
ar
X

iv
:0

91
2.

54
97

v1
 [

cs
.C

R
]

30
 D

ec
 2

00
9

How to Specify and How to Prove Correctness
of Secure Routing Protocols for MANET

Invited paper

Panagiotis Papadimitratos
EPFL

Lausanne, Switzerland
panos.papadimitratos@epfl.ch

Zygmunt J. Haas
Cornell University
Ithaca, NY, USA

haas@ece.cornell.edu

Jean-Pierre Hubaux
EPFL

Lausanne, Switzerland
jean-pierre.hubaux@epfl.ch

Abstract

Secure routing protocols for mobile ad hoc networks
have been developed recently, yet, it has been unclear what
are the properties they achieve, as a formal analysis of these
protocols is mostly lacking. In this paper, we are concerned
with this problem, how to specify and how to prove the cor-
rectness of a secure routing protocol. We provide a defini-
tion of what a protocol is expected to achieve independently
of its functionality, as well as communication and adversary
models. This way, we enable formal reasoning on the cor-
rectness of secure routing protocols. We demonstrate this
by analyzing two protocols from the literature.

1. Introduction

A number of protocols have been recently developed
to secure the route discovery in mobile ad hoc networks,
e.g, [11, 20, 18, 10]. Informally, secure routing proto-
cols provide mechanisms that prevent adversaries, that is,
nodes that deviate from the protocol definition, from influ-
encing, controlling, or abusing the route discovery. For ex-
ample, adversaries should be prevented from impersonating
network destinations, advertising unreachable destinations,
links that do not reflect the actual network connectivity, or
misleading their peers that a destination can be reached at a
lower (higher) cost than the actual one.

At first, such requirements depend on the functionality
of the routing protocol. In spite of a variety of secure rout-
ing protocols for ad hoc networks proposed in the literature,
there is no definition of what a protocol should achieve in-
dependently of how it operates. In other words, differing
solutions have been developed without a specification.

Moreover, the requirements themselves do not capture
the characteristics of the communication environment and
the adversary. The literature so far assumes mostly a de

facto data link layer protocol on top of which the routing
protocol operates. At the same time, the capabilities of the
adversaries have not been explicitly defined, either in terms
of what the adversaries know or what can be their actions.

Finally, the security of different protocols has been an-
alyzed mostly through informal arguments, with a small
number of works taking a formal approach [11, 19, 3] but
not addressing all the above-mentioned problems.

Our contribution here is a specification, that is, a defi-
nition of the sought properties for any candidate protocol,
independently of the protocol’s design and mechanisms. In
particular, we define the properties of the protocol’s output,
one or more discovered routes. We say that a protocol is cor-
rect if it satisfies the specification. Furthermore, we define
an adversary model, also independent of the protocol func-
tionality. In addition, we outline a network communication
model that captures the features of the ad hoc paradigm.
With these components, we form a framework to enable
formal reasoning on the properties of any secure routing
protocol. To illustrate this, we analyze two secure routing
protocols. Finally, we discuss related and future work.

2. System Model

2.1. Network Model

Mobile hosts move freely within some geographical area
and collaboratively support the network operation, without
necessarily pursuing a common objective or running the
same application. The network connectivity and member-
ship can change frequently, and so does the network area
reachable by the migrating mobile hosts. Connectivity may
be intermittent even when hosts are fairly stationary, e.g.,
when their peers alternate between ’sleep’ and ’active’ peri-
ods.

We define a network node as a process with (i) a unique
identity V , (ii) a public/private key pairEV , DV , (iii) a

http://arxiv.org/abs/0912.5497v1

module implementing the networking protocols, e.g., rout-
ing, and (iv) a module providing communication across a
wireless network interface. As mobile hosts may have more
than one network interface [9], more than one node may
run on a mobile host. It is convenient to view mobile ad
hoc networks as systems with a single node per mobile de-
vice; however, such a consideration is not necessary for the
results presented here.

We focus on the network operation above the data-link
layer. The node communication at the data-link layer is
modeled by the following primitives and assumptions, for
some radiusR and timeτ .

1. SendL(V,m): transmits messagem to nodeV within
radiusR of the transmitting node.

2. BcastL(m): broadcasts messagem to all nodes within
radiusR of the transmitting node.

3. ReceiveL(m): receives messagem transmitted by a
node within radiusR of the receiver;m is processed at
a receiverV if m wasBcastL(m) orSendL(V,m).

4. A link (U, V) exists or it isup when two nodesU and
V are able to communicate directly, i.e.,U(V) can re-
ceive transmissions fromV (U). We denote any two
nodes connected by anup link, and thus capable of
bidirectional communication, as neighbors.

5. Links are eitherup or down, and their state does not
change faster than the transmission time of a single
packet.

6. The network connectivity at a particular instance in
time is the graphG comprising allup links.

7. Transmissions fromU are received by all nodesVi

such that(U, Vi) is up during the entire duration of the
packet transmission.

8. Packets are delivered across anup link within a max-
imum link delayτ , or they are not delivered at all. In
the latter case, the delivery failure is reported to the
upper layer protocol. The data-link layer handles tran-
sient network failures, it retransmits, but it does not
duplicate packets.

Communication across the network is dependent on the
availability of sufficient resources (bandwidth). The shared
medium implies thatk nodes withinR of each other con-
tend and obtain a portion of the bandwidth, in principle,
inversely proportional tok. We do not assume that the net-
work provides fairness, which is beyond the scope of this
work. In general, the available bandwidth can fluctuate, be
unevenly distributed among neighbors, adversaries can self-
ishly attempt to transmit at high rates and the network links

can be congested. Such failures can either be transient and
thus masked by the data link layer, or they can persist and
cause messages to be dropped from the nodes’ buffers, or
prevent nodes from accessing the medium altogether. The
latter case is equivalent to having all affected links at the
downstate.

The widely adopted IEEE 802.11 specification, without
the Wireless Equivalent Protocol (WEP) security mecha-
nism, provides bidirectional communication according to
primitives 1-3 and satisfies assumptions 7 and 8 above.1

In this work, we are concerned with pair-wise commu-
nication across multiple wireless links between asourceS
and adestinationT . We denoteS andT as theend nodes,
and nodes that assist theS, T communication asinterme-
diate nodes. Each node in the network is equipped with a
certificate; the possession of a certificate2 does not convey
authorization or does not imply trustworthiness. Rather, it
is a minimum requirement for nodes to engage in secure
communication and provides the means to authenticate the
origin (or the relay) of network traffic.

Digital signatures provide a straightforward mechanism
to authenticate each nodes to all other network nodes.
Nonetheless, which cryptographic primitives (e.g., symmet-
ric or public key) are in use, and which nodes’ public keys
a network node knows (or which nodes it shares symmet-
ric keys with) are orthogonal to our discussion. These are
issues related with the implementation of any candidate se-
cure routing protocol.

2.2. Adversary Model

We make no assumptions on the motivation of the net-
work nodes, which either comply with the protocol rules
(benign behavior), or deviate and actively disrupt the net-
work operation (malicious behavior). In the former case we
denote a node ascorrect, while in the latter asadversary.
Adversaries have finite processing power and cannot mount
a cryptanalytic attack to compromise a private or a secret
symmetric key, or invert one-way or hash functions; as a
result, cryptographic primitives are assumed secure. Given
the above assumptions, we consider two models of active
adversaries:independentandarbitrary adversaries.

Definition 1: Independent adversaries are network nodes
that ignore and do not reproduce any received message that
does not comply with the operation of the networking proto-
cols, but can generate, modify or replay any other message.

1Note that our abstraction ofR does not imply an idealized communi-
cation model;R is a nominal range of direct wireless communication, yet
this varies and depends both on the Physical Layer protocol and the Signal
to Interference and Noise Ratio at the receiver.

2For a survey of different approaches to equip nodes with certificates
in the context of ad hoc networks see [14].

Non-compliance must be explicitly defined solely with
respect to the definition of the networking protocol. Any
message that does not follow the expected, protocol-specific
format or fails one of the employed protocol checks is
deemed as non-compliant. We emphasize, however, that
traffic is non-compliant if and only if the receiving node
can detect that a message does not comply with the proto-
col; otherwise, messages that appear to be compliant, but
actually are not, will be processed as compliant by the pro-
tocol (and thus by independent adversaries).

Def. 1 imposes a restriction on the actions of adversaries,
in that it disallows their reproducing or modifying and re-
laying any non-compliant message they receive. Nonethe-
less, Def. 1 allows adversaries to process and thus replay or
modify compliant messages or generate any message dif-
ferent than the non-compliant ones they received. Further-
more, it allows adversaries to act simultaneously, with their
actions (attacks), in spite of the above discussed constraints,
possibly having a compound effect.

Independent adversaries’ behavior allows malicious be-
havior and extends, in a sense, benign failure models that
consider node crashes, message loss (omission failures [8]),
and message transmission timing failures, when a pre-
scribed message is sent too early, or too late, or never [5].
Yet, independent adversarial behavior is protocol-aware
(but not protocol-specific) and thus it is not out-right more
general than those failure models.3

As it will become clear during the protocol analysis, the
model of independent adversaries, with the imposed con-
straints, serves as a necessary condition to achieve stronger
protocol properties than those achieved without the model’s
constraints on the adversarial behavior. In contrast to Def.
1, we have:

Definition 2: Arbitrary adversaries are network nodes that
can generate any message, and replay or modify any re-
ceived message.

Adversaries that mount relatively simple attacks fit in the
model of independent adversaries. Consider an adversary
M within the transmission range of an access point or a peer
that allows high bit-rate data download or video stream ac-
cess.M can disrupt the route discovery to ensure that no
or few routes are established across its neighborhood and,
consequently, little or no network bandwidth is consumed
by other data flows. Another example is a node that simply
discards packets to avoid depleting its own resources (bat-
tery power or CPU cycles), or an adversary that tampers
with and injects forged routing information in an attempt to
attract data flows and intercept sensitive information.

Independent adversarial behavior is such that it precludes
any action as a consequence of or based on receipt of a non-

3For example, an omission-failing node could relay a non-compliant
message.

compliant message. Within this definition, one can iden-
tify preclusion of actions that attempt to assist other ad-
versaries mounting an attack, if, informally, one considered
non-compliant traffic attributed to misbehavior. In contrast,
arbitrary adversaries can perform actions that attempt to as-
sist ongoing attacks mounted by other adversaries.

Arbitrary adversaries are more sophisticated and power-
ful than independent ones, having, for example, knowledge
of the identities of other adversaries in the network, devot-
ing resources (e.g., route discoveries) to establish direct and
possibly private communication with other adversaries, and
exchanging traffic and information about their local execu-
tion of the protocol. The model of arbitrary adversaries can
encompass a range of scenarios, from a handful of attackers
that collaborate in trying to defeat a network protocol secu-
rity mechanism, to adversarial nodes deployed, for exam-
ple, by an industrial adversary to degrade or take advantage
of the services of another operator, or an enemy that hijacks
nodes and injects compromised devices in a battlefield.

3. Routing Specification

Let N be the set of network nodes andE the set of
unordered pairs of distinct nodes we denote as edges or
links. A route is a sequence of nodesVi ∈ N , and edges
ei,i+1 = (Vi, Vi+1) ∈ E, for 0 ≤ i ≤ n − 1, i.e.,
route = V0, e0,1, V1, e1,2, V2, . . . , Vn−1, en−1,n, Vn. Re-
ferring to a route as a sequence of nodes implies that for
any two consecutive nodes of the route(Vi, Vi+1) ∈ E. We
call a route withV0 ≡ S andVn ≡ T an(S, T)-route.

The routing protocol input is a pair of nodes,S andT .
Let t1 andt2 > t1 be two points in time defining a time in-
terval(t1, t2), with timet2 the instance at which the routing
protocol returns its output toS. When the protocol returns
its output, we say that the protocol discovers a route. De-
pending on the output form, we distinguish two classes of
route discovery:explicit andimplicit.

An explicit route discovery returns a fully and clearly
expressed, readily observable(S, T)-route, that is a
V0, V1, . . . , Vn−1, Vn sequence of nodes. An implicit route
discovery is a distributed computation that returns a tuple
(Vi, Vi+1, Vn), i = 0, . . . , n− 1, of the form (current node,
relay node, destination), with each(Vi, Vi+1) ∈ E. The
(S, T)-route is not readily apparent, as the protocol out-
put to S is a (V0, V1, Vn)-tuple. Yet, the route is implied
through a sequence of nodesVj , 1 ≤ j ≤ n − 1, each of
them also storing a(Vj , Vj+1, Vn)-tuple.

We term a protocol performing an implicit or explicit
route discovery defined above as abasic routing protocol.
A basic routing protocol provides the structure of the route
but does not provide attributes of the route or its constituent
nodes and edges.

Let f : E → M ⊆ ℜ be a function that assigns labels,

that is, real values to edgesei,i+1. Each labelf(ei,i+1) =
mi,i+1 ∈ M , which we denote as alink metric, provides a
quantitative description of theei,i+1 attribute(s). For exam-
ple, a metric can capture the link’s reliability or resistance
to failure, calculated as the fraction of the numbers of deliv-
ered over transmitted packets across the link.

The attributes of a route can be ’summarized’ by the ag-
gregate of the labels ofei,i+1 ∈ (S, T)-route. The aggre-
gate value is calculated by a functiong : M → ℜ, the
route metricg(m0,1, . . . ,mn−1,n), whose form is protocol-
dependent. The route metric can be, for example, the sum,
the product, the minimum, or the maximum of the route’s
constituent link metrics. Moreover, we defineli,i+1 to
be theactual metric value forei,i+1, and the aggregate
g(l0,1, . . . , ln−1,n) of the actual link metrics as theactual
route metric.

We consider anaugmentedrouting protocol. The input
isS andT , and the output is an(S, T)-route and: (i) for ex-
plicit discovery, a sequence of labels{m0,1, . . . ,mn−1,n},
with one label for each link of the(S, T)-route, and (ii)
for implicit discovery, a route metricg(m0,1, . . . ,mn−1,n)
over the link metrics distributed to theVi ∈ (S, T)-route.

We are interested in routing protocols that ensure the
three properties in Def. 3 below for the discovered route(s):
loop-freedom, freshness, andaccuracy. Loop-freedom and
freshness are relevant to both basic and augmented proto-
cols, while accuracy is relevant only to augmented proto-
cols. We term a route discovered by a basic (augmented)
protocol as correct if it satisfies loop-freedom and freshness
(loop-freedom, freshness, and accuracy).

Definition 3:

• Loop-freedom: an(S, T)-route is loop-free if it has no
repetitions of nodes.

• Freshness: an (S, T)-route is fresh with respect to an
interval(t1, t2) if each of the route’s constituent links
is upat some point in time during the interval(t1, t2).

• Accuracy: an (S, T)-route is accurate with respect
to a route metricg and a constant∆good ≥ 0 if
|g(m0,1, . . . ,mn−1,n)−g(l0,1, . . . , ln−1,n)| < ∆good.

Loop-freedom is self-explanatory; in our context, the
property implies that adversaries cannot manipulate or
abuse the route discovery to create loops.

Route freshness ensures that each of the constituent links
of the discovered route wasup recently, that is, within a
(t1, t2) interval prior to the route discovery. We clarify that
freshness does not guarantee that links wereupconcurrently
or throughout(t1, t2); a link could godownimmediately af-
ter its discovery, or links could be alternatelyup anddown,
so that a route may never be intact throughout the(t1, t2)

interval. Freshness prevents the discovery of routes com-
prising links that existed at no point (weredown) during the
(t1, t2) interval, and yet are ’advertised’ by an adversary.

Route accuracy provides the additional assurance that
the quantitative description of a route reflects its actual
attributes: the route metric calculated by the protocol is
within ∆good from the actual route metric.∆good is a con-
stant such that, despite malicious or benign faults that lead
to inaccurate metric values, the route metric is still ’reason-
ably’ close to the actual value and meaningful for the pro-
tocol. The protocol- and metric-specific∆good ≥ 0 is al-
lowed because, even in a benign network, impairments can
affect measurements and calculations for metric values. Ac-
curacy prevents adversaries from manipulating the metric
values, contributing arbitrary metric values, altering metrics
provided by other intermediate nodes, and misleading end
nodes into believing that a discovered route is better than it
actually is.

The number of route links, or hop count, is a special case
of a route attribute, with link metric valuesmi,i+1 = 1
for all i = 0, . . . , n − 1, g() the sum of themi,i+1, and
∆good = 0. The hop count is trivially given by an ex-
plicit route discovery. But for an implicit discovery it can
be viewed as a route attribute.

We emphasize that routes with the properties defined
above are not guaranteed to be adversary-free. A secure
routing protocol cannot detect an adversary that fully abides
with the routing protocol, and only later, once it belongs toa
utilized route, disrupts the data communication [13]. More-
over, ensuring the correctness of the discovered routes is
orthogonal to the ability to actually discover one or more
correct routes. Routes may not be discovered at all times
due to the compound effect of adversaries’ actions and net-
work impairments. We also note that if eitherS or T is
faulty, the protocol does not ensure any of the correctness
properties.

4. Secure Routing Correctness

We analyze the Secure Routing Protocol (SRP), an ex-
plicit, basic protocol [11], and the augmented version of
SRP [16]. Using the same framework, we have also an-
alyzed the Distance-Vector Secure Routing Protocol (DV-
SRP), an implicit augmented protocol [15], and the Secure
Link State Routing Protocol (SLSP), an explicit basic pro-
tocol [12]. These protocols are diverse in terms of their
design and functionality (reactive vs. proactive, distance-
vector vs. source routing). However, due to space limita-
tions, we present here only the analysis of the basic and the
augmentedSRP . The definitions of the two protocols are
given in the Appendices.

We assume that traffic relayed by adversaries that act
as raw data (or signal) repeaters is detected, and that each

node knows its neighbors (identities and keys). Protocols
that bound the propagation delay (and thus transmission
range and distance) for point-to-point data link transmis-
sions can be used [2]. These protocols, as well as protocols
that use geographical location information, can prevent the
establishment of ’long-haul’ links across the network. Such
attacks, frequently denoted as ’wormhole attacks,’ are not
specific to the operation of particular routing protocols but
rather pertain to the neighbor discovery. Secure routing pro-
tocols either include neighbor-to-neighborauthentication as
part of the route discovery (e.g., [18]), or inter-operate ase-
cure neighbor discovery protocol (e.g., [11]). At the same
time, wormhole prevention protocols necessitate authenti-
cation of transmissions between neighboring nodes. We do
not dwell on the specifics of neighbor-to-neighbor authenti-
cation, as cryptographic primitives and system assumptions
vary.

Lemma 1: Routes discovered bySRP in the presence of
arbitrary adversaries are loop-free.

Proof: LetM an arbitrary adversary that attempts to create
a loop: M can include its own or any other node’s iden-
tity in theNodeList of theRREQ more than once, it can
replay aRREQ in an attempt to cause other nodes to re-
forwardRREQ and thus re-append their own address, or it
can receive aRREQ with a loop already formed and relay
it further. In all cases, the duplicate entries inNodeList

will be detected byT . Similarly, if M creates or relays a
RREP with a loop in theRoutelist, the duplicate entries
will be detected byS. Note that intermediate correct nodes
can also detect the loops in theRREQ andRREP pack-
ets as they relay them; however, it is possible that allS, T
traffic is relayed only by adversaries.�

Lemma 2: Routes discovered bySRP in the presence of in-
dependent adversaries are fresh with respect to an interval
(t1, t2), wheret1 is the point in time at whichS transmit-
ted aRREQ with identifierQ seeking forT , andt2 is the
point in time at whichS received aRREP in response to
the query identified byQ.

Proof: We outline below, for easy reference, the assump-
tions we rely on, from the system model and the lemma
statement: (a) each node can identify the source of each
BcastL() and SendL() transmission (nodes know their
neighbors), (b) traffic is deemed non-compliant if it does
not follow the format of aRREQ or aRREP and any of
checks in the protocol definition fails (Apps. A, B), (c) ad-
versarial nodes act as independent adversaries, (d) each end
node knows its peer end node (identity and key) (Appen-
dices A, B).

Let anRREP carrying aRoute = {Vn−1 . . . , V2, V1}
list, and an(S, T)-route being the{S, V1, V2, . . . , Vn−1, T }
sequence of nodes. Let(Vi, Vi+1) be a link that was never

up during the(t1, t2) interval, withVi andVi+1 either ad-
versaries or correct nodes. We will show that no such route
will be discovered (accepted) bySRP . An adversary can
cause the inclusion of such a link in aRREQ/RREP .

First, consider an adversaryVk, k > i + 1, tamper-
ing with the NodeList of a RREQ it receives, remov-
ing and/or adding one or more node identities and relaying
the tamperedRREQ′. WhenT responds to and returns a
RREP , Vi+1 executesSendL(Vi,RREP), asRREP ap-
pears compliant with the protocol (Steps 4.1-4.3). How-
ever,Vi does notReceiveL(RREP), because(Vi, Vi+1)
wasdownat all times during(t1, t2), and thusRREP is
never received byS. In the special case thatVk is a neigh-
bor of Vi and executesSendL(Vi,RREP) upon receiving
RREP , Vi will reject RREP as non-compliant, because
the node now forwarding theRREP is not Vi’s succes-
sor alongRREP ’s Route(Step 4.1, (a)-(c)), and/or it did
not previously relay the query thatVi hadBcastL(RREQ)
(Steps 2.2.4, 4.2, assumption (a)). Furthermore, if an adver-
saryM relayed a tamperedRREQ′′ such thatM 6= Vi,
Vi ∈ NodeList′′, then allVj nodes andT that execute
ReceiveL(RREQ′′) will discard RREQ′′, because the
last node inNodeList′′ is not the neighbor that relays (Step
2.3.2, assumptions (a)-(c)).

Second, consider an adversaryVk, k ≤ i, tampering with
theRREQNodeList. Then,Vi+2 will discardRREQ, ei-
ther becauseVi+1 is not its predecessor (Step 2.2.2, (a)-(c)),
or because it detected a duplicate entry in theNodeList

(Step 2.2.3), as it must hold thatVk ≡ Vi+1 for the adver-
sary to avoid having theRREQ discarded.

Third, consider an adversaryVk, k ≤ i, that tampers
with entries in theRREP Route list, removing and/or
adding one or more node identities, and then relaying
the tamperedRREP ′. All Vj intermediate nodes with
1 ≤ j < k relay RREP ′, since it appears compliant
with the protocol. However,S will discardRREP ′, be-
causefK(S, T,Q,Route′) 6= fK(S, T,Q,Route) (Step
4.5). Furthermore, if an adversaryM relayed a tampered
RREP ′′ such thatM 6= Vi and ∀Vi ∈ Route′′, then
all Vj nodes (andS) that executeReceiveL() will discard
RREP ′′, because their successor along theRREP ′′ Route
is not the neighbor that relaysRREP ′′ (Step 4.1, (a)-(c)).
In the special case that the adversary impersonatesT , Vi

discards theRREP because its successor is notT (Step
4.1, assumptions (a)-(c)).

Fourth, consider an adversaryVk, k ≤ i, which, upon
receipt of aRREQ, generates aRREP ′′′ with aRoute′′′

that includes(Vi, Vi+1), andSendL(Vk−1, RREP ′′′). All
Vj , 1 ≤ j < k, intermediate nodes relayRREP ′′′, which
appears to be compliant with the protocol. However,S dis-
cardsRREP ′′′, becausefK(S, T,Q,Route) 6= A′′′, with
A′′′ the authenticator the adversary appended toRREP ′′′

(Step 4.5, assumption (d)).

Finally, consider an adversaryVk, k ≤ i, transmitting a
RREP generated byT and identified byQ′ 6= Q. Assum-
ing that all(Vj , Vj+1) links of theRREP Routeareup for
1 ≤ j < k, all intermediate nodesVj deem theRREP

compliant and relay it towardsS. However,S maintains the
value ofQ that identifiesRREQ of the current route dis-
covery (App. A). Thus, it discards anyRREP generated
by T and identified byQ′ 6= Q as non-compliant, because
fK(S, T,Q,Route) 6= A′ = fK(S, T,Q′, Route) (Step
4.5). Moreover, the adversary cannot forge aRREQ from
S seeking forT and identified byQ before timet1, and thus
misleadT to respond with aRREP identified byQ. As a
result, the adversary cannot send such aRREP to S after
S actually transmits aRREQ identified byQ, becauseT
responds with a route reply only toRREQ whose origin is
S (Steps 1.1.4, 2.3.4, assumption (d)).�

For the augmented version of the protocol, all nodes
use the same algorithm to calculate or estimatemi,i+1 for
their incident links. For(Vi, Vi+1), we denote the met-
ric calculated byVi asmi

i,i+1 and the one calculated by
Vi+1 asmi+1

i,i+1. SRP requires thatmi
i,i+1 = mi+1

i,i+1 or

|mi
i,i+1−mi+1

i,i+1| < ǫ for someǫ > 0, a protocol-selectable
and metric-specific threshold that determines the maximum
allowable discrepancy betweenmi

i,i+1 andmi+1

i,i+1. Despite
the assumed symmetry of the link,ǫ allows for inaccuracy
due to network impairments that may affect measurements
necessary for the metric calculation. If the metric in use is
a fixed, ’administrative’ cost agreed upon between the two
neighbors, thenmi

i,i+1 = mi+1

i,i+1 must hold. Metrics such
as the willingness of the node to relay data, or its remain-
ing battery power, can be determined only independently at
each node and do not fit in the above definition.

If g(m1
0,1, . . . ,m

n
n−1,n) =

∑n−1

i=0
mi+1

i,i+1, we denote the
function g as gadd and the constant∆good as ∆add

good, if

g(m1
0,1, . . . ,m

n
n−1,n) = max0≤i≤n−1{m

i+1

i,i+1} the func-
tion is denoted asgmax and the constant as∆max

good, and

if g(m1
0,1, . . . ,m

n
n−1,n) = min0≤i≤n−1{m

i+1

i,i+1} asgmin

and ∆min
good. For mi+1

i,i+1 > 0, g(m1
0,1, . . . ,m

n
n−1,n) =

∏n−1

i=0
mi+1

i,i+1 can be written asgadd(m̄1
0,1, . . . , m̄

n
n−1,n),

wherem̄i+1

i,i+1 = log(mi+1

i,i+1), for 0 ≤ i ≤ n− 1.

Lemma 3: Routes discovered bySRP in the presence of in-
dependent adversaries are accurate, with respect to (i)gadd
and∆add

good = n2ǫ + nδ̃, (ii) gmax and∆max
good = nǫ + δ̃,

and (iii) gmin and∆min
good = nǫ + δ̃, with n the number of

route links,ǫ > 0 the maximum allowable difference be-
tweenmi

i,i+1 andmi+1

i,i+1, and δ̃ ≥ 0 the maximum error
for a metric calculation by a correct node.

Proof: Consider an adversaryVi that modifies one or more
of theMetricList entries, relaying aRREP with a tam-

peredMetricList′. S will discard such aRREP , because
fK(S, T,Q,Route,MetricList′) 6= A′. Next, consider
an adversaryVi that tampers with one of the values in the
MetricList, for j < i − 1, and relays aRREQ with
the tampered metric list. TheRREQ appears as protocol-
compliant to intermediate nodes andT , which generates a
RREP . WhenRREP arrives back atVj ,mS,i−m′

S,i 6= 0,
andVj rejectsRREP as non-compliant.

Moreover, let Vi tamper with one of the in the
MetricList, for j ≥ i, and relayRREQ with a tam-
pered metric list. Then,Vi+1 will reject RREQ as non-
compliant, because allmj+1

j,j+1 ∈ MetricList for j ≥ i

must be void, as these entries correspond to links not yet
discovered. IfVi appended one or more additional entries
toNodeList,RREQ would be discarded asVi’s neighbors
ReceiveL(RREQ) with the last node inNodeList differ-
ent from its precursor (Step 2.2.2).

Next, consider an adversaryVi that appends an erro-
neous link metric, withδi ≥ 0 denoting the metric calcu-
lation error with respect to the actual link metric;mi

i−1,i =

li−1,i ± δi and mi
i,i+1 = li,i+1 ± δi. Vi−1 deems a

RREQ/RREP as compliant only ifVi appendsmi
i−1,i

such that|mi
i−1,i − mi−1

i−1,i| < ǫ. For the discovery of an
(S, T)-route withk nodes, the above inequality must be true
for all 1 ≤ i ≤ n. We consider the worst case, withS andT
correct, i.e.,δ0 < δ̃ andδn < δ̃, and all intermediate nodes
adversaries.

Then, for the first link|m0
0,1−m1

0,1| = |l0,1±δ0−(l0,1±

δ1)| < ǫ ⇒ δ1 < ǫ+ δ̃; for the second link,|m1
1,2−m2

1,2| =

|l1,2 ± δ1 − (l1,2 ± δ2)| < ǫ ⇒ δ2 < ǫ + δ1 < 2ǫ + δ̃ and,
in general,δi < iǫ+ δ̃.

Similarly, for the route links in the reverse order,
|mn−1

n−1,n − mn
n−1,n| < ǫ ⇒ δn−1 < ǫ + δ̃, and in gen-

eralδi < (n− i)ǫ+ δ̃. Thus,δi < min{iǫ+ δ̃, (n− i)ǫ+ δ̃}
for 1 ≤ i ≤ n− 1. Sinceδ̃ does not depend onn, i, andǫ,
δi < min{iǫ, (n− i)ǫ}+ δ̃.

Then, forgadd =
∑n−1

i=0
mi+1

i,i+1 = g(l0,1, . . . , ln−1,n)±
∑n−1

i=1
δi ± δ̃. The sum is bounded since eachδi term is

bounded:
∑n−1

i=1
δi <

∑n−1

i=1
(min{iǫ, (n − i)ǫ} + δ̃) =

{

ǫn
2−1

4
+ (n− 1)δ̃ if n is odd,

ǫn
2

4
+ (n− 1)δ̃ if n is even

, and we select∆add
good =

n2ǫ+ nδ̃.
Then, for gmax we get similarly:

gmax = max0≤i≤n−1{li,i+i ± δi+1} =
{

max0≤i≤n−1{li,i+1}+max0≤i≤n−1{δi}

max0≤i≤n−1{li,i+1} −min0≤i≤n−1{δi}
,

and select ∆max
good = nǫ + δ̃. And for and

gmin: gmin = min0≤i≤n−1{li,i+i ± δi+1} =
{

min0≤i≤n−1{li,i+1}+min0≤i≤n−1{δi}

min0≤i≤n−1{li,i+1} −max0≤i≤n−1{δi}
, and se-

Figure 1. Arbitrary adversaries: an illustra-
tion of two attack configurations, (a) two ad-
versaries, (b) k=3 adversaries.

lect∆min
good = nǫ+ δ̃, to complete the proof.�

Theorem 1: Routes discovered bySRP in the presence of
independent adversaries are loop-free, fresh, and accurate.

Proof: From Lemmas 1-3.�

The assumption of independent adversaries in Theorem
1 is a necessary condition to achieve freshness and accu-
racy, which cannot be achieved if independence of adver-
saries is weakened. In the presence of arbitrary adversaries,
SRP provides weaker properties, discovering loop-free and
weakly fresh routes. Informally, a route is weakly fresh if
there exists a sequence of links, in general different than
those comprised by the route, with each of themupat some
point within the(t1, t2) interval. More precisely, we call
an (S, T)-route= {V0, . . . , Vn} weakly fresh if for some
j ≥ 1, k ≤ n − 1, andj < k, there exists a sequence
{V ′

0 , V
′
1 , . . . , V

′
x} of nodes such thatV ′

0 ≡ Vj , V ′
x ≡ Vk,

and all(V ′
i , V

′
i+1) wereup at some point during(t1, t2) in-

terval, and fori < j andk ≤ i < n all (Vi, Vi+1) wereup
at some point during(t1, t2).

Theorem 2: Routes discovered bySRP in the presence of
arbitrary adversaries are loop-free and weakly fresh.

Proof: Lemma 1 shows loop-freedom in the presence of ar-
bitrary adversaries. To show weak freshness, it suffices to
show that at least a(Vi, Vi+1) link of the discovered route
was neverup during the(t1, t2) due to the adversaries’ ac-
tions, and then show that a sequence of links(V ′

i , V
′
i+1),

0 ≤ i ≤ x − 1, for somex ≥ 1 wasup at some point dur-
ing the(t1, t2). We show two types of attacks by arbitrary

adversaries leading to such a route, illustrated in Figure 1.
First, in Fig. 1.(a), let{S,X,M1, Y,M2, Z, T } be an

(S, T)-route in the network, withX , Y 6= ∅, Z, in general
sequences of nodes, andM1, M2 two arbitrary adversaries.
M1 can implement the following protocol when receiving a
RREQ with NodeList = {X}:

Send(RREQ,M2); BcastL(RREQ); Wait for
RREP ;

M1 sendsRREQ with NodeList = {X,M1} directly
to M2, as if an(M1,M2) link were up, using aSend()
that forwards a message across multiple hops (rather than
SendL()). M1 can do so in a way that relaying nodes
in Y cannot identify the payload (e.g., by encrypting the
packet). M1 also broadcastsRREQ, so that the last
node in X addsM1 in its ForwardList and later re-
lays the correspondingRREP . M2 relaysRREQ with
NodeList = {X,M1,M2} and later returnsRREP with
Route = {Z,M2,M1, X} directly toM1, e.g., routing the
RREP acrossY .

Each of the links inY wasup at some point in(t1, t2),
because otherwiseM1 would not have received theRREP .
If M1, M2 were independent,M2 would have ignored the
RREQ sent byM1, as it would not be compliant. Sim-
ilarly, in a variation of this attack, ifM2 first modified
one or more entries in theRREQ NodeList and then
Send(RREP,M1), M1 would have ignored theRREP

for the same reason.
Second, in Fig. 1.(b), consider an(S, T)-route

{X,V,M1,M2, . . . ,Mk, V
′, Y }, with Mk, k ≥ 2, arbi-

trary adversaries, andV , V ′ benign nodes. As long asM1

andMk follow the protocol, neitherV nor V ′ can discard
RREQ or RREP . However, anyMi, for i 6= 1, k, can
modifyNodeList in an arbitrary manner and it suffices that
Mj, for j > i, do not perform the checks required by the
protocol and simply relay the protocol packets. In contrast,
if Mi were independent,M3 for example would have ig-
nored any non-compliantRREQ it received fromM2.

In all cases, since there is at least one link that was never
up, and adversaries can ’insert’ multiple such links and con-
tribute any arbitrary values for their link metrics, accuracy
cannot be achieved.�

5 Related Work

The early work of [17] defined the objective of Byzantine
robustness as the ability to discover a path of correct nodes,
if such a path exists in the network, and proposed a reli-
able flooding mechanism for the dissemination of link state
updates for route discovery. However, it did not provide a
specification for the route discovery and the properties of
the discovered routes. More recently, formal verification of
distance vector protocols was considered, however, in a be-

nign environment; model checking [9] and interactive theo-
rem proving [7] techniques were used to show loop-freedom
for AODV [1].

A small number of works considered formal methods
and secure routing protocols for ad hoc networks. [11] ana-
lyzedSRP using BAN logic, which, invented for modeling
authentication protocols, lacks the expressiveness to model
the operation of a routing protocol. [19] extended the Strand
model [6] to allow the description of ad hoc routing proto-
cols, and defined as goals for secure routing the ability to
discover a route and then the ability to communicate across
a route termed as stable. This, however, is orthogonal to the
specification of the route discovery, which, as stated in [19],
is not addressed.

A more recent work [3], transcribes a simulation tech-
nique previously used to prove the security of cryptographic
protocols: real-world and ideal-world system models, along
with two models for the adversary, one for each system,
need to be defined. Then, a routing protocol is secure if the
outputs of the ideal and the real-world systems are indistin-
guishable. In the ideal world, where essentially the adver-
sary is thwarted, routes termed inexistent are never returned
to correct nodes [3]. Nevertheless, this is not a proper def-
inition of route properties. To illustrate this, let us assume
that an existent route’s links are alwaysup; then, a route
can exist but have loops. A more important shortcoming
is revealed by the discussion of our freshness property: a
route may cease to exist right after or during its discovery,
or it may have never existed and yet be returned to a correct
node; e.g., consider a reactive protocol wherein a link close
to the destination breaks as the route reply approaches the
source, or, links that areuponly when the query/reply pack-
ets traverse them. [3, 19] assume that the topology is stable
throughout the analysis.

Previous notions of adversarial models alluded to the in-
dependence definition (e.g., non-colluding nodes in [11]),
or considered actions specific to a particular routing pro-
tocol functionality (e.g., [18]), or defined adversaries with
respect to their physical presence and credentials they pos-
sess [10]. Each of those approaches has its merits, but
our model is general enough to encompass and extend over
those. Our adversary model is based on how messages are
handled, and it is independent of the actual networking pro-
tocol(s) and the physical location of the code implementing
them. Moreover, our reasoning does not consider only a
single attacker (e.g., [3]), but allows and utilizes multiple
adversaries, either independent or arbitrary.

6. Conclusions

The contribution of our work is to provide a framework,
comprising a network model, an adversary model, and a
routing specification, to enable reasoning on the correctness

of secure routing protocols. We provide definitions of all
three components, and analyze protocols with diverse func-
tionality. The identification of a number of attacks demon-
strates the effectiveness of our framework, which can be the
basis for the analysis of any secure routing protocol. It can
also be the basis for methods that seek to automate the ver-
ification of secure routing protocol properties. All these di-
rections, along with elaborating on the adversary model and
analyzing other protocols in the literature, are topics of our
on-going and future research.

APPENDIX

A. Basic SRP

Protocol Invocation: A source node (S) initiates a route dis-
covery for a destination node (T) only if no route discovery is un-
der way for the same nodeT at the time of invocation. Otherwise,
a route discovery is performed at a later invocation and onlyafter
the conclusion of the ongoing route discovery. The route discov-
ery is triggered when noS, T routes are available atS, or it can be
triggered by mechanisms independent of the routing protocol.

1. Route Query Generation: S generates a route query or
route request packet (RREQ).

1.1. The route request includes the querying nodeS, the
sought destinationT , a query identifierQ that was not
previously used, an authenticatorA = fK(S, T,Q)
calculated as a function of the route query fields and a
keyK, and an emptyNodeList.

1.2. The node transmits the route request, i.e.,
BcastL(RREQ), and it initializes aReplyWait

timer.

2. Route Query Processing: Each node receiving aRREQ

determines if its own identity matches the sought destination.
If not, it processes the request either as the querying node or
as an intermediate node. Otherwise, it processes the request
as the destination.

2.1. Route Query Processing at the Querying Node:

2.1.1. S initializes an emptyForwardList for each
RREQ it generates.

2.1.2. S adds to theForwardList each neighborV
it overhears relayingRREQ with NodeList =
{V }.

2.2. Route Query Processing at Intermediate Nodes:

2.2.1. Each Vk node invokes the
PreviouslySeen(RREQ) routine to specify if
RREQ has been previously processed. If yes,
theRREQ is discarded. Otherwise,

2.2.2. Vk extracts the last entry of theNodeList and
verifies this is the address of its precursorVk−1.4

If not, RREQ is discarded. Otherwise,

4I.e., the node that previouslyBcastL(RREQ) now processed; if
NodeList = ∅, the precursor must beS.

2.2.3. Vk checks theNodeList for duplicate entries; if
a loop is detected,RREQ is discarded. Other-
wise,

2.2.4. Vk appends its own identity to theRREQ,
updating NodeList = {NodeList, Vk}, and
BcastL(RREQ).

2.2.5. Vk initializes an empty ForwardList for
each RREQ it relays. It then adds to
the ForwardList each neighborV it over-
hears relayingRREQ with NodeList =
{NodeList, V }.

2.3. Route Query Processing at Destination Node:

2.3.1. T invokes thePreviouslySeen(RREQ) rou-
tine to check ifRREQ has been previously pro-
cessed. If so, theRREQ is discarded. Other-
wise,

2.3.2. T extracts the last entry of theNodeList, veri-
fies that this is the address of its precursor, and
discardsRREQ if there is a mismatch. Other-
wise,

2.3.3. T checks if there is any duplicate entry in
NodeList. If a loop is detected, it discards the
RREQ; otherwise,

2.3.4. T calculatesfK(S, T,Q) and compares it toA.
If they are not equal,RREQ is discarded; oth-
erwise,T generates and returns a route reply to
S.

3. Route Reply Generation: T generates a route reply
(RREP).

3.1. TheRREP packet comprises:

• The querying nodeS

• The destinationT

• The query identifierQ

• A Route list that contains the discovered route
and also serves as the information necessary
for RREP to be forwarded across the network
towardsS. To determineRoute, T extracts
the identifiers of the intermediate nodes previ-
ously accumulated in theRREQ NodeList,
namely,V1, V2, . . . , Vn−1. T stores them in re-
verse order in theRREP , settingRoute =
Vn−1, . . . , V2, V1. And,

• An authenticatorA′ = fK(S, T,Q,Route).

3.2. The destination transmits theRREP to the first entry
of theRoute list: SendL(Vn−1, RREP).

4. Route Reply Processing:

4.1. EachVk, includingS, verifies that its successorVk+1
5

is indeed the node that now forwards theRREP . If
not, it discardsRREP . Otherwise,

4.2. Vk verifies thatVk+1 ∈ ForwardList, unless the
successor isT . If not, it discardsRREP . Otherwise,

5I.e., the node entry prior toVk in theRREP Route list, or T if Vk

is the first entry inRoute.

4.3. Vk checks if there is any duplicate entry inRoute; if
yes, it discardsRREP . Otherwise,

4.4. Vk relays the reply to its predecessor,Vk−1,
i.e., the next entry in theRoute list or S;
SendL(Vk−1, RREP). OnceRREP reaches the
source,

4.5. S calculates and comparesfK(S, T,Q,Route) toA′.
If there is not a match,S rejects the reply. Otherwise,
it accepts the reply, and,

4.6. S extracts the Route entries to obtain the
{S, V1, . . . , Vn−1, T} route.

5. Route Reply Timeout: TheReplyWait timer may expire
in either of the following cases: (i) no replies fromT , in
response to the query identified byQ, were accepted byS,
or, (ii) at least one reply fromT , in response to the query
identified byQ, was accepted byS. In the former case, the
route discovery is considered failed, while, in the latter case,
the route discovery concludes, andS ignores route replies
that are further delayed.

5.1. Route Discovery Failure: S initiates a new route dis-
covery as in Step 1, using an updated value for the
ReplyWait timer (Step 1.2). To calculate this value
betweenReplyWaitmin andReplyWaitmax, S in-
vokes anUpdate(ReplyWait) routine that returns an
equal or higher value than the one previously used for
the failed route discovery.

5.2. Route Discovery Conclusion: Upon accepting a
RREP from T identified byQ, S considers the dis-
covery concluded after at leastReplyWaitmin sec-
onds elapse from the corresponding query generation,
allowing then for a new route discovery, if necessary.
If so, theReplyWait timer is reset, andS invokes
Update(ReplyWait) to selectReplyWaitmin as
the new route discovery timer value (Step 1.2).

Definition 3: A route discovery is the current route discovery dur-
ing the period of time that elapses from the generation of theroute
query (Step 1) till the earlier of the following two events: the ex-
piration of the ReplyWait timer (Step 5.1 and 5.2), or a routere-
discovery (Step 5.2).

B. Augmented SRP

The following steps are those that are different or added to the
functionality of the basicSRP defined above.

1. Route Query Generation:

1.1. The route request includes the querying nodeS,..., an
an emptyNodeList, and an emptyMetricList.

2. Route Query Processing:

2.1. Route Query Processing at the Querying Node:

2.1.1. Each neighborV that processes and is overheard
forwarding aRREQ with NodeList = {V }
and MetricList = {m1

0,1} is added to the
ForwardList if and only if |m0

0,1 −m1
0,1| < ǫ.

2.2. Route Query Processing at Intermediate Nodes:

2.2.4. .a (before 2.2.4.)Vk checks if the number of en-
tries in theMetricList is equal to the number of
entries in theNodeList. If not, it discards the
RREQ. Otherwise,

2.2.4. Vk appends its own identity to theRREQ,
NodeList, it appends mk

k−1,k to the
MetricList andBcastL(RREQ).

2.2.5. Vk initializes an empty ForwardList for
each RREQ it relays. Each neighbor
Vk+1 that is overheard relayingRREQ

with NodeList = {NodeList, Vk+1} and
MetricList = {MetricList,mk+1

k,k+1
} is

added toForwardList along with mk+1

k,k+1
if

and only if|mk
k,k+1 −mk+1

k,k+1
| < ǫ.

2.2.7. Vk storesmS,k, the route prefix metric calculated
from theRREQMetricList.

2.3. Route Query Processing at Destination Node:

2.3.4. .a (before 2.3.4)T checks if the number of en-
tries in theMetricList is equal to the number
of entries in theNodeList; if not, it discards the
RREQ.

3. Route Reply Generation: the destinationT generates a
route reply (RREP) packet comprising:

• . . .

• MetricList containing all the link metrics accu-
mulated in theRREQ along with mn

n−1,n (note:
mn

n−1,n ≡ mT
n−1,T). Link metrics are also reversed,

in order to correspond to theRREP Route entries.

• A′ = fK(S,T, Q,Route,MetricList).

4. Route Reply Processing:

4.2. Vk verifies thatVk+1 ∈ ForwardList, unless the
successor isT .

4.2.1. If Vk is T ’s predecessor (i.e.,k = n − 1), it
checks whether|mT

k,T − mk
k,T | < ǫ. If not, it

discardsRREP . Otherwise,

4.2.2. Vk checks ifmS,k = m′

S,k, wherem′

S,k is the
aggregate value calculated from the link metric
values reported in theRREP Route for links
(Vk, Vk+1), k < i. If not, it discardsRREP .

4.5. S calculates and compares
fK(S, T,Q,Route,MetricList) to A′. If there is a
match,S accepts the reply, and rejects it otherwise.

References

[1] K. Bhargavan, D. Obradovic, and C. Gunter, ”Formal Veri-
fication of Standards for Distance Vector Routing Protocols,”
Journal of the ACM, vol. 49, no. 4, pp. 538-576, July 2002

[2] S. Brands and D. Chaum, ”Distance-bounding protocols (ex-
tended abstract),”Theory and Application of Cryptographic
Techniques, p. 344-359, 1993

[3] L. Buttyan and I. Vajda, ”Towards Provable Security for Ad
Hoc Routing Protocols,” in proc. of the2nd ACM SASN,
Washington, DC, Oct. 2004

[4] S. Corson and J. Macker ”Mobile Ad hoc Networking
(MANET): Routing Protocol Performance Issues and Evalua-
tion Considerations,” IETF RFC 2501, Jan. 1999

[5] F. Cristian, ”Understanding fault-tolerant distributed sys-
tems,”Communications of the ACM, Volume 34, Issue 2, Feb.
1991

[6] F. Faberga, J. Herzog, and J. Guttman, ”Strand Spaces: Proov-
ing Security Protocols Correct,”Journal of Computer Secu-
rity, Vol. 7, no.2, pp. 191-230, 1999

[7] M. Gordon and T. Melham, Eds., ”Introduction to HOL:
A Theorem Proving Environment for Higher Order Logic,”
Cambridge University Press, Cambridge, U.K., 1993

[8] V. Hadzilacos and J. Y. Halpern, ”Message-optimal proto-
cols for Byzantine agreement,”Mathematical Systems Theory,
Volume 26, pp. 41-102, 1993

[9] G. Holzmann, ”The SPIN Model Checker,”IEEE Trans. of
Software Engineering, vol. 23, no. 5, pp. 279-295, 1997

[10] Y-C. Hu, A. Perrig, and D. B. Johnson, ”Ariadne: A secure
on-demand routing protocol for ad hoc networks,” in proc. of
8th ACM Mobicom,Sept. 2002

[11] P. Papadimitratos and Z.J. Haas, ”Secure Routing for Mobile
Ad Hoc Networks,” in proc. of theSCS CNDS 2002, San
Antonio, TX, Jan. 27-31, 2002

[12] P. Papadimitratos and Z.J. Haas, ”Secure Link State Rout-
ing for Mobile Ad Hoc Networks,” in proc. of theIEEE CS
WSAAN, Orlando, FL, Jan. 2003

[13] P. Papadimitratos and Z.J. Haas, ”Secure Message Transmis-
sion in Mobile Ad Hoc Networks,” in proc. of theACM WiSe,
San Diego CA, Sept. 2003

[14] P. Papadimitratos and Z.J. Haas, ”Secure Communication in
Adverse Mobile Ad Hoc Networks,” inAd Hoc Wireless Net-
working, D-Z. Du, Ed., Kluwer Academic Publishers, MA,
November 2003

[15] P. Papadimitratos and Z. J. Haas, ”Secure On-Demand
Distance-Vector Routing in Ad Hoc Networks,” in proc. of
the IEEE Sarnoff Symposium, Princeton, NJ, Apr. 2005

[16] P. Papadimitratos and Z. J. Haas, ”Secure Route Discovery
for QoS-Aware Routing in Ad Hoc Networks,” in proc. of the
IEEE Sarnoff Symposium, Princeton, NJ, Apr. 2005

[17] R. Perlman, ”Network Layer Protocols with Byzantine Ro-
bustness,” Ph.D. dissertation, MIT/LCS/TR-429, MIT, Oct.
1988

[18] K. Sanzgiri, B. Dahill, B.N. Levine, E. Royer, and C. Shields,
”A Secure Routing Protocol for Ad Hoc Networks,” in proc.
of ICNP 2002, Nov. 2002

[19] S. Yang and J. Baras, ”Modeling Vulnerabilities of Ad Hoc
Routing Protocols,” in proc. of theACM SASN, Fairfax, VA,
Oct. 2003

[20] M. G. Zapata and N. Asokan, ”Securing Ad hoc Routing
Protocols,” in proc. of theACM WiSe, Atlanta GA, Sept. 2002

	. Introduction
	. System Model
	. Network Model
	. Adversary Model

	. Routing Specification
	. Secure Routing Correctness
	Related Work
	. Conclusions

