Separating Routing and Forwarding:
A Clean-Slate Network Layer Design
(Invited Paper)

Kenneth L. Calvert, James Griffioen and Leonid Poutievski
Laboratory for Advanced Networking
University of Kentucky
{calvert,griff, leon}@netlab.uky.edu

Abstract— We present a ‘‘clean-slate” design for a network-
layer routing and forwarding system intended to address short-
comings of the current Internet Protocol. Our design separates
routing from both forwarding and topology discovery; requires
only a flat, topology-independent namespace; and allows for
policies of both users and service providers to be supported.
Channels serve as the primary abstraction, allowing the network
topology to be viewed at multiple levels of abstraction using the
same identifiers. In this paper we present the basic design, which
is based on loose source routing. Our routing and forwarding
scheme is part of a larger project to produce a “clean-slate”
network layer design.

I. INTRODUCTION

Although the Internet protocol suite has been amazingly
successful at supporting new applications and services, many
of the original assumptions underlying its design are no
longer valid. There is increasing agreement in the community
(including funding agencies) about the need to explore clean-
slate designs. Somewhat surprisingly, however, few proposals
for new network layer designs have been put forward to
date. Instead, researchers generally focus on particular aspects
that are considered problematic in today’s Internet, such as
interdomain routing policy, reducing unwanted traffic, opti-
mizing resource usage, etc. (By “network layer”, we mean the
protocols that govern the end-to-end delivery of information,
which are expected to be implemented by the participants in
the network—in other words, the “waist of the hourglass”.
By “architecture” we mean the set of functions implemented
by the system, and how they are assigned to the various
components.) In this paper, we describe a novel routing and
forwarding architecture that is part of a larger project to
develop a clean-slate network layer design. The larger project
is called Postmodern Internetwork Architecture [4]; the for-
warding/routing approach presented here is called postmodern
forwarding and routing infrastructure (PFRI).

Our work has several high-level goals. First, we want the
functionality of the forwarding infrastructure—the network
elements that must exist to interconnect channels and form the
network—to be independent of most aspects of the end-to-end
service. In particular, it should be possible for the end-to-end
service to evolve without a “forklift upgrade”. A network layer
that could support different end-to-end services was in some

respects a goal of the current Internet architecture [10], but
certain aspects are nevertheless entangled in IP—specifically
routing, forwarding, and addressing. (Consider the difficulties
involved with the transition to IPv6, which was essentially
nothing more than a change of numbering scheme.)

Second, our design is intended to recognize and isolate the
distinct and sometimes contradictory interests of the users
who generate the traffic and pay the bills, and the service
providers who carry the traffic and collect those bills. The
present Internet architecture’s lack of mechanisms to support
different parties’ policies has led to “tussles” [9], and to many
hacks becoming practically indispensible for the continued
operation of the network. (Consider the use of IP addresses
and—especially—port numbers to determine whether traffic
can be allowed into a domain.)

Third, our design should be flexible with respect to where
and how often functions are performed. For example, we want
to be able to push functionality into the end systems and/or
special infrastructure (a la DNS). In the present Internet, there
is actually very little of this kind of flexibility: some basic
responsibilities, such as end-to-end reliability, are delegated to
end systems, but others, such as route discovery and selection,
must be implemented in virtually every router. Along the same
lines, we want to allow a greater range of options for the
frequency of occurrence of potentially costly operations. In the
current Internet, IP’s hop-by-hop routing/forwarding function
treats all destinations the same, expending the same effort to
find routes to all destinations, regardless of the traffic’s actual
mix of destinations. In other words, IP spreads the cost of
finding all routes over all packets equally; in a world where
the cost to send a packet may vary widely across sources,
it may be useful to allow a wider variety of amortization
schedules. (Consider a battery-powered handset on the edge
of radio range versus a large server in a corporate data center.)

The focus of this paper is on a basic datagram delivery
service, which has the following features:

o Separation of routing and forwarding. This is also

a feature of switched, connection-oriented networks like
ATM, of course. Unlike switched networks, however, our
design does not require per-flow state in the forwarding
infrastructure, although it is permitted as a performance

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 23, 2009 at 14:50 from IEEE Xplore. Restrictions apply.

optimization. Instead, each packet carries a forwarding
directive, which partly specifies the path it should follow
through the network. The full path followed by the packet
is determined by the policies of the source and the
providers whose networks carry the packet.

o Separation of topology discovery and path selection.
At all levels, the problem of topology discovery (i.e.
discovering potential routes) is separated from route-
selection policies that are likely to be determined by
business relationships.

« Flat, topology-independent identifiers. PFRI has no
naming or addressing hierarchy, and no central naming
authority is required. Identifiers that are required to
be globally unique for routing/forwarding are selected
randomly or pseudorandomly, from a large space, to
(virtually) guarantee uniqueness. This separation makes
it easier to support mobility.

« Flexible topology abstraction: In PFRI, only channels
are named (i.e., are assigned identifiers); nodes remain
anonymous. The advantage of this approach is that the
network can be viewed at different levels of abstraction
using the same channel names (see Figure 1). Where
necessary, nodes can be implicitly identified with the set
of channels they terminate, including abstracted clusters

of nodes.
a e .
! !
j k
c Foot
(a) No abstraction
(b) One level of abstraction
e
f
(c) Two levels of abstraction
Fig. 1. Channel names do not change regardless of abstraction level, while

different node names would be required at different levels of abstraction.

Although our primary focus here is on the rout-
ing/forwarding approach, it is only one component of the
network layer being developed in the Postmodern Internetwork
Architecture project. Because the other components are crucial
to the viability of PFRI, we discuss their role here briefly.
(Indeed, we believe the lack of interest in prior source routing
proposals, including some that PFRI resembles, is due at
least in part to the absence of these functions.) These addi-
tional functional components, each representing a part of the
internetwork-layer header, are [4]: motivation, accountability,
knobs, and dials. We consider each in turn.

In today’s Internet, packets flow between domains only
when either a customer-provider relationship or a peering
relationship exists. Because routing in IP is done hop-by-
hop, customers are completely dependent on their immediate
upstream provider to determine the route followed by the
packets they send, even though that route generally involves
service providers other than the originator’s. The purpose
of the motivation field is to remove this limitation, so that
customer-provider relationships can exist apart from topology.
The idea is that nodes in the infrastructure, before forwarding
a packet, check its motivation field for a reason to do so.
Thus the motivation field might contain credentials that prove
the originator is a legitimate member of the local domain, or
is a customer of a particular transit provider. Recently other
researchers have proposed the use of network capabilities for
similar purposes [14], [16], [17].

The accountability mechanism provides a hard-to-forge
record of a packet’s origin and handling in the network. Being
able to attribute packets to a specific endpoint and path has
many uses, including tracking malicious packets and using
flooding as a basic functional building block.

Knobs enable packet sources to supply advice to the net-
work, in order to increase the likelihood of adequate perfor-
mance in some dimension. An example would be an indication
that a packet is the first of a series of packets, all going the
same way. Such a hint would enable the infrastructure to,
for example, establish state in order to amortize resolution
or lookup costs over all of the packets.

Dials support information flow in the other direction, i.e.
from the network to the user. An example would be a signed,
nonrepudiable timestamp indicating the time of arrival at each
hop along the path specified by the source. Such information
would enable a user to determine where delay builds up in the
network.

The rest of this paper is organized as follows. The next
section introduces the concepts and terminology of PFRI.
Section III discusses the model of usage of the network and
compares it to the current Internet, particularly with respect
to the parties responsible for various functions. Section IV
describes the basic operation first in the context of a simplified
model, then shows how the approach can be made to scale. In
Section V we discuss some additional considerations related to
performance and other details of operation. In Section VI we
discuss some connections and differences between our work
and others’. Section VII concludes the paper.

II. CONCEPTS AND TERMINOLOGY

A channel is a logical means of transmitting packets from
one location to another. In our architecture, it may correspond
to an actual physical channel (such as a SONET link, a lambda
in a fiber, or a wireless LAN), or to a higher-level abstraction
such as a buffer queue in an operating system, a label-switched
path, or a pair of IP addresses in the existing Internet.

Each channel in the network is identified by a globally
unique, unstructured channel ID. As noted in the introduction,
channel IDs are chosen (pseudo)randomly from a large space

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 23, 2009 at 14:50 from IEEE Xplore. Restrictions apply.

to avoid the need for any central naming authority. Although
we do not make use of it in this paper, each channel ID is
assumed to be bound to a public/private key pair in a self-
certifying way (for example, the channel ID is the hash of
the public key). These considerations make it necessary for
channel IDs to be rather large (at least 64 bits). We therefore
note here a fundamental premise of our design is that header
bits are cheap. The PFRI header, which in general will contain
several channel IDs, can be rather large—perhaps hundreds of
bytes. Our position is that in today’s network, bandwidth is
plentiful, and it is more important to include required mech-
anisms than to optimize bandwidth consumption by headers
throughout the network architecture. In those places where
bandwidth really is precious, state and other methods can
be used to shrink the overhead [11]. Moreover, increasing
the minimum packet size provides a benefit: a corresponding
increase in the per-packet processing time budget.

For the purposes of this paper, all channels are understood
to be point-to-point and bidirectional. While in practice some
link layers do not have these attributes, it is clear that, for
example, point-to-point channels may be built upon multipoint
link layers. Although unidirectional links may occasionally
be encountered (for example in mobile/wireless networks),
they are of limited utility in the context of a general-purpose
network unless other, reverse channels exist. We therefore
believe the conceptual simplification of this assumption is
worth the burden it places on underlying link layers.

A node is the logical endpoint of one or more channels. It
may represent a program running in a host, a piece of hardware
(e.g. a sensor), a server farm, or an entire network domain such
as a university campus. A forwarding node (FN) is a node
that provides “transit service”, i.e. relays packets among its
attached channels. Although a FN could be a piece of hardware
infrastructure (like a router or switch), it might also be a larger
component, such as a complete transit domain (like an AS in
today’s network).

The term endpoint refers to a node that acts as a source
or sink of traffic (packets). An endpoint will typically be a
process or program, but might also be a file, port, mailbox, etc.
Each endpoint has one or more end-channels through which it
can send and receive packets. An end-channel is any channel
that terminates on an endpoint. We use the term EID to refer
to the channel ID of an end-channel, although there is no
apparent difference between the ID of a regular channel and
an end-channel.

A realm is a collection of channels and nodes that are under
a common administration at some level. Realms may be nested
hierarchically. In our architecture, a realm is indistinguishable
from a node when viewed from the outside. In particular, some
realms provide transit service between channels, while others
do not. Realms are a generic construct corresponding to the
various levels of hierarchy in the present network: autonomous
systems, OSPF areas, subnetworks, etc.

A path is a sequence of channels, where adjacent channels
in the sequence have a common endpoint, which is a FN. A
partial path is a sequence of channels that does not necessarily

have the connectivity property, i.e. consecutive channels in the
sequence are not necessarily connected by a FN. A forwarding
directive is a component of the PFRI header containing a
partial path, an indication of the current location in that path,
and information that distinguishes among data traffic and
various forms of signaling traffic.

III. PFRI IDENTIFIERS AND USAGE

The forwarding mechanism resides at the heart of the PFRI
architecture, and uses a very simple, flat namespace. As in
the current Internet, other namespaces will also be needed,
as will means of mapping names from the various spaces
to each other. Separation of concerns with respect to any
auxiliary infrastructure required to perform these mappings is
also important.

The following describes our vision of the use of various
names and identifiers in PFRI, including who controls/supplies
the resolution mechanisms and sets policy. Fig. 2 shows the
various objects used in establishing communication (boxes).
Arrows indicate mappings. For comparison purposes, we also
describe the corresponding mapping steps for the current

system.

User or other service
(e.g. Google)

2 [THT)
(location—independent)

Step 1 ‘

(T TR T e R TR
(location—independent)

Step 2 '

Destination Application
Service Provider

Destination Network
Service Provider

GETP)
(location—dependent)
Step 4 '
(source—specific)
Step 5 ' Transit Service Providers

(source—specific)

Fig. 2. Resolution steps; next to each arrow is the entity responsible for that
mapping

Source or Source’s
Service Provider

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 23, 2009 at 14:50 from IEEE Xplore. Restrictions apply.

1) The communication objective represents what the user
wants to communicate with. It generally remains im-
plicit, both today and in PFRI. It is typically resolved
into a destination specification. In today’s network, the
destination specification is partly explicit and partly
implicit. Examples of the explicit part would be a URL,
an email address, or a DNS name. The implicit part is the
well-known port associated with the application, which
is typically built into the application. This “resolution” is
often performed manually (for example, the user knows
the email address of the person they want to contact)
or through a third-party service such as Google. In any
case, the destination specification identifies a particular
service.

2) The destination specification is resolved to an EID,
which uniquely identifies the endpoint of communica-
tion. This resolution step, which represents the selection
of a specific instance of a service, is controlled by
the destination (application) service’s administration. In
the current Internet, the EID is an IP address plus
(implicitly) a port number and protocol; the resolution
is typically done via DNS. The provider of the (applica-
tion) service has control over this mapping, both today
and in PFRI. Because the EID today is tied to location,
the provider may return a different value depending
on the requestor’s location (cf. Akamai). In PFRI, on
the other hand, the EID is the (opaque) channel ID of
an end-channel, which identifies an application entity
independent of its location.

3) The EID maps to a locator, which encodes information
about the endpoint’s location in the network. In the
present Internet this step does not exist, because the
IP address encodes the endpoint’s location and acts as
both EID and locator. The drawbacks of this approach
are well known. In PFRI, this resolution is handled
by a dedicated, hierarchical mapping service, and the
destination network provider’s policy determines the
mapping. (Details are discussed in Section IV-D.)

4) The locator is elaborated to a partial path. In PFRI, this
mapping is performed by the source and the source’s
network service provider (or by the latter exclusively),
according to their respective policies; when the partial
path is obtained the packet can be handed off to the
PFRI layer.

5) The partial path is refined to a complete path by filling
in gaps, which correspond to intra-realm segments. In
PFRI, this step is controlled by the realms (transit
providers) through which the packet passes.

In today’s Internet, the packet is passed to the network layer
after step 2, and the mapping from locator (IP address) to
complete path—is performed hop-by-hop as the packet travels
through the network. Each node determines the next hop in
the path according to its own policies and the destination IP
address.

The first two resolution steps are considered to be auxiliary

functionality that uses the network layer. Like the DNS in

today’s network, they are useful but, strictly speaking, not
necessary for its functioning. The PFRI network layer enters
the picture only when the objective has been resolved to
an EID. Before taking a closer look at these network layer
mechanisms and how they can be made to scale, we point
out that the separation of concerns outlined above is quite
consistent with that of the three-layer name system proposed
by Balakrishnan et al [3].

IV. FORWARDING AND ROUTING OPERATION

The fundamental service provided by the PFRI layer in-
frastructure is relaying a packet from channel to channel,
as specified by a forwarding directive carried in the packet.
The FD specifies a sequence of channel IDs; as long as the
sequence represents an actual path in the network, the basic
operation is straightforward: When a packet arrives at a FN,
the “current position” indicator in the FD is updated, the next
channel ID in the sequence is mapped to one of the FN’s
attached channels, and the packet is forwarded over that link.
The challenge is to enable the FD to be constructed in the first
place. Our design divides the responsibility for this problem
among the source and the various providers who will carry
the packet.

We first describe how PFRI works based on certain simpli-
fying assumptions. Then we show how to relax the assump-
tions without depending on any routing mechanism. In what
follows, we mostly ignore the other functional blocks of the
architecture (motivation, accountability, etc.), except to point
out where their functionality may be useful.

For this simplified scenario, we assume the network has
only a single level of hierarchy: Each channel either connects
two nodes within the same realm, in which case it is called
an interior channel, or it crosses into a different realm, in
which case it is called a border channel of the realm. A node
connected to a border channel is called a border node of the
realm. Some realms act like forwarding nodes, i.e. they relay
packets among their connected channels, while others do not.

Fig. 3. Network graph for simplified scenario

We assume the following:

P1: Each node in each realm knows the internal topology of
its local realm, including the identifiers of every internal
and border channel of that realm.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 23, 2009 at 14:50 from IEEE Xplore. Restrictions apply.

P2: Each node knows the (connected) realm-level topology,
i.e. the connectivity and identities of all inter-realm
channels in the network.

P3: There exists an EID-to-border channel mapping service.
Given the channel ID of any end-channel in the network,
the service returns one or more border channels of
the realm that contains that end-channel. Every realm
contains at least one provider of this service, and every
node in the realm knows the identity of that provider.

Consider a node (call it «) in a realm X, which has a packet
destined for an application identified with with end-channel d.!
(Refer to Fig. 3, in which realms that provide transit service
are shaded.)

The node « does not know the location in the topology
of the application associated with EID d, so it must resolve
d to something it does know. It sends an EID resolution
request packet to its local EID-to-border channel service;
the forwarding directive of the PFRI header of that packet
contains the path yw. (The PFRI header must also contain,
in its motivation field, credentials to convince the common
endpoint of y and w to forward the packet.) The EID-to-border
channel service receives the request, looks up d and returns z
as a border channel of the realm containing d. The packet is
returned to « using the reversed FD wy.

Now « can use its knowledge of the realm-level topology
to select an inter-realm path that leads to z according to its
own path-selection policy. Since the realm containing d is not
a neighbor of X, one or more realms will need to provide a
transit service to the packet. If « is an established customer
of one of the candidate transit realms, it may select a path
that uses one of those realms; otherwise, it must establish a
relationship with some transit provider(s) to get the motivation
credentials needed to convince the realms to provide transit
service. (For now, we assume this transaction happens out-of-
band.) In our example, o selects the inter-realm path rtz.

Using its knowledge of the local topology, « selects the
egress portion of the path to . In our example yu is the only
choice, but in general o may apply policy here to select a path.
So « constructs a FD containing the partial path yurtzd. (It
also constructs and includes the needed motivation credentials
for the channels included in this path.) It sends the packet over
channel y. The packet is forwarded over y, u, and r, with the
FD being updated at each hop as described above. (In addition,
the packet’s motivation is also checked at each hop.)

After traversing channel r, the next channel in the sequence
is not directly attached to the receiving node: the FD does
not specify the pathto be followed through the first transit
realm. At this point, we say a path fault occurs. We discuss
the handling of path faults later, in Section IV-B; for now,
we simply state that the transit realms are responsible for
conveying the packet from r to ¢, and from ¢ to z. (Given
P1, it should be clear that each realm can construct a path
connecting the border channels.)

'We name nodes and realms in this example for convenience only; the
architecture does not require that they be named.

After the packet crosses z, another path fault may occur.
Again, given P1, it can be handled and the packet is conveyed
across d. At this point the network layer has fulfilled its
obligation, i.e. the packet was transmitted and received over
each channel in the FD. If the end-channel associated with
the EID corresponds to the input queue of an application,
no further demultiplexing is necessary. Alternatively, the end-
channel might be the input of a module that will perform
additional protocol processing. (Interaction with higher-level
protocols is discussed in Section V.)

A. Implementing P1-P3

Next we consider how the assumptions can be made to hold
without begging the question, i.e. without relying on any other
routing mechanism. The first two are straightforward; P3 is a
bit trickier.

Regarding P1: Knowledge of the intra-realm topology can
be obtained and propagated using a link-state-like protocol
along the lines of OSPF [12]. Each node in the realm peri-
odically creates and sends a topology advertisement that lists
all of its channels. These advertisement messages are flooded
throughout the realm. (Note that the accountability mechanism
makes it relatively easy to implement a safe and efficient
flooding primitive.) Topology advertisements come in two
flavors: regular and transit. Regular advertisements indicate
that a node can be reached via the advertised channel(s).
Transit advertisements imply that in addition the originating
node is prepared to forward packets between any of the
advertised channels (given adequate motivation). Thus the
advertisement emitted by each forwarding node is a transit
advertisement; hosts emit regular advertisements.

Regarding P2: Given PI1, the same basic method can be
used to distribute information about the realm-level topology.
Here, the border nodes in each realm play a special role as
aggregators of the realm-level topology information. Using
their knowledge of the internal and border channels of the
realm, they construct an advertisement of the realm’s border
channels and forward it to each of their neighbors in other
realms. Those neighbors, in turn, flood the advertisement
throughout their realms and pass it on to neighboring realms.
Eventually each node in the network receives an advertisement
for each realm, and has a complete graph model in which
realms are nodes and inter-realm channels are the edges.

Regarding P3: given P1 and P2, we can construct a global
service that maps EIDs to the border channel IDs of the
realms that contain them. In each realm, one or more nodes
is designated to provide this service. (This designation must
be part of the node’s configuration.) These nodes periodically
flood announcements of their location throughout the realm;
in this way each node in the realm learns a path to the service.
Moreover, border nodes forward these announcements to their
neighbors in adjacent realms, which forward them directly to
their own designated service nodes. In this way, the service
nodes in each realm learn of their counterparts’ locations.

The EID-to-border channel service nodes in each realm
organize themselves into a global DHT using their knowl-

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 23, 2009 at 14:50 from IEEE Xplore. Restrictions apply.

edge of the realm-level topology as well as their own intra-
realmtopology. First, each service node floods an announce-
ment of its existence throughout its realm; this enables all
other nodes in the realm to learn a path to it. The border
nodes of the realm exchange this path information across the
realm boundaries, so that service nodes in neighboring realms
learn paths to each other. The service nodes then organize
themselves into a distributed hash table (DHT) structure such
as a Chord ring [15]. For Chord, each service node chooses
a neighboring service node as a successor. Using their knowl-
edge of the topology, nodes then identify the nodes that are
1/2, 1/4, etc. of the way around the ring, and construct paths
to those finger nodes; thanks to P1 and P2, these paths can
be made efficient in terms of the underlying network graph.
Finally, the service nodes partition the identifier space so that
each is responsible for an approximately equal-sized portion
of the space; each node then inserts the mappings for its realm
into the DHT. (In practice, the global DHT would probably
not bootstrap itself in this way, but would be administratively
configured to provide efficient service.)

B. Path Fault Handling

As noted above, a FD may contain gaps. One reason is
scalability: it is not reasonable to expect a source to know
enough about the network topology to specify a complete path
to any destination. Another is privacy: realms may not wish
to expose information about their internal topology outside
the realm. For these reasons, path faults may happen during
forwarding.

When a packet arrives at a forwarding node and the next
channel in the FD is unknown, a path fault handler (PFHs)
is invoked; the PFH may or may not be co-located with the
border node at which the fault occurred. If it is not, the FN
must be configured with a FD to get the packet to reach the
PFH; this FD is placed in a new PFRI header (which flags the
packet is being in the midst of path fault handling), which is
“pushed” (prepended) onto the packet, which is then forwarded
to the PFH, where the temporary header is popped off again
by the PFH.

When a PFH receives a “path fault” packet from a faulting
node, it can resolve the fault in any of several ways. It might,
for example, determine a path from the faulting FN to the
target egress channel. In this case, it constructs a FD and PFRI
header containing the ‘“gap-filling” intra-realm segment and
pushes it on the packet, followed by another header containing
the reverse of the FD just popped. The packet is forwarded
back to the FN where the fault occurred, the outer header
is popped, and then the packet is forwarded to the egress
channel, where the gap-filling header is popped, and the packet
continues on its merry way. This approach is inefficient, but
allows the PFH to direct the faulting node to cache the gap-
filling header (including any motivation information required
to get the packet through the realm).

The alternative approach is to push onto the packet a path
from the PFH directly to the target egress channel. The packet
is not returned to the faulting FN, and no cache entry is

added at the faulting FN. As a result, future faults will also be
forwarded through the PFHon the way to the egress channel.
This approach would only be used if the packet indicates (via
the knobs field) that it is one-of-a-kind, and no state should
be established. Thus, when selecting a route for the packet
to follow, the PFH examines not only the FD and motivation
fields, but also and the knobs field in the packet header. The
latter may indicate particular characteristics desired for the
transit path, especially if the packet is the first of many to
flow along the same path. Realms that provide transit service
will often have multiple flows traversing the realm through
the same ingress/egress channels. Although the flows share
the same ingress and egress channels, they may have differing
QoS requirements (knobs) and must be routed over different
paths inside the realm. By looking at the knobs of every
faulting packet, the PFH can select an appropriate one. To
avoid routing all packets through the path fault handler, it is
necessary to allow paths in a FN’s path cache to be associated
with a flow ID as well as a channel ID. The ability to insert
path cache entries that define different routes to the same
egress channel gives PFHs the ability to support QoS routing
and traffic engineering while amoratizing the costs of route
faults/computation across many packets in a flow.

C. Hierarchical Topology

Clearly, for this system to scale to millions or billions of
nodes, it is necessary to support multiple levels of abstraction
(hierarchy). However, we want to avoid placing arbitrary limits
on the amount of hierarchy that can be supported, so we allow
for arbitrary nesting of realms. That is, any realm may contain
any number of sub-realms, some of which may contain sub-
sub-realms, etc. Thus we must revise P1 and P2:

Pla: Each node knows the identity and internal connectivity
of all interior and border channelsof every realm that
contains the node.

Each node knows the complete top-level inter-realm
topology, i.e. the identities and connectivity of all chan-
nels that are not interior to any realm.

P2a:

The possibility of different amounts of hierarchy in different
parts of the network complicates the propagation of topology
information needed to achieve these properties. In the descrip-
tion above, border nodes need only consider whether a channel
crosses a realm boundary or not to determine what informa-
tion to include in advertisements sent over that channel. In
particular, advertisements sent over a border channel contain
only the border channels of the originating realm(plus an
indication of whether transit service is offered among them).
Advertisements received over a border channel can likewise be
assumed to contain only inter-realm channels. However, with
different levels of nesting in different places, this is no longer
true. Fig. 4 shows an example.

In the figure, nodes are indicated by shaded circles (and
labeled for convenience with lower-case Greek letters); ellipses

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 23, 2009 at 14:50 from IEEE Xplore. Restrictions apply.

Fig. 4. Unbalanced nesting of realms

denote realm boundaries.” Consider node 3, which will receive
an advertisement from node § over channel g. According to the
algorithm given above, that message will list two links, g and
n. Since n is a border channel, according to the algorithm 3
should include it in the advertisement it emits over channel
q. However, n is actually completely contained within the
outer realm boundary crossed by ¢; therefore 3 should not
include it in the advertisement, but should include channel p,
which crosses the same outer realm boundary as ¢. Similarly,
« should emit an advertisement over p that contains both p
and q.

To achieve this, we first introduce a notion of the level of
a channel. In order to define channel level, we first define the
level of a realm to be the maximum depth of nesting within
that realm; that is, the maximum, over all nodes in the realm,
of the number of realms (within in the original realm) that
contain the node. This corresponds to intuitive notions of the
amount of hierarchy within a realm. (For example, the level of
the outermost realm in Fig. 4 is two.) Now we can define the
level of a channel h at a node i to be the maximum level of
all realms containing p whose boundary is crossed by h. For
example, the level of both p and ¢ in Fig. 4 is two, while the
levels of g and n are zero and one, respectively. Finally, we
define the level of a topology advertisement to be the minimum
of all the levels of the channels it advertises.

Because we expect that realm boundaries will be administra-
tively determined and configured—especially for boundaries at
higher levels in the hierarchy—we assume that nodes know the
levels of their attached channels, and include that information
in each topology advertisement they send out.

Observe that, if no advertisement messages are lost, a node
will see exactly two advertisements that mention each channel
in its view of the topology—one emitted by each end of the
channel. We say a node’s view of the level-k topology has
converged when it has seen two advertisements (including
those it originated) of each channel with level at most k.

We are now in a position to state the simple rules governing
origination and forwarding of topology advertisements in the
presence of arbitrary realm nesting.

1) A node emits topology advertisements over links with
levels greater than k only after its view of the level-k
topology has converged.

2) The topology advertisement originated by a node over
a channel with level=k contains exactly those channels

2 Although realms and nodes play the same role in our model—both
terminate and provide transit between channels—we use the term “node”
here to denote an atomic entity with no discernable internal structure, like
a hardware FN.

with levels > k reachable from that node via channels
with levels less than k.

3) An incoming topology advertisement with level=Fk is
forwarded over a channel with level=/ if and only if
k>

Together, these rules define the way topology information
is aggregated by the border nodes of nested realms. The
result is a set of hierarchical, location-specific abstractions
of the network, along the lines of Alaettinoglu’s viewserver
hierarchy [2]. (In other research, we have shown how such
a hierarchy can be built without node addresses [13].) An
example is shown in Fig. 5. The advertisements originated over

Selected advertisements for the topology of Fig. 4.

Fig. 5.

four of the links are shown schematically, with the advertising
node/realm represented by a circle, and its border channels
indicated by labeled edges; the level of each channel is shown
next to it. The presence of a “T” in the message indicates
that transit service between the channels is offered. The two
messages in the bottom half of the figure would be emitted
first, followed eventually by the upper two. Note that the
advertisements sent over p and ¢ contain the same information,
as required.

D. Hierarchical Locators

Given an arbitrary hierarchy of realms, we also need to
modify assumption P3. To that end, we introduce the notion
of a locator, which generalizes the role of the border channel
in P3, to indicate the location of the channel associated with
a particular EID in the topology. More precisely, a locator
encodes a set of ingress paths that can be used to reach
a particular end-channel. Suppose, for concreteness in our
discussion, that the destination endpoint is a server program,
and there are three enclosing realms (corresponding to the
host, an OSPF area, and the destination Autonomous System
(AS)—refer to Fig. 6). A locator defines a set of sequences
of ingress channels of the enclosing realms. The locator
“(A|B|C) then (D|E) then (F|G|H) then I” indicates that
the endpoint resides in the (AS) realm identified by channel
IDs A, B, and C, the inner (OSPF) realm identified by D and
E, the host realm identified by F, G, and H, and finally the
endpoint (EID) represented by channel ID /. Because locators
only specify a partial path, final path selection is delayed until

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 23, 2009 at 14:50 from IEEE Xplore. Restrictions apply.

packet forwarding time, and is made according to the policies
of the destination realm(s).

15}
PEERIATAIA)
TR RI

Fig. 6. An example locator specification: (A|B|C) then (D|E) then
(F|G|H) then I.

Locators are context-dependent, in the following sense:
depending upon the location of a source, different resolutions
of the locator will be appropriate. For a source located within
the same (lowest-level) realm as the destination endpoint (e.g.,
the host realm), the EID is sufficient to determine a path to the
endpoint. Within the same second-level realm (corresponding
to, say, an OSPF subarea), the ingress channels of the lowest-
level (host) realm and the endpoint are sufficient. A source
in a different second-level realm but within the same top-
level realm (corresponding to an Autonomous System) needs
to know the endpoint’s, first-level realm’s, and second-level
realm’s ingress channels. Finally, a source in a different top-
level realm needs the ingress channels of all three enclosing
realms and the EID. In each case, the EID-to-locator service
needs to return a locator with context-appropriate resolution.

Now we can modify P3 to deal with arbitrary levels of
hierarchy:

P3a: There exists an EID-to-locator mapping service. Given
the ID of any end-channel in the network, the service
returns a locator for that EID, at the appropriate resolution
for the requesting location. Every realm contains at least
one provider of this service, and every node in the realm
knows the identity of that provider.

We now describe a method by which an endpoint’s locator
is constructed, and how a locator can be obtained for a given
endpoint. Each realm provides an EID lookup server for the
purpose of constructing locators and mapping EIDs to locators.
Each EID lookup server knows the path to its “parent” server
(i.e. the server for the realm that contains it), and the path to
each of its “child” servers, for the realms it contains. In larger
realms, the service may be provided in a distributed fashion,
e.g. through a DHT. Finally, there is a single global DHT EID
lookup service at the top-most inter-realm level.

When an endpoint first connects to the network, it is given
a forwarding directive and motivation token to contact the the
local EID lookup server for the innermost-containing realm.
The new endpoint informs that local server of its EID; the local
server then sends the EID together with the appropriate border
channels of the local realm to its parent server. The parent

server repeats the process, adding the border channels of its
realm, according to the policies of that realm. This continues
until the top-level realm server is reached. The top-level server
registers the complete locator with the EID in the global DHT.

To resolve an EID to a locator, a source first sends a
resolution request to its local EID lookup server. If the local
server has an entry for the EID, it responds with the (local) lo-
cator(e.g., the EID itself). Otherwise, the local server forwards
the request to its parent server. This continues until the EID
is found or the global DHT is reached. If the EID is found in
the global DHT, the full locator is returned to the requestor.
(Note that requests are forwarded along preconfigured or semi-
permanant paths among the infrastructure components, while
responses follow the reverse paths.)

A slight modification of the above approach allows the par-
ticular entry channels returned in the locator to be dynamically
adjusted by the destination realms, for example in response
to changing traffic conditions. The cost is a slightly longer
resolution path. Instead of storing the locator itself with the
EID, the EID-to-locator server binds the EID in its parent
server to a pointer to itself. The parent does the same thing,
resulting in a downward chain of FDs from the top-level
(global) service. Each EID-to-locator server keeps track of
the conditions that determine the preferred ingress channels
for its realm. A resolution request from outside the realm is
forwarded down through the chain to the local realm server,
which chooses the ingress channels and sends them back to
its parent. Then, as the response follows the reverse path back
up the hierarchy, each server adds the current “best” set of
ingress links for its realm to the locator.

E. Dedicated Topology Infrastructure

So far we have assumed the participation of every node
in topology discovery and route selection. In general, this
is not necessary; it is sufficient for each node to know a
path (forwarding directive) to a node that has the topology
information specified in Pla and P2a. We therefore introduce
a hierarchy of topology servers, which participate in the
topology discovery algorithm on behalf of the nodes in each
realm. The topology server periodically emits announcements
of its existence, including the level of the realm for which it
is responsible. These announcements are flooded throughout
the realm like topology advertisements, accumulating a path
(via the accountability field) as they go. In this way, each node
learns a path to the servers for each of its enclosing realms,
and lower-level servers learn paths to those further up in the
hierarchy.

Each node (end system or FN) is still required to send
out periodic topology advertisements; however, these are sent
directly to the local topology server instead of being flooded
throughout the enclosing realm. Each lower-level server then
creates the aggregated advertisements for its realm and sends
them to the appropriate higher-level server. This reduces the
overhead of flooding, at the cost of having a dedicated server
for the realm, and requiring an additional communication

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 23, 2009 at 14:50 from IEEE Xplore. Restrictions apply.

step (requesting topology information from the server) before
sending a packet.

A similar arrangement applies to the route selection func-
tion. Users that do not need the ability to apply their own
policies to select routes may delegate the task to a route server.
They need only be configured with an FD that allows the to
reach the route server.

V. ADDITIONAL CONSIDERATIONS

This section briefly discusses some miscellaneous aspects
of the approach.

A. Caching for Performance

Decomposing the network layer into a set of cooperat-
ing services (i.e., forwarding, topology discovery, path fault
handlers, route selection, etc.) is key to the separation of
mechanism from policy in our approach. However, this de-
composition raises some issues with respect to performance.
Although the goal is to support single-packet exchanges in a
single round trip, the number of distinct, possibly distributed
entities potentially involved in forwarding a single packet
is a potential cause for concern. The obvious answer is
that caching will play a crucial role in attaining adequate
performance. We have already discussed caching in regard
to path fault handler. In addition we expect that nodes will
cache any information obtained from dedicated infrastructure
such as the topology service, the EID-to-locatorservice, or any
route service. Given that the information obtained from these
services is likely to change slowly, we believe that caching
will be quite effective in reducing overhead.

We plan to make use of ephemeral state [6] for caching
wherever appropriate. Information stored in an ephemeral state
cache persists for a relatively short, fixed duration before it
automatically disappears. A cached entry cannot be deleted
early nor can its lifetime be extended. As a result, the amount
of state consumed by cached entries can be predicted and
bounded. Moreover, there is no management overhead.

B. Multiplexing and Higher-Level Protocols

So far we have not mentioned layering or upper-level
protocol processing, and have even implied that the endpoint
itself is responsible for constructing the PFRI header and
prepending it to the packet. This is because PFRI is designed to
minimize assumptions about how systems and even protocols
are structured, and to be strictly agnostic about the protocols
being used above and below it. In practice, PFRI will be
implemented in some combination of library and operating
system modules. Fig. 7 shows one possible arrangement: the
upper-layer protocols and per-endpoint portion of the PFRI
implementation are accessed as libraries, while the rest of
PFRI—viz., the part that multiplexes packets over the access
channel x—is contained in the operating system. Because
PFRI is agnostic about the nature of the entities in between
channels, various other configurations are possible. For exam-
ple, in a large “server farm”, the last several links might be
inside a cluster of machines.

Fig. 7. Implementation structure

The question remains, however: what happens to a packet
when it is received over the final channel in its FD? If it is
an end-channel, the PFRI layer’s work is done. Otherwise—an
example would be the case of a gap-filling FD pushed onto the
packet by a path fault handler—the packet must be processed
by the receiving PFRI module. The PFRI header therefore
contains a small type field that allows to determine which
control or signaling function is or should be applied to the
packet. Note that this field is used only to distinguish among
network layer functions such as topology discovery, flooding
infrastructure server announcements, path fault handling, etc.
The PFRI header contains no information about any higher-
level protocol used by the application; this is an intentional
design decision, to prevent the infrastructure from basing its
treatment of the packet on (implicit) assumptions about the
application’s needs, rather than explicit requests, provided via
the motivation and knobs fields.

C. Bootstrapping: Joining the Network

To join the network, a node establishes an access channel
to a forwarding node. It then needs to obtain the basic
information required to enable it to communicate with the
infrastructure. This information comprises at least the fol-
lowing: (i) a path to the local topology server; (ii) a path
to the local EID-to-locatorservice; (iii) a path to one or
more inter-realm route selection or brokering services; (iv)
paths to any other higher-level resolution infrastructure (DNS
analogues) as discussed in Section III. (For each of these
paths, accompanying motivation credentials are also required.)
Once this information is obtained, the node can obtain what
it needs from the infrastructure to communicate with other
endpoints. The simplest way to obtain this information is
to get it from the forwarding node on the other end of the
access connection. However, there are two reasons this may
not be feasible. First, a FN—a dumb device that does nothing
but forward packets—may not have some of it. Second, the
service provider may wish to exercise control over which
infrastructure components the joining node uses. Therefore the
FN may be configured to provide a single path to a joining
node, namely the path to a boot server. The boot server, in
turn provides all the information needed by the joining node
to bootstrap its communication.

VI. RELATED WORK

As noted in the Introduction, the PFRI design draws on
many sources. Here we trace a little bit of this heritage; a

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 23, 2009 at 14:50 from IEEE Xplore. Restrictions apply.

more comprehensive listing may be found in [4]. We note
that what sets PFRI apart from many of its predecessors is the
context in which it is intended to operate, that is, the inclusion
of motivation, accountability and other mechanisms.

PFRI has much in common with the Nimrod routing ar-
chitecture [7] in terms of both goals and methods. Nim-
rod aimed to support service-specific user-directed routing,
mobility, and scalability. It used loose source routing based
on hierarchical topology maps. The New Internet Routing
Architecture (NIRA) [16] also includes mechanisms to support
source selection of transit routes. In addition, packets carry
information enabling providers to charge for transit service
(like our motivation). PFRI differs from both of these in iden-
tifying channels instead of nodes, and in avoiding hierarchical
identifiers altogether.

Recent work on Routing on Flat Labels (ROFL) [8] investi-
gates the feasibilty of routing without the use of hierarchical,
topology-based addresses, and concludes that it may not be a
completely crazy idea. The approach presented here differs in
several respects, including the resolution of an identifier to a
location in the topology, and the emphasis on source routing.

The Forwarding and Control Element Separation (FORCES)
working group of the IETF [1] defines protocols for decom-
posing the data plane and control plane functionalities of an
IP router. That effort does not seem to have considered the
problem of begging the question, as its protocols all run over
IP.

VII. CONCLUSIONS

We have outlined a routing/forwarding architecture based
on the use of channels as the primary abstraction, using a
single, flat namespace. Our goals are to recognize that users
and providers have different interests, and provide mechanisms
that allow each party to express its own policies. We have
identified the components of our architecture; a significant
challenge is how to establish that our design really solves the
problems it sets out to solve. The only way to really do this
is to build it and use it on a daily basis. Even if it is superior,
however, it may not “succeed” in overcoming the inertia of
the existing Internet. Our hope is that, over time, we can learn
enough to build a network that we ourselves prefer to use.
Toward that end, our intent is to build a system that supports
the “right” variety of options in terms of both mechanism and
policy.

It is not entirely obvious that a high degree of flexibil-
ity should be a primary goal of the architecture, especially
flexibility with respect to mechanisms. Experience has shown
that even when a great deal of flexibility is provided, over
time a small subset of choices dominates, so that ultimately
the expense of providing the flexibility is often not worth the
benefit [5]. The challenge is that at this stage of the design
we cannot predict which techniques will be winners, so it is
important to preserve options. By building, experimenting, and
living with a flexible system, we can hope to learn enough to
later go back and develop a more streamlined design. The
challenge is to do this before the first version becomes too

firmly entrenched. The canonical example of this problem is
of course IPv4 and IPvo6.

Many of the techniques used in our design are not new,
having been proposed and even implemented in other contexts.
However, the Postmodern Internet Architecture project is
driven by the notion of starting with a clean slate while keeping
in mind what has been learned in the past three decades. The
hope is that ideas can combined and leveraged in a novel
way to create an architecture that cleanly separates policy
from mechanism, allowing tussles to be resolved outside the
forwarding plane.

ACKNOWLEDGMENT

This work was supported by the U.S. National Science
Foundation under grants CNS-0626918 and CNS-0435272.
The authors are greatful to Bobby Bhattacharjee, Neil Spring,
James Sterbenz, and Onur Ascigil for useful conversations.
They should not be assumed to concur with anything in this
paper. Errors, omissions, and silly notions are the responsibil-
ity of the first author.

REFERENCES

[1] FORCES Working Group.
charter.html.

[2] Cengiz Alaettinoglu and A. Udaya Shankar. The Viewserver Hierarchy
for Interdomain Routing: Protocols and Evaluation. [EEE Journal of
Selected Areas in Communications, 13(8):1396-1410, 1995.

[3] H. Balakrishnan, K. Lakshminarayanan, S. Ratnasamy, S. Shenker,
I. Stoica, and M. Walfish. A Layered Naming Architecture for the
Internet. In Proceedings of ACM SIGCOMM 2004, Portland, Oregon.

[4] B. Bhattacharjee, K. Calvert, J. Griffioen, N. Spring, and J. P. G.
Sterbenz. Postmodern internetwork architecture, 2006. Technical Report
ITTC-FY2006-TR-45030-01, University of Kansas.

[5] K. Calvert. Reflections on Network Architecture: an Active Network
Perspective. ACM SIGCOMM Computer Communications Review,
36(2):27-30, April 2006.

[6] K. Calvert, J. Griffioen, and S. Wen. Lightweight Networking Support
for Scalable End-to-End Services. In Proceedings ACM SIGCOMM
2002, Pittsburgh, USA, pages 265-278, August 2002.

[7] 1. Casteneyra, N. Chiappa, and M. Steenstrup. The Nimrod Routing
Architecture. RFC 1992, August 1996.

[8] M. Cesar, T. Condie, J. Kannan, K. Lakshminarayanan, I. Stoica, and
S. Shenker. ROFL: Routing on Flat Labels. In Proceedings of ACM
SIGCOMM 2006, Pisa, Italy, pages 363-374, August 2006.

[9]1 D. Clark, J. Wroclawski, K. Sollins, and R. Braden. Tussle in Cy-

berspace: Defining Tomorrow’s Internet (position paper). In Proceedings

of ACM SIGCOMM 2002, Pittsburgh, USA, pages 347-356, August

2002.

D. D. Clark. The design philosophy of the DARPA internet protocols.

In Proceedings ACM SIGCOMM 1988, Stanford, USA, pages 106—114,

August 1988.

V. Jacobson. Compressing tcp/ip headers for low-speed serial links.

RFC 1144, February 1990.

J. Moy. OSPF Version 2. RFC 2328, April 1998.

L. Poutievski, K. Calvert, and J. Griffioen. Link-state routing without

addresses. in preparation.

B. Raghavan and A. Snoeren. A System for Authenticated Policy-

Compliant Routing. In Proceedings of ACM SIGCOMM 2004, Portland,

Oregon.

I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan.

Chord: a scalable peer-to-peer lookup service for internet applications,

August 2001.

X. Yang, D. Clark, and A. Berger.

Routing Architecture, August 2007.

X. Yang, D. Wetherall, and T. Anderson. A DoS-limiting Network

Architecture. In Proceedings of ACM SIGCOMM 2005, Philadelphia,

USA, pages 241-252, August 2005.

http://www.ietf.org/html.charters/forces-

[10]

[11]

[12]
[13]

[14]

[15]

[16] NIRA: A New Internet-Domain

(17]

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 23, 2009 at 14:50 from IEEE Xplore. Restrictions apply.

