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Abstract— We present and evaluate a reinforcement learning- from a set of alternates and the probability with which a
based RWA algorithm for all-optical networks subject to phys- route is chosen is updated using a reinforcement learning
ical impairments. The technique is suitable for decentraied o-pnique based only on past, local information. For each
networks and is compared with other techniques with similar : S
computational complexity. call, our _techmque selects _onIy one route to minimize the

computations needed to verify the route meets the conttrain
|. INTRODUCTION (resource availability and acceptable QoT) and hence the ti

All-optical networks are a promising technology to providéo establish the call. It is therefore crucial that the righite is
flexible network management and high rate data transmissidmsen so as to minimize the overall call blocking probgpbili
by keeping signals in the optical domain from end-to-end With reinforcement learning-based routing, each node
without resorting to electronic conversion or regeneraid makes decisions to route calls based on past events (b@pckin
the network nodes. However, due to the absence of electroaicacceptance of prior calls) observed locally, insteadsirfigi
regeneration, signals are subject to accumulating physitlae network state. The goal of reinforcement learning i€ her
impairments during propagation and perfect physical lagerto decrease the network’s call blocking probability by feag
no longer a valid assumption — measuring Quality of Tranenline what decisions cause blocking or establishmenth Suc
mission (QoT) through bit-error rates (BER), this meang thavent-based (as opposed to state-based) routing is desirab
lightpaths’ BERs (a lightpath is a combination of a route andbecause state-based routing imposes high overhead on the
wavelength) can reach values beyond acceptable values asstéwork to flood the network status to each node at all time.
by the network manager. Routing and Wavelength Assignment
has emerged as a cross-layer technique to route calls in the
network over lightpaths accounting for physical impairtsen  We assume the absence of wavelength conversion and of any
in order to decrease the probability a call is blocked besaualectrical regeneration, such that the network we consiler
of the lack of available resources or because establishiag purely transparent. When a call arrives, it must be routest ov
lightpath would cause this lightpath’s or another lighipat a lightpath. Calls can be blocked for two reasons: (waveteng
QoT beyond the acceptable threshold [1]. In this paper, wentinuity constraint) if, on any route, no wavelength is
propose to use a reinforcement learning technique in a désailable from end to end between source and destination
tributed fashion, to choose a tentative lightpath amongta $ken the call sustainsavelength blocking(QoT constraint) if
of alternates based only on the past events seen locally. ¥ lightpath that meets the wavelength continuity constrai
compare by simulations the reinforcement-learning tegpii yields an acceptable QoT then the call is rejected due to
based algorithm with other RWA algorithms that have simil&@oT blocking The overall blocking probability of the network
computational complexity. is the probability that a call is blocked due to inability to

Alternate routing is known to perform better than fixedimultaneously meet both constraints.
shortest path routing in circuit switched routing. Moregve We assess the QoT of a lightpath via its BER, which
it was shown in [2] that the time to compute a lightpath andepends on the physical impairments sustained by the
establish a call in an all-optical network with is critic#lthe lightpath during its propagation though the network. We
call establishment procedure takes too long then the nktwaresent the lightpath model used throughout this paper
state may change during the lightpath computation/cadibest in Fig. 1. At the source node, a laser transmits an On-
lishment and additional blockings due to outdated inforamat Off Keyed (OOK) signal over a given wavelength. The
can result. Reinforcement learning has been used in the pgighal then propagates in nodes (OXCs), fiber spans and
to perform routing in a decentralized fashion in telephdie [ optical amplifiers until it reaches the detector, modeled as
circuit-switched (e.g., MPLS) [4], and all-optical netwsi5], a square-law device followed by a filter (filters are not
but QoS impairments have never been accounted for. \@fepicted on the figure.) The BER of the signal can then be
propose a routing procedure derived from alternate routidgtermined from the distributions of the received “0” and
(wavelength assignment is assumed to be “first fit”, arbiydar “1” samples. More specifically, designing by, and i, the
where the chosen route for each call is drawn probabilisticameans of the received “0” and “1” samples, respectively,

Il. SYSTEM MODEL
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Fig. 1. Model for a lightpath in an all-optical network, andusces of physical impairments: IS| (fiber spans, photadety ASE noise (amplifiers),
interchannel crosstalk (fiber spans), node crosstalk (XCs

Algorithm 1 RWA(s,d) Algorithm 2 UPDATE_PMF
Initialization (offline): Inputs: P, R, 4: defined in Alg.RWA,; i: index of the alternate
Rs,q: predetermined set of alternate routes between the sourcete to update; Reward: binary reward value.
s and the destinatiod. ParametersG and B: learning rate parameters.
Pjs’d = 1/|R*|: prob. routej is selected ( < j < |Rs.al). Output: updated distributio®.
Output: Lightpath = pair (route, wavelength). 1: if Reward= 1 (routei was accepted: increage) then
1: Select a routek;"* € R*¢ with probability P 2 B (1-GFk+G
2 LP =0, D — D 41 & ViFi:P—(1-G)F
3: Reward= 0 4: else _
4: repeat 5. (routei was rejected: decreade)
5:  Select sequentially tentative wavelendth 6: Pé - .(1 - B)F 5
6: Request establishment 6’ = (B¢, \) 7 Vj#Fi: P (1=B)P+ mrT
7. if LP’ satisfies both wavelength continuity and QoT 8: end if

constraintsthen IIl. ROUTING ALGORITHM

8: LP =LP’

9: Reward= 1 We propose a decentralized routing algorithm where, for
10:  end if each call, a route is selected among a set of candidate
11 until A > C or LP # () routes using reinforcement learning techniques. Wavéfeng
12: P$4 « UPDATE_PMF(P*% R, 4,i, Reward assignment is left out of the scope of this paper and is assume
13: returnLP to be “first fit”, that is, for a given candidate route, wavejérs

are selected in a fixed order. Here, we focus on the routing

and by oo and o their respective standard deviations, w@2't of Routing and Wavelength Assignment.
define the Q factor a&) = (u1 — po)/(co + o1). Then, Routing (and wavelength aSS|g_n.me_nt) is performed by
using a Gaussian assumption [6], the BER of the signal A4g- 1 (“RW. )d Before network utilization, a set of alter-
BER =1/2- erfc(Q/+/2). During its propagation, the signal_nate routesR_5= (e.g., theK-_shortest paths for somé&)
sustains a number of physical impairments which contribuf® predetermnjied for each pair of nodesd). Furthe.zrmor;le,
to decrease its BER. We consider four physical impairmen&ach routeRz;>® € R*¢ is associated to a probability;”
Inter-Symbol  Interference, amplifier noise, interchannéy_; P;"* = 1). To achieve decentralization, Alg. 1 is in-
crosstalk, node crosstalk. Inter-Symbol Interferencé) @®d stantiated for each(s,d) pair of nodes. During network
amplifier noise (ASE noise) depend only on the hardwagperation, when a call (lightpath demand) arrives for pair
(receiver filter, number of amplifiers, ...) present over the,d), nodes draws a route among the s&; ; according
lightpath. On the other hand, interchannel crosstalk {tesu to the distribution(P*?); that is, routeR;** for a giveni
from the nonlinear interaction within fiber spans of sever# picked with probabilitfo’d. Then, for each wavelength
signals co-propagating on different wavelengths) and nodethe Iightpath(Rj’d,/\) is tentatively established. This can
crosstalk (resulting from optical leaks in OXCs, for instan be done by means of an appropriate protocol such as RSVP-
due to imperfect demultiplexing) depend on the networlestafTE in MPLS networks. During tentative establishment, the
Indeed, crosstalk is generated by the interaction of sevewavelength continuity and the QoT constraint are checked
lightpaths. In this work, we use the physical layer model w@gain, this can be done in a decentralized manner by the
presented in [1]. In particular, we refer the reader to [1] fmodes on the tentative route). If the lightpath meets both
efficient techniques that relate the impact of 1SI, ASE noiseonstraints, it is accepted and the distributiétf-¢) is updated
interchannel and node crosstalk g, 11, 09, o1 and hence according to Alg. 2 UPDATE_PMF). If no wavelength\
BER. permits Iightpath(Rj’d,)\) to meet the constraints, then the
call is blocked.
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Fig. 2.  NSF topology used for the simulations. The weightsthn links
are the number of 70km spans. We simulate the network opardr 5000 s
for various offered loads and repeat each experiment 8 timedbtain 95% 0.02
confidence intervals. '
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putations, we require that only one tentative route can | Offered load per (source, destination) pair
picked, thereby limiting the number of tentative lightpato Fig. 3. Blocking probability for the downscaled NSF topofog

the number of wavelengths. Other variants of this schemgscles), and alternate-uniform where an alternate roste i
e.g, allowing drawing another route (again according to thficked randomly uniformly (instead of being picked accogi
distribution P*) if all tentative lightpaths for the route o the load sharing factors; squares). Alternate-randams th
originally picked are blocked, are possible and left foufet does not implement any reinforcement learning techniqie. A
work. three algorithms have the same “computational complexity”
We now give more details about the reinforcement learninge sense that they put the same burden on the network when
algorithm (Alg. 2) we use to update the distributioR$“: g call arrives to check whether the two constraints are met;
“Linear Rewarde Penalty” (LReP) [7]. When a call is acceptedindeed for each algorithm a single route is chosen for each
on a routei, LReP rewards call establishment success yall arrival, hence the constraints for at masiightpaths are
linearly increasing the associated probabilfj*’. When a checked per call arrival. Alternate-uniform yields loweallc
call is rejected, LRP penalizes call establishment success ylocking probabilities than fixed shortest path event ifragkd
linearly decreasing the associated probabify’. The algo- alternate is picked randomly. Our proposed algorithm perto
rithm is parametrized by two gairG and B (corresponding, better than alternate-uniform for the higher loads, andlaim

respectively, to reward and penalty), as can be seen in Alg.i@ alternate-uniform for the lower loads.
LReP is known to perform well in non-stationary environments

and avoids remaining stuck in absorbing states, and isftirere V. CONCLUSIONS

adapted to the setup described in this paper. We applied a reinforcement learning technique, and more
specifically, the LRP algorithm, to the problem of low-
IV. SIMULATION RESULTS complexity, distributed route selection in all-opticaltwerks

We evaluate the RWA technique on a scaled version N§HbJeCt. to physical |mpa|rments_. The technique is shown by
Simulation to perform well. This paves the way for more

topology depicted in Fig. 2 (in the original NSF networkffasearch, including studying the convergence behaviohef t

distances are too long to allow transmission with acceptal . . o .
: . chnique to changes in the network conditions such as link
quality between all pairs of nodes even when only ISl and ASE. P .

ailure or modifications in the offered loads.

noise are present.) All links are bidirectional and canycagp
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