visualize and
analyze the shared data. A fundamental goal of data-intensive
collaborative visualization on LambdaGrid is to enable users to
collectively interpret large-scale (e.g. multi-terabyte) remote
datasets in real-time at extremely high resolutions, thereby
dramatically increasing the productivity of data interpretation.

We envision that in the future it will become routine for users
to work and collaborate in rooms whose walls are made from
seamless ultra-high-resolution displays that are fed by data
streamed over ultra-high-speed networks from distantly located
visualization, storage servers, and high-definition video
cameras [3-4]. We have taken the first steps towards this vision
by building LambdaVision – a tiled display built from 55 LCD
screens with a total resolution of 100 megapixels (see Figure 1).
LambdaVision is primarily enabled by the Scalable Adaptive
Graphics Environment (SAGE) [5], a middleware system for
managing visualization and high-definition video streams that
are presented on scalable displays. Specifically, SAGE allows
remote groups of users to simultaneously display imagery of
multiple remote visualization applications on high-resolution
tiled displays, thereby providing an ideal distant collaborative
visualization environment with multiple endpoints.

LambdaGrid applications as typified by SAGE applications
routinely access remote large-scale datasets and visualize the
rendered pixels on high-resolution displays. The network
bandwidth requirement is in the range of several tens to
hundreds of gigabits per second. In addition to the huge
bandwidth usage, these applications usually generate hundreds
to thousands of parallel flows. These flows emanate from
network interfaces in the endpoints (i.e. the compute clusters)
to communicate with other endpoints over multiple lightpaths.
More complex flows include multiple parallel endpoints, inter-

Figure 1. LambdaVision driven by SAGE

1-4244-0425-8/06/$20.00 ©2006 IEEE

communicating over known, but arbitrary, physical network
topologies. These flows impose differing demands on the
host’s system resources, such as memory, bus bandwidth and
CPU. However, as the exponential growth of bandwidth now
far exceeds storage and computing, a significant impedance
mismatch exists between these high-capacity lambda-based
networks and the endpoints that must absorb the bandwidth,
resulting in inadequately performing applications. At the
LCA06 (Linux Conference Australia 2006) conference,
keynote speaker Van Jacobson resonated a similar sentiment
“The end of the wire isn’t the end of the net,” – that is, the
future challenges of high-performance networking reside at the
edges [6]. While much prior work has focused on Quality of
Service for the networks, this has not been the case within the
edge devices, most notably the computers that must send,
receive and process the network payload. On-demand networks
built with optical technologies allow significantly better bounds
on “competing” traffic and can therefore enable more-
aggressive transmission protocols. However, parallel endpoints
still face contention and resource sharing issues.

This paper anticipates the future needs of LambdaGrid
applications by addressing key issues toward enabling terabit-
per-second network flows. These issues include: how to
affordably and practically terminate hundreds of gigabits of
bandwidth at the edges while minimizing the penalties
associated with optical-to-electronic translation; how to
efficiently manage the myriad parallel data flows among and
within the endpoints; and, does treating these parallel
communication channels as a single problem rather than as
entirely uncoordinated flows allow either better utilization or
more predictable performance?

We examine these issues and present a scalable architecture
called LambdaBridge to support future generation LambdaGrid
applications. In section II, we feature data-intensive
collaborative visualization - a pioneering LambdaGrid
application and its main enabler – the SAGE middleware. After
briefly describing the SAGE framework and its typical
applications, we present the specific network requirements
made by LambdaGrid applications. In section III we give an
overview of the LambdaBridge architecture which bridges
LambdaGrid applications with the optical core networks. The
two research programs: a traffic-to-lambda mapping scheme
called LambdaBridging, and an end-system & network
resource-aware flow management mechanism called
Synergistic Flow Framework are elucidated. Section IV
introduces the concept of Visualcasting - a specifically
designed image multicasting service for ultra-definition
visualization. We present several approaches including both IP
multicasting and optical multicasting; the LambdaBridge
multicast support issue is also discussed. Section V concludes
the paper.

II. SCALABLE ADAPTIVE GRAPHICS ENVIRONMENT

A fundamental goal of visualization and collaboration on
LambdaGrid is to enable users to collectively interpret
enormous data-sets in real-time at extremely high resolutions.
An increasingly important model is to conduct the visualization

using large pools of computing resources (such as clusters of
powerful computers equipped with high-performance graphics
processors) and streaming the results to the collaborating end-
points. These end-points may range from PDAs all the way up
to ultra-high-resolution display walls such as those built from
stitching together dozens of LCD panels. The image streams
shown on these display devices may consist of offline rendered
movies as well as real-time visualizations, and high-definition
video. This approach provides significant advantages: firstly
the pooling of computing resources increases utilization,
especially when they are cast as Grid services that can be
combined with other services to form a pipeline that could link
large-scale data sources with visualization resources. Secondly,
since networking is diminishing in cost at a rate exceeding that
of computing and storage, it becomes more cost-effective for
users to build low-cost, networked thin-clients than to have to
purchase and maintain their own rendering farms, storage
repositories, etc.

We developed the Scalable Adaptive Graphics
Environment (SAGE) to put this model into practice. SAGE is
specialized middleware for enabling data, high-definition video
and extremely high-resolution graphics to be streamed in real-
time from remotely distributed rendering and storage clusters to
scalable displays over ultra high-speed networks. Each
visualization application (such as real-time or offline rendered
visualizations, remote desktop, high-definition video streams,
2D maps etc.) streams its rendered pixels (or graphics
primitives) to the virtual high-resolution frame buffer of SAGE,
allowing user-definable window position and size on the
displays (e.g. the output of arbitrary M by N pixel rendering
cluster nodes can be streamed to X by Y pixel display screens).
Furthermore, SAGE enables users to freely move, resize and
overlap the application windows by dynamically reconfiguring
pixel streams.

The most unique feature of SAGE is the high-speed
graphics streaming capability over wide-area networks as
shown in Figure 2. SAGE can use various streaming protocols
such as LambdaStream [18-19], that are designed for high-
bandwidth and high round-trip time networks. By decoupling
graphics rendering from graphics display, visualization
applications developed on various environments can easily

Figure 2. SAGE over Wide Area Network

migrate into SAGE by streaming their pixels into the SAGE
virtual frame buffer. Also, SAGE provides scalability by
supporting any number of rendering and displaying nodes,
number of tiles, and screen resolution. The SAGE visualization
applications have extremely fast access to huge datasets at
remote or local sites taking advantage of affordable ultra-high-
bandwidth networks. Moreover, we are extending SAGE to
scalably support distance collaboration with multiple endpoints
by streaming pixels to all the participating endpoints using
either traditional IP multicasting or optical multicasting. We
will discuss more about the multicast issue later.

SAGE has successfully supported our high-resolution-
display LambdaVision (Figure 1) that is a 17-foot wide, tiled
display built from an 11x5 array of LCD screens with a total
resolution of 100 megapixels. A high-resolution display like
LambdaVision is essential in visualizing large datasets without
losing details. Geoscientists working with aerial and satellite
imagery (365Kx365K pixels maps) and neurobiologists
imaging the brain with montages consisting of thousands of
pictures from high-resolution microscopes (4Kx4K pixels
sensor) are good examples of SAGE and LambdaVision users.
SAGE now runs across most Global Lambda Visualization
Facility (GLVF) [2] research sites as well as industrial sites
including Rincon Research Corporation and Nortel.

A. SAGE Framework

The SAGE framework consists of various components:
Free Space Manager (FSManager), SAGE Application
Interface Library (SAIL), SAGE Receiver, synchronization
channel, and UI Clients as shown in Figure 3. The Free Space
Manager (FSManager) is the window manager of SAGE. This
is akin to a traditional desktop manager in a windowing system,
except that it can scale from a single tablet PC screen to a
desktop spanning over 100 million pixel displays. The
FSManager receives various user commands from UI clients
such as application execution, window move, resizing or z-
order change (overlapping windows) and then executes the
commands by sending control messages to SAIL and (or)
SAGE Receivers. SAIL is a very simple API Library that
allows SAGE applications to communicate with the
FSManager and stream pixels to SAGE receivers. A SAGE
Receiver is a software object running on each display node that
is in charge of receiving pixel streams of one application

instance. The received pixels then are loaded into the graphics
card memory and drawn on the screens driven by the display
node. To display an application image on the tiled display, we
need to synchronize the sub-images on each tile and make one
large consistent image. We designed the display
synchronization channel among SAGE receivers and the
rendering synchronization channel among SAIL instances for
parallel applications. UI Clients are provided to allow users to
control the Free Space Manager and monitor the status of
SAGE. UI Clients can be Graphical User Interface, text-based
console or tracked devices. Any UI client can execute,
shutdown, move, and resize SAGE applications in a manner
very similar to a typical contemporary windowing system.
Furthermore, UI clients can reside on any machine (laptop,
tablet, desktop etc.) that can be connected to the Free Space
Manager over any network.

B. Demonstration of SAGE Applications

Figure 1 shows four real applications used for a typical
SAGE demonstration. The display in the figure is located in the
Electronic Visualization Laboratory (EVL) in Chicago.
MagicCarpet on the right is an interactive ultra-high-resolution
multi-resolution image viewer. It was streaming Blue Marble
dataset created by NASA from San Diego to EVL using UDP.
JuxtaView [7] in the middle is a high-resolution image viewer
that can pan and zoom over a huge image dataset such as
356Kx356K aerial photography. It was locally streaming the
aerial photography of downtown Chicago using TCP. Bitplayer
on the top-left is an HD animation player developed by the
National Center for Supercomputing Application (NCSA). It
was streaming an animation of a tornado simulation from the
StarLight facility (located three miles away in downtown
Chicago) to EVL using UDP. Scalable Visualization Consumer
(SVC) on the bottom-left developed by Gwang-ju Institute of
Science and Technology (GIST) was locally streaming HD
camera live feed using TCP. Table I shows the sustained
bandwidth consumption, frame rate, rendering resolution and
the number of rendering nodes of these applications in this
experiment. SAGE can simultaneously support these
applications without decreasing their performance.

C. Requirements of LambdaGrid Visualization Applications

Interactive ultra-high-resolution LambdaGrid visualization
applications routinely access remote datasets spanning multiple
terabyte and visualize the rendered pixels on high-resolution
displays. The network bandwidth requirements for browsing
these datasets or pushing the rendered pixels to remote displays
are in the range of several tens to hundreds of gigabits per
second. In addition to the huge bandwidth usage, these
applications usually create hundreds of bidirectional streams
between distant endpoints, each with differing flow

Figure 3. SAGE components

TABLE I. PERFORMANCE OF SAGE APPLICATIONS

Application
Bandwidth

(Mbps)

Frame

Rate (fps)

Rendering

Resolution

Node

Num

MagicCarpet 6737.3 33.7 3200x3000 10

JuxtaView 850.6 4.0 3200x3200 8

Bitplayer 516.8 11.3 1920x1080 1

SVC 538.4 24.9 1440x1080 1

requirements operating over differing transport protocols.
Table II quantifies the broad variety of flows that
simultaneously emanate from SAGE. A single visualization
rendering on a cluster of 8 computers streaming to a remote
tiled display of 55 tiles (driven by 28 computers) will create as
many as 96 visualization flows, 36 control flows, and 34
synchronization flows for a total of 166 flows. In a
collaborative session of 3 remote sites sharing 3 visualizations,
the number of flows could reach as high as 1500; and all of
these flows can compete simultaneously for networking,
memory, system bus, and CPU resources. These flows must be
synergistically coordinated and intelligently mapped to the
available resources so that the desired end-to-end performance
is achieved. Currently this is managed by intuition on a
configuration-by-configuration basis. What is needed instead is
an automated means to provide systemic quality of service.
Explicitly coordinated, resource-aware network flows will lead
to more predictable performance and enable both uniform and
non-uniform distribution of network resources among the
parallel endpoints.

III. LAMBDABRIDGE ARCHITECTURE

Driven by the insatiable and diversified traffic demands
made by LambdaGrid applications, we present a
LambdaBridge architecture enabling applications to more
efficiently access lambda-based networks. Whereas much of
the work thus far has focused on creating and provisioning the
core network infrastructure, LambdaBridge focuses on a much-
needed edge-based strategy to “bridge” applications on future
terabit wide-area networks. The LambdaBridge architecture
will provision and control predictable-performance networks
for clustered endpoints using on-demand lambda/VLAN
provisioning and endpoint traffic shaping. This will be realized
using LambdaBridging and Synergistic Flow Framework.

LambdaBridging investigates how to enable bridging
points between end nodes and core networks to map
parallel application data flows into parallel lambda paths
so that both efficient data transport and optimized lambda
utilization can be achieved.

Synergistic Flow Framework investigates how to enable
applications running on parallel computer nodes to

generate/receive coordinated flows so that the resource of
both networks and computer nodes can be shared and
exploited efficiently.

There is much related prior work in this area: coordinated
congestion control [8-10]; explicit feedback-based control,
such as those in XCP, TeXCP, ECN and NetX; adaptation of
real-time (non-commodity) systems for application
performance [11-12]; feedback-based application adaptation on
commodity end-systems (such as Active Harmony, Prophesy);
provisionable user-controlled networks (such as UCLP,
PIN/PDC, DRAGON, CHEETAH, OMNInet, EnLIGHTened,
OptIPuter); network Quality of Service [13-14]; high-
performance transport protocols [15-20]. The chief contribution
of LambdaBridge is a deep understanding of how to
synergistically bridge provisionable networks, end-systems,
and future-generation distributed terabit applications.

Figure 4 envisions a scenario of LambdaBridge-empowered
LambdaGrid computing. Two applications (“A” and “B”) run
on cluster nodes at three sites: UIC/Chicago, UCSD/San Diego
and UvA/Amsterdam. These sites are interconnected via
national and international optical links. The applications,
cluster nodes and optical links are currently in place; the
controller and hardware of LambdaBridge are under
development. LambdaBridge will manage and adapt all flows

TABLE II. NETWORK FLOWS CREATED BY ULTRA-HIGH-RESOLUTION GRID VISUALIZATION APPLICATIONS

Type of Flow Number of Flows Bandwidth per

Flow

Latency

Sensitive

Jitter

Sensitive

Reliability

Requirement

Burstiness Message

Size

Protocol

Audio Stream 1 per user Low 1Mbps Yes Yes Medium Constant Small UDP-based

HD Video

Stream

1 per user Medium to High

25Mbps-1.5Gbps

Yes Yes Medium Constant Small to

Medium

UDP-based

Application

Stream

1-100 per application High 1-2.5Gbps Yes Variable High Application

Dependent

Large UDP-based

Bulk Data 1 per render node High No No High Application

Dependent

Large UDP/TCP-

based

Annotations/

Static Content

1-10 per user Low 1Mbps No No High One Burst Small TCP-based

Control Channel 1 per rendering node

+ 1 per display

Low 64Kbps No Yes High Short Burst Small TCP-based

Synchronization

Channel

1 per rendering node

+ 1 per display

Low 1Mbps Yes Yes High Constant Small TCP-based

SAGE UI 1 per user Low 64Kbps No No High Short Burst Small TCP-based

VNC Streams 1 per user Low 1Mbps Yes Yes High Small Burst Small TCP-based

Lambda

Bridge

Hardware

LambdaBridge

Optical Network Data Plane

S
E

N
C

App B

…

App A

App A

App B S
E

N
C

In
d
iv

id
u
a
l
C

o
m

p
u

te
 N

o
d
e
s

Optical

Switches

Optical Network Control Plane

Control Signals

Data Traffic

Lambda Path

App A

App B

App A

App B

In
d
iv

id
u
a

l C
o
m

p
u
te

 N
o
d
e

s

App A

…

App B

…

App B

In
d
iv

id
u
a

l C
o
m

p
u
te

 N
o
d
e
s

App A

App B

…

Lambda

Bridge

Controller

Optical Network

Controller

Synergistic

End Node

Controller

(SENC)

Lambda

Bridge

Hardware

LambdaBridge

Lambda

Bridge

Controller

Lambda

Bridge

Hardware

LambdaBridge

Lambda

Bridge

Controller

UCSD/San Diego

UvA/Amsterdam

UIC/Chicago

S
Y

N
O

P
T

IC

S
Y

N
O

P
T

IC

S
E

N
C

S
Y

N
O

P
T

IC

S
E

N
C

S
Y

N
O

P
T

IC

S
E

N
C

S
Y

N
O

P
T

IC

S
E

N
C

S
Y

N
O

P
T

IC

S
E

N
C

S
Y

N
O

P
T

IC

S
E

N
C

S
Y

N
O

P
T

IC

SYNOPTIC

Lambda

Bridge

Hardware

LambdaBridge

Optical Network Data Plane

S
E

N
C

App B

…

App A

App A

App B S
E

N
C

In
d
iv

id
u
a
l
C

o
m

p
u

te
 N

o
d
e
s

Optical

Switches

Optical Network Control Plane

Control Signals

Data Traffic

Lambda Path

App A

App B

App A

App B

In
d
iv

id
u
a

l C
o
m

p
u
te

 N
o
d
e

s

App A

…

App B

…

App B

In
d
iv

id
u
a

l C
o
m

p
u
te

 N
o
d
e
s

App A

App B

…

Lambda

Bridge

Controller

Optical Network

Controller

Synergistic

End Node

Controller

(SENC)

Lambda

Bridge

Hardware

LambdaBridge

Lambda

Bridge

Controller

Lambda

Bridge

Hardware

LambdaBridge

Lambda

Bridge

Controller

Lambda

Bridge

Hardware

LambdaBridge

Lambda

Bridge

Controller

Lambda

Bridge

Hardware

LambdaBridge

Lambda

Bridge

Controller

UCSD/San Diego

UvA/Amsterdam

UIC/Chicago

S
Y

N
O

P
T

IC

S
Y

N
O

P
T

IC

S
E

N
C

S
Y

N
O

P
T

IC

S
E

N
C

S
Y

N
O

P
T

IC

S
E

N
C

S
Y

N
O

P
T

IC

S
E

N
C

S
Y

N
O

P
T

IC

S
E

N
C

S
Y

N
O

P
T

IC

S
E

N
C

S
Y

N
O

P
T

IC

SYNOPTIC

Figure 4. The LambdaBridge testbed

of each application and provide site-to-site lambda connections
for them. To seamlessly support these functions, the
LambdaBridge architecture will necessarily consist of the
following key components: SYNOPTIC, Synergistic End Node
Controller, LambdaBridge Controller, and LambdaBridge
Hardware.

SYNOPTIC is a high-performance, application-level
protocol framework. It provides applications with the
ability to compose desired flow characteristics and the
power to express the relationship between its many flows.
It communicates with SYNOPTICs on every other remote
computer node with whom this node exchanges flows
(end-to-end control).

Synergistic End Node Controller (SENC) resides on each
computer node. It elicits the network condition from the
LambdaBridge Controller. It provides network and end-
system-aware flow management for all SYNOPTIC flows
sourcing and sinking at a node.

The LambdaBridge Controller, present at each site,
provides traffic management for all application traffic
going in and out the site. It interacts with every local
Synergistic End Node Controller to adapt the rate of all
flows in its site. It maps flows into site-to-site traffic
demands and then maps them onto lambda connections. It
interacts with Optical Network C-plane (Optical Network
Controller in the figure) for lightpath provisioning. It also
controls LambdaBridge Hardware for appropriate traffic
forwarding/switching.

LambdaBridge Hardware is the physical device that
provides traffic-to-lambda bridging for application data. It
gathers traffic from all the computer nodes of the local site
and maps it to multiple lambdas connected to different
remote sites. It can be realized using a number of
technologies, including Layer 1/2/3 devices, or a
combination of them.

A. LambdaBridging

A LambdaBridge consists of a software component- the
LambdaBridge Controller; and a hardware component- the
LambdaBridge Hardware.

1) LambdaBridge Controller
LambdaBridge Controller manages all traffic of its local

site and provides lambda connections for them. It exchanges
site information with other LambdaBridge Controllers through
the Control Plane (C-plane) so that each LambdaBridge
Controller knows the list of Grid clusters that are connected to
other LambdaBridge Controllers in the network. The
LambdaBridge Controller consists of three functional modules:
a Synergistic Network Controller, a VLAN Provisioner and a
Lambda Provisioner.

Synergistic Network Controller consists of a collection of
Synergistic Group Controllers (SGCs) and an Inter-group
Coordinator (IGC). SGC is responsible for all the flows of an
application at a given site. There is a SGC controlling each
application at each site. The SGC receives requests for

bandwidth, jitter, etc., from all the flows of an application. The
communication between SGCs and SENCs is realized via
signaling protocols, such as RSVP and SBM. Each SGC
clusters the requests into site-to-site (LambdaBridge-to-
LambdaBridge) traffic demands according to the destination.
These traffic demands will be passed on to the VLAN
Provisioner for network resource allocation. The IGC manages,
optimizes and coordinates traffic demands of multiple SGCs to
enforce efficient resource sharing among applications. It
advises each SGC on how it must adapt its bandwidth usage
based on overall network conditions. Then, each SGC interacts
with corresponding Synergistic End Node Controllers to adapt
flows. The flow adaptation and optimization mechanism will
be explained in detail in subsection B.

VLAN Provisioner provides VLAN connections for site-to-
site traffic demands. It manages a Connection Table containing
current lambda connections and their VLAN setups. Each
traffic demand is managed as a VLAN entity on a particular
lambda connection. The VLAN-to-lambda mapping can be
optimized using a channel allocation algorithm that seeks to
satisfy QoS requirements of individual traffic demand, while
maximizing overall lambda usage. For each new traffic demand,
the VLAN Provisioner checks the Connection Table to see if
there is an available lambda connection(s) to the remote site
LambdaBridge. If YES, it sets up a VLAN and reserves the
required bandwidth on it (them). If the requested bandwidth
exceeds the available bandwidth of a single lambda, a group of
VLANs on multiple lambdas is provided for the traffic demand.
Note: The VLAN Provisioner does not actually reserve
bandwidth; it only keeps track of the intended bandwidth usage
of each VLAN (bandwidth control is performed by the
Synergistic Flow Framework (SFF), which will be explained in
the next subsection.) However, the VLAN Provisioner may
incorporate a traffic monitoring mechanism and provide
feedback to SFF. If there is no existing connection to the
remote site or the total remaining bandwidth of existing
connection(s) to it is not enough to accept the new traffic
demand, the VLAN Provisioner will ask Lambda Provisioner
for new or additional lambda connections.

Lambda Provisioner provides automatic lambda
provisioning for site-to-site connections. It communicates with
the optical network C-Plane to request lightpath setup,
teardown or reconfiguration. It reports information about
lambda connections (such as available bandwidth and duration)
to the VLAN Provisioner for Connection Table update.
Lambda provisioning can be triggered by requests from VLAN
Provisioner for integrated VLAN/lambda configuration, or by
requests from the optical network C-plane for domain-wide
lightpath optimization. The Lambda Provisioner will leverage
existing Control-Plane research and standards (such as
GMPLS, UCLP, PIN/PDC, DRAGON) for scheduling and
provisioning lightpaths. Authorization, authentication and
accounting functionalities [21] can be integrated to enable
policy and security enforced network resource utilization.

2) LambdaBridge Hardware
LambdaBridge Hardware is a device to bridge application

traffic and lambdas. A variety of existing Layer 2/3 commodity
products for terminating lambdas at the edges can be

architected to build a LambdaBridge with sufficient capacity to
scale to a Terabit. Also, it is important to examine the
feasibility of alternative novel hardware configurations using
Layer 1 technologies, commodity PCs and hybrid
configurations to terminate lambdas. In this paper, we present
two of these solutions.

L2 LambdaBridge. An approach using today’s commodity
networking technology is to implement the LambdaBridge
using Layer-2 (L2) switches with optical interfaces attached
and a controlling service. In this case, LambdaBridging is
realized using VLANs. In the LambdaBridge architecture, each
site-to-site traffic demand (a group of flows) will incur a series
of VLAN configurations. Specifically, all end nodes and
LambdaBridges involved need to be assigned common VLAN
IDs and/or (virtual) subnet IP addresses. Currently there is no
practical way to automatically configure large numbers of
VLANs among parallel endpoints connected by parallel paths
in accordance with application flows dynamics. An automatic
VLAN configuration tool is therefore needed to enable
automatic, fast and secure VLAN configuration for both
LambdaBridges and end nodes by means of autonomous and
unified VLAN ID (and IP subnet addresses for L3 VLANs)
assignment and signaling. Various allocation policies including
centralized allocation, subset pre-allocation, and peer-to-peer
negotiation can be applied. Prior work, such as Rbridges [22]
and the IEEE L2 Scaling Enhancement activities (e.g. 802.1ah,
802.1ad, 802.1s), and IETF activities (e.g. [23]) are leveraged
to address the L2 scalability-related issues. For scalable
LambdaBridge hardware design, L1+L2 hybrid switches used
in next-generation high-performance interconnects [24-25] will
be implemented.

PC LambdaBridge. A more radical approach would be
using PCs that are normally part of a Grid computing cluster, as
direct termination points for lambdas, and using the cluster
backplanes to switch the packets to their final destinations. We
call this configuration the PC LambdaBridge. We conducted an
analysis of terminating 1Tb using clusters of PCs [26] with an
Infiniband/Myrinet backplane to achieve full bisection
bandwidth, compared to a commercially available 1Tb switch,
and found that the cost savings could potentially reach 80%.
We realize that the PC-based solution is unlikely to perform to
the degree of a dedicated switch; however, if the assumption is
that lambdas will become cheaper than electronics, then it is
not too far fetched to “waste” lambdas to compensate for the
performance loss in a PC-based solution. The PC solution also
has other advantages; it can bridge different Layer 2
technologies where no commercial devices exist and, as new
lightpaths are added, it can utilize more cluster nodes as serve
bridge nodes and switch incoming traffic. This approach lets us
prototype capabilities that might be useful to include in future-
generation L2 switches. A PC LambdaBridge can be realized
using PCs with multiple-attached NICs. Both conventional
NICs and WDM NICs can be used for lambda connections.
WDM NICs are available now; wavelength-convertible WDM
NICs are ready to implement and estimated to be available
within the next few years. It would be important to evaluate the
performance of PC LambdaBridges built with difference
system specs (CPU, Memory, etc.) and NICs (such as high-end

network processor-based NICs and WDM NICs). PC
LambdaBridge also has the potential to take advantage of both
L2 forwarding and IP addressing, which can be realized by
implementing a PC router integrated with a new kernel driver
that bypasses most of a CPU’s packet-by-packet forwarding
processing. XORP [27] could be a good starting point for such
implementation.

B. Synergistic Flow Framework

In hybrid high-bandwidth networks, the main bottleneck is
the commodity-off-the-shelf end-systems (i.e. computers) that
are either unable to keep up with incoming packets or source
more data than their receiver(s) can handle. The problem goes
even deeper, as each sending node typically sends and receives
multiple streams simultaneously and applications have
expectations about how those streams should behave
(illustrated in Table II).

The Synergistic Flow Framework consists of SYNOPTIC,
the Synergistic End Node Controller (SENC) and the
Synergistic Network Controller (SNC). Synergy for a
LambdaGrid computing application is achieved by:

The SYNOTPIC protocol framework, which strives to
provide systemic Quality of Service for applications by
taking network and systems conditions into account.
Network conditions are obtained from the SNC, and
systems conditions are obtained from the SENC. We
define systemic QoS as (1) the ability of an application
to compose desired flow characteristics and (2) the
ability of the system to deliver those characteristics by
negotiating the necessary network (bandwidth, latency,
jitter) and system constraints (priority, processor
affinity, scheduling heuristics).

The SENC monitors and synthesizes the end-systems’
conditions, provides feedback to SYNOPTIC and
schedules SYNOPTIC flows.

1) SYNOPTIC
SYNOPTIC is a high-performance, application-level, end-

to-end, configurable, composable and extensible protocol
framework. SYNOPTIC leverages our prior work in Quanta
[28] (a cross-platform networking toolkit for supporting the
diverse networking requirements of latency-sensitive and
bandwidth-intensive applications), and related work in
composable protocols [29]. Quanta provides a rich set of
features, such as reliable transmission, unreliable transmission,
forward error correction, streaming transfer, and reliable bulk-
data transfers that are built on top of existing TCP and UDP
transport protocols. SYNOPTIC extends Quanta to make it
end-system, network-resource and group aware. SYNOPTIC
provides applications with the ability to compose desired flow
characteristics and the power to express the relationship
between its many flows. SYNOPTIC is self-monitoring and
provides timely feedback to applications.

SYNOPTIC can take the form of an application-level
“native” SYNOPTIC that takes advantage TCP, UDP and
DCCP and their native congestion control algorithms or an
application-level UDP-based SYNOPTIC. The UDP-based

SYNOPTIC has an UDP-based data channel and a control
channel that could be a TCP or UDP control channel. The
UDP-based SYNOPTIC leverages the configurable congestion
control work done in UDT and extends it to express
configurable congestion control for a group of flows of a
parallel application. SYNOPTIC that takes advantage of
explicit signaling-based group coordinated congestion control.
A key research issue here is evaluation of explicit signaling-
based feedback approaches versus traditional probing based
approaches on ultra-high-speed networks. An advantage of an
explicit-signaling based scheme over traditional probe-based
approaches is that as a physical path is subdivided into multiple
VLANs, explicit signaling enforces traffic restrictions over
shared physical paths.

2) Synergistic End Node Controller (SENC)
The SENC monitors and synthesizes the end-system’s

conditions and provides feedback to SYNOPTIC. It adapts and
schedules SYNOPTIC flows based on the Network conditions
elicited from the Synergistic Group Controller (SGC) and the
system conditions of an end-node. The SENC, as shown in
Figure 5, consists of:

a) Kernel and User-Space Monitoring (MAGNET)

 We are currently developing Monitoring Apparatus for
Generic Kernel Event Tracing (MAGNET) v3.0 [30-31] to
monitor Linux kernel subsystems, such as memory, I/O,
network stack and scheduler. MAGNET leverages the
dynamic-probes mechanism available in the Linux kernel and
supports adaptive event filtering, event instrumentation and
event sampling. This mitigates the overhead by limiting the
monitoring to only those parameters that are most relevant to
the application. In the future, we plan on extending MAGNET
to incorporate user-space probes that can non-intrusively
instrument and monitor applications.

b) End-System Performance Synthesis and Prediction

(ESPSP)

We are modeling the end-system subsystems and designing
a performance model of an end-system based on its load and
flow characteristics. We are evaluating load-dependent queuing
model [32] and a Discrete-Time Stochastic Control System
[33] based on the synthesized feedback and the response
latency.

c) End-System Flow Adaptation and Scheduler (ESFAS)

The ESFAS calculates a schedule for all the flows based on
system synthesis from the ESPSP and the network feedback
from the SGC and schedules the flows according to the

computed Inter Packet Gap [34-35]. The flow scheduling can
take place at the kernel layer, at an application layer or a hybrid
combination of both. The scheduling of flows at the kernel
layer can be achieved using IPROUTE2 in Linux. The kernel–
based flow scheduling has the advantage of controlling all the
flows of the system, whether they are SYNOPTIC or not. Flow
scheduling at an application layer via a user-level scheduling
daemon makes the scheme more portable and deployable.
However this scheme suffers the scheduling and other effects
of a normal user-level process in a commodity operating
system. This can be mitigated by increasing the priority of the
scheduler as a soft real-time process.

d) End-System Flow Monitoring and Accounting

This is responsible for keeping track of the end-node
capacity that has been provisioned and used. This facilitates
admission control based on the end-system's capacity, i.e. even
if the network can support the flow, we need to ensure that the
end-system can support it as well.

3) Synergistic Network Controller (SNC)
As described in subsection A, the SNC consists of a

collection of SGCs and an IGC. The SGC receives requests
from application nodes through SYNOPTIC and SENC
regarding network provisioning. This request could range from
a best-effort bandwidth request to a network-QoS request that
specifies parameters such as bandwidth and latency. SGC
aggregates and groups the request according to the destination
site and type of traffic that needs to be provisioned. A traffic
demand is made in terms of discrete quantas to the VLAN
Provisioner, which facilitates traffic optimization and
provisioning.

SGC also performs group traffic-to-VLAN bandwidth
optimization and combined heuristics with the VLAN-to-
Lambda optimization will likely be needed. As a bandwidth
request of an application can be potentially satisfied by
multiple VLANs based on the traffic provisioning heuristic of
the VLAN Provisioner, adequate VLAN address configuration
of the end-hosts is needed to satisfy the flow. The SGC informs
SENC of the VLAN address to be configured. SENC then
advises SYNOPTIC on how a flow should be split and the
allowable bandwidth on each VLAN. SYNOPTIC stripes the
payload into blocks to reduce the overhead of re-ordering at the
receiver. We are investigating adaptive striping of payload
(buffers) based on the individual path characteristics.

The SGC enables enforcement, i.e. it informs the SENC
about the bandwidth usage of the application flows. The
SENCs collectively ensure that the flows of an application do
not use more than their provisioned bandwidth. This is
especially needed when a lightpath is shared by multiple
applications. The usage of an application can be monitored
either by collecting statistics from SENC or by querying the
VLAN usage on compliant L2 switches which provide per-
VLAN traffic statistics.

The SGC provides SYNOPTIC with an interface to
dynamically provision bandwidth. SGC monitors the
bandwidth usage of an application and can pre-provision
bandwidth for an application before it is needed. This helps in

VLAN

Configuration

Agent

Kernel and User-

space Monitoring

Flow

Scheduler

End-System

Flow Monitoring

and Accounting

End-System

Performance Synthesis

and Prediction

End-System

Flow Adaptation

and Scheduler

Synergistic End Node Controller

VLAN

Configuration

Agent

Kernel and User-

space Monitoring

Flow

Scheduler

End-System

Flow Monitoring

and Accounting

End-System

Performance Synthesis

and Prediction

End-System

Flow Adaptation

and Scheduler

Synergistic End Node Controller

Figure 5. Functional modules of a Synergistic End Node Controller

overcoming signaling latency, a key issue associated with
typical bandwidth provisioning heuristics.

An application can configure SYNOPTIC to use any rate-
based congestion control algorithm to manage the flows of the
application as a group. The application could for instance
apply TCP-friendly congestion control or any algorithm that
achieves Max-Min, proportional fairness criteria, etc. as long as
it satisfies the constraints of the network and end-system
capacity. It is possible to build an application level rate-based
congestion control framework wherein an application can
plugin any suitable congestion control heuristic. An application
could also specify different traffic shaping heuristics for flows
with differing properties.

IV. SCALABLE VISUALCASTING

An essential requirement of all collaboration systems is the
ability to broadcast or multicast information to all collaborating
sites so that all participants can simultaneously see and interact
with the data. Displays such as LambdaVision are expected to
support such collaborative visualizations. In the next few years,
a crucial goal for GLVF [2] is to develop a capability where
high-definition video and ultra-definition visualizations can be
scalably multicasted, in real time, across all the distributed
sites. Typical uncompressed HDTV streams at 30 frames per
second require 1 Gbps of network bandwidth and cluster driven
tiled displays can render video up to several tens to hundreds of
gigabits per second. Although a variety of techniques exist for
supporting reliable multicast, high-bandwidth and low-latency,
reliable multicast is an unsolved problem and an active area of
research within the Grid community [36]. It is a particularly
challenging problem at the endpoints that must receive the
multicast traffic; and must be solved for any applications that
seek to use networked tiled-displays. A scalable solution is
needed for distribution of video and rendered graphics streams
to multiple tiled-displays at the order of several tens of gigabits
per second.

We investigate this problem by developing a scheme called
Scalable Visualcasting that is specifically designed to provide
the kind of image multicasting service needed for ultra-
definition visualization. The Scalable Visualcasting scheme
will be built on top of SAGE. In the SAGE model, the image
generation source is decoupled from the display and fed by a
high-speed network. The bandwidth utilized is dependent on
the image resolution of the rendering source. As images on the
tiled display are resized or repositioned on the walls, SAGE
must re-route the multiple streams from the rendering source to
the computers that drive the displays. When multicasting in
introduced, the problem becomes much more complex. This is
because the end-points of the streams may comprise entirely
different display configurations (See Figure 6: top diagram).
The image generation source must now scalably replicate and
route the pixels to the correct destinations on all the tiled
displays, not just one.

IP Multicast. There are two main approaches to solving
this problem. The first approach uses layered IP-multicasting to
interleave each source stream over multiple multicast addresses
and coordinates the receivers so that each display knows which

layered stream to subscribe in order to assemble the images for
the desired screen resolution (Figure 6: middle diagram). The
second approach uses a cluster of PCs to replicate the streams
on behalf of the rendering cluster (Figure 6: bottom diagram).
These replication services can be dynamically scaled in
proportion to the number of remote sites that are participating
in a collaborative session. Understanding the requirements,
benefits and limits of each approach will provide valuable input
into future Internet systems design.

Optical Multicast. A more innovative solution to Scalable
Visualcasting is optical multicast. With the fast growing
interest in bandwidth-intensive visualization and collaboration
over all-optical networks, supporting multicast in the optical

Cluster rendering

nodes render a

portion of the

image

Sample image

Bandwidth needed may be

on the order of 1 Gb per stream

Tiled displays

Multicast

interleaved versions

onto different

addresses

(each version only

occupies 1/3 of the

required bandwidth)

Clients listen on

multicast addresses to

retrieve the needed

resolution versions

QuickTime™ and a
 decompressor

are needed to see this picture.

.

.

.

.

Broadcast

Stations

dynamically

allocates

broadcast

resources

depending on

stream capacity

Partition

images
Replicate

images

Edges then

remaps

images to

correct

position and

size

Figure 6. Multicasting visualizations to multiple tiled displays of non-

uniform configuration.

layer is becoming an important topic. Multicasting in optical
domain requires light splitting functionality, which means that
a given incoming optical channel can be split to multiple copies,
with each copy able to be switched to a different output
channel. Optical splitter is the key component to realize
multicast in optical networks. Optical multicast is becoming
possible since 1:2 and 1:4 splitters are widely available and
more recently 1:8 splitters have been developed. To
compensate the power penalty introduced during the optical
signal splitting, signal repeaters (either all-optical or O-E-O)
are necessary to push the power levels back up. By using
multiple signal repeaters and optical splitters in a tree hierarchy,
it is possible to build a multicast tree and create as many copies
of the original signal as possible. DWDM units can be used to
multiplex streams from multiple sources (or multicast groups)
on the same distribution tree. This concept is illustrated in
Figure 7.

We carried out a proof-of-concept experiment to test the basic

functionalities of optical Visualcasting. Figure 8 shows the

experimental setup. We used a Glimmerglass REFLEXION

RFX-64 optical switch with its optical multicast module,

which allows replication of a light signal into up to four copies

of itself. As shown in the figure, the sending NIC is connected

in full duplex with receiver 1 so that the sender’s link is

operational fully in both directions. Not doing so causes the

sender NIC to report that the link was down during

transmission. For the other two receivers (receivers 2 and 3)

we forced the Auto-Negotiation to be switched off and the

NICs were working in half duplex mode. We used SysKonnect

SK-9841 GigE NICs for our experiments. All receivers get the

senders transmit signal after it was replicated by the multicast

module. For the actual data transfer, TeraVision [37] was used

to send high-resolution uncompressed video at about 750

Mbps over the testbed. The video data was successfully

distributed to 3 receivers and video images properly displayed.

We plan to continue exploring optical multicasting and its

impact on distributed collaborative applications. In addition to

experimenting on optical multicast with 10Gb NICs, we will

also run tests on national and international optical network

testbeds to examine methods for wide-area multicasting.
LambdaBridge Multicast Support. Various solutions can

be conceived to incorporate multicast functions into
LambdaBridge. One of the most straightforward approaches is
to let the LambdaBridge at the sender site work as ‘broadcast
stations’ as those shown in the bottom diagram of Figure 6.
This can be realized by integrating SAGE image (pixel)
streaming functionality with the LambdaBridge (in short,
“SAGE LambdaBridge”). The SAGE LambdaBridge intercepts
each image stream and performs replication using either IP
multicast or optical multicast. In the case of IP multicast, the
SAGE LambdaBridge is also possible to perform re-routing
operations on behalf of display clients by means of
dynamically routing desired layer of image streams to
destination display nodes. For the case of optical multicast, the
SAGE LambdaBridge can use embedded multicast unit (optical
splitters) to generate multiple optical streams, or work jointly
with multicast-capable core optical switches to replicate
streams in the core optical network. Note that in this case, pixel

re-routing is realized at the endpoint. An IP-optical hybrid
multicast approach is also conceivable for achieving enhanced
flexibility and scalability. The multicast functionality is closely
tied together with the traffic management and lambda
provisioning mechanism of LambdaBridge, thereby providing
improved application performance while optimizing the
network resource utilization.

V. CONCLUSION

This paper described the insatiable and diversified traffic
demands made by LambdaGrid applications as characterized
by SAGE-based collaborative visualization and presented the
LambdaBridge architecture, a scalable and demonstrable
approach for enabling LambdaGrid applications to efficiently
run on terabit wide-area networks. LambdaBridge will work
cohesively with end nodes and core networks to provide
network-wide application flow coordination and unified
resource management that includes end-systems and the
network. This achieves desirable end-to-end performance while
optimizing the resource utilization. LambdaBridging
contributes to a deep understanding of the factors that influence
the performance of data-intensive applications from the point
of view of application data flows and their interaction with
backplane, OS, memory, CPU, system bus, and network
elements. This paper also introduced the concept of Scalable
Visualcasting, a way of providing high-bandwidth multicasting

Copies

of the

data

stream

Data

source

Signal

repeaters

Optical switch with

optical splitters

Copies

of the

data

stream

Data

source

Signal

repeaters

Optical switch with

optical splitters

Figure 7. The concept of optical multicast

Sender

Receiver 1

Receiver 2

Receiver 3

Multicast unit

Optical

switch
Sender

Receiver 1

Receiver 2

Receiver 3

Multicast unit

Optical

switch

Figure 8. Optical multicast experimental setup

service needed for ultra-definition visualization. Several
approaches including both IP multicasting and optical
multicasting are presented and the ways of incorporating
various multicasting strategies into the LambdaBridge
framework are discussed. Work is underway to build a
prototype LambdaBridge and develop a variety of protocols,
software and tools necessary for LambdaBridge control and
management.

There remain numerous research problems for future
investigation. These include: understanding how
LambdaBridge software and hardware will scale in practice to
Terabits of bandwidth; how to develop transport protocols that
are both end-system and network-aware; how to monitor end-
systems performance at tens of gigabits per second rates with
minimal overhead; how to scalably manage and
coordinate thousands of simultaneous flows of varying
characteristics; how to efficiently aggregate flows and
provision VLANs to Lambdas. These challenging issues will
be addressed in future work.

ACKNOWLEDGMENT

We would like to thank Philip Papadopoulos at UC San
Diego and Cees de Laat at the University of Amsterdam whose
opinions have helped shape this concept. This project was
funded in part by the following grants from the National
Science Foundation: CNS 0420477 and ANI-0225642.

REFERENCES

[1] http://www.igrid2005.org

[2] J. Leigh, et al., “The Global Lambda Visualization Facility: An
International Ultra-High-Definition Wide-Area Visualization
Collaboratory,” Journal of FGCS, in press.

[3] L. Smarr, A. Chien, T. DeFanti, J. Leigh and P.Papadopoulos, “The
OptIPuter,” Comm. of the ACM, vol. 46(11), pp. 58-67, Nov. 2003.

[4] J. Leigh, L. Renambot, T. DeFanti, et al, “An Experimental OptIPuter
Architecture for Data-Intensive Collaborative Visualization,” 3rd
Workshop on Advanced Collaborative Environments, Seattle, WA, June
2003.

[5] L. Renambot, et al., “SAGE: the Scalable Adaptive Graphics
Environment,” Proc. WACE 2004, Sept 23-24, 2004.

[6] V. Jacobson and B. Felderman, “A modest proposal to help speed up &
scale up the linux networking stack.” Proc. Linux Conference Australia,
(LCA 2006), Dunedin, New Zealand, Jan 23-28, 2006.

[7] N. K. Krishnaprasad, V. Vishwanath, S. Venkataraman, A. G. Rao, L.
Renambot, J. Leigh, A. E. Johnson, and B. Davis “JuxtaView – a Tool
for Interactive Visualization of Large Imagery on Scalable Tiled
Displays” , Proc. IEEE Cluster 2004, San Diego, Sept 20-23, 2004.

[8] H. Balakrishnan, H. Rahul, and S. Seshan, “An Integrated Congestion
Management Architecture for Internet Hosts,” Proc. ACM SIGCOMM,
Cambridge, MA, Sept. 1999.

[9] V. Padmanabhan, “Coordinating Congestion Management and
Bandwidth Sharing for Heterogeneous Data Streams,” NOSSDAV ‘99

[10] D. Ott and K. Mayer-Patel, “Aggregate Congestion Control for
Distributed Multimedia Applications,” Proc. Infocom 04.

[11] K. Lakshman, R. Yavatkar and R. Finkel, ”Integrated CPU and network-
I/O QoS Management in an Endsystem,” Int. Workshop on Quality of
Service (IWQoS), pp. 167-178, 1997.

[12] K. Nahrstedt, J. Smith, “The QoS Broker,” IEEE MultiMedia, 1995.

[13] R. Braden, D. Clark, and S. Shenker, “Integrated Services in the Internet
Architecture: An Overview,” RFC 1633, June 1994.

[14] L. Breslau, E. Knightly, S. Shenker, I. Stoica, and H. Zhang, “Endpoint
Admission Control: Architectural Issues and Performance,” Proc. ACM
SIGCOMM 2000, Stockholm, Sweden, August 2000.

[15] I. Rhee and L. Xu, “CUBIC: A New TCP-Friendly High-Speed TCP
Variants,” Proc. PFLDnet 2005, Feb. 2005.

[16] P. Mudambi, X. Zheng, M. Veeraraghavan, “A Transport Protocol for
dedicated end-to-end circuit,” IEEE ICC 2006. (to appear)

[17] Q. Wu, N. S. V. Rao, “Protocol for High-Speed Data Transport Over
Dedicated Channels,” PFLDNet 2005, Lyon, France, Feb 2-3, 2005.

[18] C. Xiong, J. Leigh, E. He, V. Vishwanath, T. Murata, L. Renambot, T.
DeFanti, “LambdaStream – a Data Transport Protocol for Streaming
Network-intensive Applications over Photonic Networks,” PFLDNet
2005, Lyon, France, Feb 2-3, 2005.

[19] V. Vishwanath, J. Leigh, E. He, M. D. Brown, L. Long, L. Renambot, A.
Verlo, X. Wang, T. A. DeFanti, “Wide-Area experiments with
LambdaStream over dedicated high-bandwidth networks,” IEEE
INFOCOM 2006, Barcelona, Spain, Apr. 2006.

[20] S. Floyd, “HighSpeed TCP for Large Congestion Windows,” RFC 3649,
December 2003.

[21] C. de Laat, et al., “Generic AAA Architecture,” RFC 2903, Aug. 2000.

[22] R. Perlman, “Rbridges: Transparent Routing,” Proc. Infocom 2004,
March 2004.

[23] D. Papadimitriou, et al., “A Framework for GMPLS-controlled Ethernet
Label Switching,” <http://www.ietf.org/internet-drafts/draft-dimitri-gels-
framework-00.txt>

[24] K. Barker, et al., “On the Feasibility of Optical Circuit Switching for
High Performance Computing Systems,” Proc. SC 05.

[25] J. Shalf, et al., “Analyzing Ultra-Scale Application Communication
Requirements for a Reconfigurable Hybrid Interconnect,” Proc. SC 05.

[26] C. Zhang, V. Viswanath, R. Singh, L. Renambot, J. Leigh, “Comparison
of End-Point Routing/Switching (the LambdaRouter) vs Big Fat
Routers,” EVL technical document, 2005.
<http://www.evl.uic.edu/cavern/rg/20050312_zhang/>

[27] http://www.xorp.org/

[28] E. He, J. Alimohideen, J. Eliason, O. Yu, J. Leigh, T. DeFanti, “Quanta:
A Toolkit for High Performance Data Delivery,” Journal of FGCS, vol.
1005, pp. 1–15, 2003.

[29] N.C. Hutchinson and L.L. Peterson, “The x-Kernel: An Architecture for
Implementing Network Protocols,” IEEE Transactions on Software
Engineering, vol. 17, no. 1, pp. 64-76, 1991.

[30] V. Vishwanath, W. Feng, M. Gardner, and J. Leigh, “A High-
Performance Sensor for Cluster Monitoring and Adaptation,” EVL
technical document, 2006.
<http://www.evl.uic.edu/cavern/rg/20060505_vishwanath/>

[31] M. Gardner, W. Feng, M. Broxton, A. Engelhart, G. Hurwitz,
“MAGNET: A Tool for Debugging, Analysis and Adaptation in
Computing Systems,” Proc. CCGrid 2003, Tokyo, Japan, May 2003.

[32] E. Lazowska, J. Zahorjan, S. Graham, K. Sevcik, Quantitative System
Performance: Computer System Analysis using Queuing Models,
Prentice-Hall, Inc., 1984.

[33] D. Bertsekas and S. Shreve, “Stochastic Optimal Control The Discrete
Time Case,” Athena Scientific, 1996.

[34] I. Stoica, S. Shenker and H. Zhang. “Core-stateless Fair Queueing: A
Scalable Architecture to Approximate Fair Bandwidth Allocations in
High Speed Networks,” Proc. ACM SIGCOMM, Vancouver, CA,
August 1998.

[35] N. Bansal, A. Blum, S. Chawla and K. Dhamdhere, “Scheduling For
Flow-Time with Admission Control (or, How to manage your to-do
list),” European Symposium on Algorithms (ESA 2003).

[36] M. Burger, T. Kielmann, H. E. Bal, “Balanced Multicasting: High-
throughput Communication for Grid Applications”, Proc. SC 05.

[37] R. Singh, B. Jeong, L. Renambot, A. Johnson and J. Leigh “TeraVision:
a Distributed, Scalable, High Resolution Graphics Streaming System” ,
Proc. IEEE Cluster 2004, San Diego, Sept 20-23, 2004.

