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Abstract— This work proposes an algorithm to perform the re-
source allocation in the uplink of an IEEE802.16 standard-lased
system. The approach is valid for Point to Multi-Point (PMP)

and also for tree-deployed mesh networks, already defined ifo
the Worldwide Interoperability for Microwave Access (WiMA X).
Our solution is based on a proportionally fair distribution of
resources and it is formulated using the Network Utility Max-
imization (NUM) framework. Thanks to convex decomposition
techniques, we derive a novel way of solving the NUM problem
in a distributed manner. The goal is to attain the global optmal
scheduling at the Subscriber Stations (SS) without the needf
gathering information at a central node in the network. The
results show significant gains in the time required to reach he
optimal resource allocation for a given set of demands.

Mesh BS

Mesh SS1

Mesh SS2
I. INTRODUCTION

The wireless community has recently directed much atten-

tion on a variety of topics related to Worldwide Interopeligb ss2 S5
for Microwave Access (WiIMAX) technologies as a broadband es3

solution. Two different standards are under this commeércia

nomenclature: the IEEE 802.16 [1], with its extension to Fig. 1. WiMAX mesh network.

mobile scenarios IEEE 802.16e [2], and the ETSI HiperMAN i
[3]. Operating in the range of 2GHz to 11GHz, WiMAxMultiple Access (DAMA) policy.
enables a fast deployment of the network even in remotePrevious works related to resource allocation in WIMAX
locations with low coverage of wired technologies, suchhas thetworks address a variety of scenarios, from PMP to mesh,
DSL (Digital Subscriber Loop) family. WiMAX extends thefrom TDMA to OFDMA access types, and distinguish single-
widely-used WLAN (Wireless Local Area Network) coverag€hannel from multi-channel networks, most of them from
to tens of kilometers, and thus the interest to use suchoptatf @ physical (PHY) layer perspective. At the best of our
to bring internet access to rural and isolated places. knowledge, two main scheduling approaches are found in the
Focusing on WIMAX network aspects, we distinguish béiterature, namely: I) formulate the problem in a matheowsdti
tween two possible architectures: point-to-multipoinM@@® Optimization framework and ii) develop heuristic algonits.
and mesh. In PMP mode, one Base Station (BS) serves a d¢rthe sequel, we review some of the works. In [4], the
tain amount of Subscriber Stations (SSs) using direct liies authors propose an heuristic solution for the case of aeingl
in traditional cellular networks, whereas in mesh mode, SS8ll OFDMA WIMAX network that maximizes the network
can be linked directly to the BS or routed through other SS§m-rate under some fairness considerations. The authors i
in the network. Terminals use OFDM/OFDMA (Orthogonal®] analyze how concurrent transmissions boost performanc
Frequency Division Multiplexing/Multiple Access) in maébi in mesh-type networks by proposing an interference-aware
and also in fixed WiMAX, although fixed terminals employouting and scheduling mechanism. In [6], one can find a
mainly TDM/TDMA (Time Division Multiplexing/Multiple discussion about the advantages of a multi-channel network
Access) as the access technique. As defined in the standdfglly, [7] contributes with a mathematical optimization
[]_], transmission Schedu"ng in mesh mode can be Centd}"z@)'Ution that falls into the Network Utl'lty Maximization
in the mesh BS or distributed among the network. HowevdUM) framework, where a distributed optimal solution to
the SSs are always in charge of allocating granted resourte® established NUM problem is obtained using a convex
among their services. The allocation is the result of a thre@ecomposition approach [8]. It combines PHY and Medium
way handshake process whereby transmission rights are Aécess Control (MAC) scheduling aspects.
guested and granted, so it constitutes a Dynamic Assignmenin this paper we concentrate on the scheduling design of the



uplink of a WIMAX network from a MAC layer perspective, polling; and v) the extended real-time polling serviceR&} is

i.e. we assume that the actual PHY layer adjustments ldfe UGS except that the BS allocates periodical resouittas t
the terminals provide fixed averaged capacities in the midan be used to transmit data or to request additional ressurc
term. We consider either a PMP or a tree-deployed mekhis half way between UGS and rtPS to accomodate services
network; the later being useful for instance when WiMAXvhose requirements change in time but not so frequently as
is employed as the backhaul network [9]. Our solution camith a rtPS. Further details on WiMAX aspects can be found
be sorted into the class of proportionally fair scheduld] [ in [11] and references therein.

and it is formulated as a NUM problem. The objective is Let us formulate the scheduling as a NUM problem,

to fairly allocate transmission rates to all the connection

N
services in the system depending on the mid-term terminal I{rfﬁ( 2= Ui(ri)
rate defined by the PHY layer set-up. The proposed solution s.t. r; € R, i=1... N (1)
is distributed in the sense that it allows to jointly optimiz Zf\; hi(rs) < ¢

the entire network without the need of a central node (and
subsequent signalling requirements), and provides faster whereU;(r;) is the utility function perceived at entity(mesh
vergence times than other known distributed techniques.$$, SS or CID) and depends on the granted rates\ote
possible network configuration is depicted in Figure 1 with ghatU;(r;) may have an analytical expression or it can be the
Mesh Base Station (BS), two Mesh Susbscriber Stations (Sfssult of an optimization problem with the same structure of
and five SSs. We can further assume that each SS has sev@jalThe functionsi;(r;) are convex on the rates ands the
services that communicate with the BS. total amount of available resources. The convex subRets
are cartesian products that define the maximum and minimum

Il. BANDWIDTH REQUEST ANDALLOCATION IN THE rates that each element in can take.

WIMAX U PLINK An illustrative example can be derived from the network

In WIMAX each SS may support many connections, eaafonfiguration in Figure 1. Assume that we want to perform a
one described by a Connection Identifier (CID). There is jaint and distributed allocation for all the CIDs in the netk.
primary CID (which is in charge of MAC messaging) andirst, let us consider the scheduling at the highest level, i
several secondary CIDs, all devoted to different servicegithin the links Mesh SS1-Mesh BS and Mesh SS2-Mesh
All CIDs use a three-way handshake in which they requeBsS, and define accordingly/;(r1) and Ux(ry). Note that
uplink bandwidth, wait for the BS to compute the allocatio®,; contains the rates of the links from SSs 1, 2 and 3 to
and receive their grants in the Uplink (UL) MAP messageslesh SS1, i.er; = [r%T,r%T,rfT]T. Furthermore, each’
Requests are made in terms of bytes of information and cesntains at its turn the rates from the CIDs attached to the SS
be incremental (if they add to the previous ones) or aggeegdéhat take the route §9Viesh SS1-MeshBS, so thé (r) is a
(if they replace them). The way the SSs ask for resourcesnvex optimization problem that models the schedulingpén t
is either using a specific bandwidth-request MAC Packe&cond level, i.e. from Mesh SS1 to SSs 1 to 3. The parameter
Data Unit (PDU) or piggybacking on a generic MAC PDU¢ models the total rate amount that the Mesh BS can send to
The UL MAP defines the dedicated or shared UL resourcee global network.
that the SSs can use to emit their bandwidth requests (bothn this way, the joint problem is described as the con-
types). This mechanism is known as polling in the WiMAXcatenation of several PMP scheduling problems, as Figure 2
context. If there are enough available resources to polh eashows. Moreover, as we will see, it is only necessary that eac
SS separately, then we have unicast polling. On the contiaryode exchanges information with the node above it with the
subset of terminals or even all terminals enter in a corgentisubsequent reduction in signalling with respect to a ctinéc
process and we have multicast/broadcast polling. Ressuregtimization approach (although it is centralized schiedy)!
are requested and granted in WIMAX per SS and it is tha the results section we propose an example that shows a
SS that distributes resources among attached CIDs. Therefpossible connection between the proposed formulationtzad t
distributed solutions are crucial to perform a joint networscheduling services in WiMAX using a specific definition of
optimization. utility functions and feasible allocation subsets.

In order to provide Quality of Service (QoS), WIMAX In the next section, we develop a novel, efficient and
defines five different scheduling services, namely: i) theodn distributed optimization algorithm to solve (1) based onwex
licited grant service (UGS), to support real-time servioavl, decomposition techniques.
offers fixed-size grants periodically without requiringpégit
requests; ii) the real-time polling services (rtPS), to beduin
real-time services that generate variable-size packesgides Let us consider again the problem in (1). It has optimization
unicast polling opportunities to the SS; iii) the non-réedle variables{r;} and objective functiod’ = Zfil U;(r;). Each
polling services (nrtPS), which is similar to rtPS excemtth group of variablesr; is restricted to lie on the convex set
the BS can also use contention-based polling and that unicdsfined inR;. If there were no additional constraints, the
polling is made less frequently; iv) the best-effort see(BE), problem could be solved separately for each group of vagabl
for traffic with non-strict QoS, uses only contention-based, as it is fully decoupled. However, there exists a coupling

I1l. CouPLEDPRIMAL-DUAL DECOMPOSITIONSMETHOD
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Fig. 3. System view of primal decomposition.

Fig. 2. Proposed distributed bandwidth allocation. second line of (3) in the case the previously updated values

) i are unfeasible. Details about projections into subsetsbean
constraint that sums all the functiors(r;). In the sequel, found in [12]. The resulting update equation is

we will talk indistinctly about the minimization of a convex b
objective function or the maximization of a concave one as gt = [y Falt) - siy) (5)
they are equivalent problems [12]. However, we remark that ¢ ‘ B

in the NUM context, the maximization of the utility functias wherea(t) is the adaptation step-size;(y!) stands for the

usually employed since it is ir_1tuitive|y relatgd to the cgiean subgradient ot/ at the pointy; = y¢ and []” refers to the

of the network. There are mainly two formalized proceduces brojection on the feasible set. The supersctijndicates the
take advantage of the semi-decoupled nature of the probqugration number.

namely primal and dual decompositions. We first review thesey,q subgradient of a function can be conceptually inter-

two procedures before presenting our proposal. preted as the gradient. The question is how to find a gradfent o
A. Primal Decomposition the subproblem&”’, which are defined as convex optimization
problems. In this case, we resort to [13, Sec. 5.4.4] andhese t
gﬁbgradient as a generalization of the gradient of a functio
The strenght of the technique is that a subgradient is djrect

To understand the basics of primal decomposition, let
rewrite the problem in (1) for a fixed link capacity as

max vazl Us(rs) given by the Lagrange multipliers associated to the cogplin
{rivi} constrainth;(r;) < y; in (4), [14]. Later on, this Lagrange
s.t. ri €R; i=1...N (2) multiplier is referred to as;, and its optimal value is referred
hi(r;) <y to asA; (y;) for a giveny;. For further details on the projected
Zﬁlyi <ec gradient method, the step size and the subgradients, please

refer to [8], [13] and [14].
Clearly, fixing the values of the variablgs fully decouples  The logical procedure of a primal decomposition algorithm
the main problem. In other words, knowing the optimal valugs as follows: the master subproblem sendsithealues to the
of y; reduces the resolution of the main problem to theubproblems. These compute the associated subgradiehts an
resolution of N' smaller problems in the variables. The return these values to the master problem. Now, the master

problem can be interpreted in the following manner, updates they;'s. A system view of a primal decomposition
can be found in Figure 3.
max 3, U () 3) 9
2 N B. Dual Decomposition
st Dy Sc Consider now dual decomposition, which decomposes the
where the functiond? (y;) are defined as dual function of the c_)riginal problem _(1). Constr_uct the
b, Lagrangian of (1) relaxing only the coupling constraint as
Ui (vi) = ma)}f Ui(ri) 4) N N
T _ . T . .
ri € R, L{riyi},p) = — Z Ui(ri) + 1 (Z hi(ri) —c) (6)
i=1 =1
hi(ri) <y

The minimization of the Lagrangian with respect to the ptima
Problem (3) is usually referred as the primal master probariables results in the dual function, which is a concave

lem, while (4) are known as the primal subproblems. Orfanction of the dual variables. As the constraimis € R;

possible way to numerically solve the primal master problehave not been relaxed, the dual function is

is using the projected subgradient method. The idea of the N

method is quite intuitive. It basically updates the valués o g(;) = <Z min  (—U;(r;) +NThi(7'i))> —uTe (7)

{y;} towards the opposite direction to the subgradient of (3) -1 {ri}

and projects these values to the half-space defined by the T € R
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The.optlmal value for thg dual variable is the one that. Subproblems Subproblems
maximizes the dual function [12]. Note that the problem in min U, (r,) min U,(r)+ 4"y,
(7) can be expressed as (r:é)u’z, "o
Ari)<v: 5 )<y,
N .
D T
g(p) = Z Ui (p) — 1 c, (8) Fig. 5. System view of the Primal-Dual Decompositions métho
i=1
where now C. Coupled Primal-Dual Decompositions
U_D(N) = min  —Ur) +uTh_(r_) (9) In the light of the previous results, we observe that both
- K3 K3 1 K3 . .
! {r:} approaches manage complementary information. We foreulat
r; €R; then the following question: is it possible to find out an hgbr

technique with advantages over the single approaches?
are t_he dual subproblems. The supgradient concgpt apE®S a The answers is yes. The observation that the dual of the
in this case. We have as subgradient= h;(r;), beingri (1)  primal subproblem (4) is the dual subproblem (9) is the key to
the optimal value of the primal variables in subproblem (9 4t The basic idea behind the proposed method is hence to
for a given value ofu [13, Sec. 6.1]. . couple the primal and dual decompositions, so they aretéera
Finally, to solve the dual problem, (8) must be maximizef e following way: Dual Master— Dual Subproblems—
with the constraint thafs > 0. This is often called the dual pimal Master— Primal Subproblems, and so on (see Figure
master problem: 5). Note, however, that the procedure is not as immediate as
(10) combining both decompositions since modifications, sjiigcia
in the Dual Master, are needed. This is the reason why we will
st. =0 introduce the concept of Dual Projection. In the Primal Mast

The dual master problem can also be solved using the chnglem’ the updating toyvards the subgradient s no Ionge_r
jected subgradient method. Note that the projection ineo tHsed and only the projection on the feasible set remains Thi

feasible set is easier than in the primal decomposition as \%gproach will result in faster convergence and will allowtis

only have to sefs to O when a negative value is computeoaVOid both the gradient method and the choice of an adaptatio

The 11 updates are step-size. It is possible to find out in the literature otheesiof
# P combined primal and dual approaches based on the algorithm

max  g(u)
n

1 . N . + so-called cross-decomposition [15]. Our solution goes in a
we = [“ +a(t)- (Z hi(ri (1) = C)} (11)  different direction as the proposed interactions betweang)
=1 and dual versions of the problem are constructed in a diftere
where [-]* stands for the aforementioned projection into theay. As a result, we find that in [15] both primal and dual
non-negative orthant. variables have to be updated by averaging new candidates

The dual decomposition is the decomposition technigyéth old ones, whereas our method uses only instant updates
most used in the literature. From a system-level point ofvyie without averaging. In the simulation section, we show how
it resembles to the primal decomposition one (see Figure 4}is affects both strategies in a practical example.

The major advantage of using a decompoaosition technique isThe algorithm can be divided into two conceptually diffeéren
that distributed solutions may be naturally obtained, Wwhigarts, namelyproposal of candidates and correction. The
sometimes is required by some problems. For example, proposal of candidates is the task done by both the primal
the NUM context, dual decomposition techniques obtairyfulland dual subproblems. There are two correction steps; they
distributed solutions. On the contrary and generally sipggk replace the master problems in the primal and dual standard
the main disadvantage is the slow speed of convergence of tleeompositions. The correction steps are in charge of taljus
resulting algorithms, mainly due to the projected subgmadi the proposed candidate solutions according to the primal or
approach. Moreover, speed of convergence depends on doel feasible sets. These steps are interpreted as povjscti
step-size parameter(t), which must be tuned by the user. into the corresponding feasible sets in a wide sense.



Let us describe at high level a complete iteration of the The updated primal variableg, are feed to the primal
proposed method for the problem under consideration. Let sishproblems to obtain the dual variablgsas
start with an initial value ofs, called uf, which is passed to
the dual subproblems. Using that value, the subproblem&mak ‘
their particular guess for the primal coupling variablgs} !
st r; € Rl
as h;(r;(u')). The proposed values may exceed the convex (14)

! N .
subset defined by);_,y; < c and hence be unfeasible. o that solving the minimization problem inside (14) ifegl

Primal Projection corrects this situation by projectifig} obtaining the primal variables; and also the dual variablg,
into the feasible subset. Thus we obtain the corrected galléessociated to the constraini(r;) < y!
1) = Y-

{y}}, which are given to the primal subproblems. In turn each

primal subproblem computes its own candidake) (for the . .o didate valuek;. We can choose between the minimum

dual variable (). Similarly to What happens With_the primalor the maximum to compute the iterations (once the algorithm
part of the problem, the solution may be unfeasible from ths‘?arts it must not be changed) and therefore
dual point of view (defined later) and requires correctione T ’

min ({/\i|act})

Dual Projection computes this correction as a function ef th
previous values (either the min or max can be chosen, but = F({Nilaet}) = (15)
once it is chosen the algorithm is pegged to it) and updates max ({Xi|act})

the dual coupling constraint, i.g"** = f({A:}). where{\;|..:} defines the subset of the\;} values that are
active. A multiplier \; is defined as active when eliminating
the related constrairit; (x;) < y; in (14) changes the solution

In this section we detail the Coupled Primal-Dual Decompaf the aforementioned problem. In the following, we prove th
sitions method shown in Figure 5 and analyze its convergencenvergence of the algorithm.

Ai(y;) = argy max  min - —Uj(ry) + Ai[hi(ri) — ]

i

Finally, in the Dual Projection we get+! as a function of

IV. METHOD ANALYSIS

A. Detailed Description of the Method B. Convergence analysis

Let us consider again the problem in (1), where variables't 1S @ssumed in the rest of the section that the optimal
r; are end-user rates, and primal variabjesonstraint these solution to the problem in (1) is unique, which holds for most

by means of any convex functidn (r;). We refer to{r;} as of the_ convex _problems that are of intgre;t in engineering.

non-coupling variables and ty;} as coupling variables. The Until this point we have seen the motivation of_ th_e proposed
dual variables associatedfig(r;) < y;, i.e.\;, are called non- Method and also the role of most of the building blocks,
coupling dual variables, whilg is the dual coupling variable "@mely dual and primal subproblems and Primal Projection.
associated to the coupling constraiﬁiil yi < ¢ The We want to show now the role of the Dual Projection. For that

motivation for this nomenclature is that withoEN,1 y; <, PUTPOSEWEUSE the KKT conditions [12]. First, let us coreitru

the problem is only constrained by the local subsetsso it the Lagrangian of (2)
becomes a set of non-coupled problems. N

The basics of the method have been already introduced irL({ri,yi, Ai}. ) = > —Ui(r;) (16)
i=1

the previous section with Figure 5. Let us now detail each

of the building blocks of the algorithm in the order they are N
executed. + > Ni(ha(ri) — i)
First, the dual subproblems compute their group bandwidth iJ:Vl N
allocation candidateg; depending on the value gft as n Z Z%]gf (ri) + “(Z yi— )
ri(p') = arg,.. min —Us(rs) 4+ 1t -y (12) =1 j i=1
L where we have relaxed all explicit and implicit constraints
Ti €R; and the arbitrary number of convex functiohg } defines the
yi = hi(ri) convex setR;. Among the KKT conditions for optimality of

Note that in the optimal solutiog: — hi (r). the solution, we are interested in the conditions that mequi

We assume that the coupling constraint is active, otherwise oL
the problem is not coupled and readily solved. Next, the Blrim oys
Projection updates thg; values toy, and ensures feasibility,
i.e. 2 4/ < c. The projection intoy.~ | 4/ = ¢ can be an-
alytically computed as the point in the surface that mingmsiz L=XMA=...= Ay (18)
the Euclidean distance to the poigt= [y, ...,yn]":

O=p—X\ (17)
which force the solution to fulfill
Therefore,u must be chosen from the candidafgsas in the

, Zij\il yi —c optimal solution allA; and ;. must be equal. This is the role
Yi=¥i—— N (13)  of the Dual Projection in (15).
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Fig. 6. Study of the subproblems.

KKT conditions applied to (20) state that

OL(ti, Ni) _ 0 —Ui(xi(t:)) Ohi(rit:)) _
ot = o, + N ot =0 (21)
and therefore, it holds that
ow(ri ()
ot ==\ (22)

: : « FOUi (17 (t:)
Finally, concavity ofU;(r;(t;)) assures that—=5-== is

an increasing function of;, and therefore\; is a decreasing
function of ¢;. We conclude this proof by noting that by

The following Lemma is needed as an intermediate step $6finition the optimal solution of (20) is attained &t =

prove the convergence.

Lemma 1: Assuming thath;(r;) < y; is active in the
interval y; € (y!,4?), the dual variable\; is a decreasing
function of the primal variabley; in the subproblem

U (y) =Ui(r;)

= min
T
r, €R;

hi(ri) < yi

(19)

Proof: Consider the following modification of the min-

imization problem in (19). Assume thaf;(r;) is evaluated
only in the curve described by; (¢;) with ¢; € [y}, y?], where
ri(t;) is defined as the optimal value af; in (19) when

yi = t;. The result is the one-dimensional functi&ff (¢;).

y;. Figure 7 plots the graphical representation of the one-
dimensional problem discussed in this proof. [ ]

Corollary 1: Using similar arguments, it can be proved
that in the dual subproblemy = h;(rf (1)) is a decreasing
function of p.

Once we have studied the subproblems and the relations
that exist between dual and primal coupling variables, vee ar
ready to outline the proof of the convergence of the algorijth
which studies the convergence gf to its optimal value, i.e.
ut iy u*. Since the problem is convex, finding the optimal
values of the dual variables implies finding the optimal ealu
for the primal ones.

Let us study two cases, namely:

1) pt > p*

To fix concepts, see Figure 6. In dashed lines, we plot the2) pt < p*

contour plot of the objective function, i.e-U;(r;) = k (k

Assume now thap! > p*. Then, after the application of

is an arbitrary constant) and in solid lines the contour lothe dual subproblems and corollary 1, it holds that

of both the coupling constraint and a given local constraint

in r; € R; (whose expression ig!(r;) < 0, assuming that

vi <7, i=1 N (23)

geeey

there is a singleg!(r;) for simplicity). The darkest curve This result assumes that;(r;) = y; for all subproblems,

corresponds ta; (¢;).
Under this modification, the problem in (19) turns into

hi(ri(ti)) < yi

min
ti

s.t.

Note that constraints im; € R; are no longer necessary

as they are included im}(¢;). Furthermore—U,(r}(t;)) is

K3

guaranteed to be convex as it is the minimization of a fumnctio
of variables(r;, y;) overr; in a convex set [12, Section 3.2.5].

which is imposed by the following KKT optimality condition
Ai - (hi(ri) —yi) =0, N (24)

together with the result in (18).
In the Primal Projection, a certain quantityis added to
the obtainedy; values, so that

1=1...

N
yi =yi + k, s.t. Zy; =c (25)
i=1

And finally, as we assuma;(r;) < y; to be active, we have and therefore, somg, < y; and somey, > y; otherwisey,

U, (x (1)

1 2 i
i

Fig. 7. Study of the subproblems (1-D interpretation).

would be the optimal solution.

Applying {y/} to the primal subproblems, we obtain the
dual variables\;, which may be interpreted as candidates for
u*. Resorting now to Lemma 1, it holds that there exist some
A < p* and some\; > u*.

Finally, the key point is the Dual Projection,

NHI = f({)‘i|act})

Let us discuss a detail here. The values associated with
y; values that do not really constraint the solution must not be
taken into account because the solution is actually canstla
by the local constraints, i.er; € R;. Note that, in terms

(26)
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Fig. 9. Evolution of rates and dual variablewith the proposed method.

of KKT conditions, the value of\; is not significant because
whatever this value is, an adequate Lagrange multipliettfer

local constraints can be chosen to maintain all of the opitiyna
conditions and hence, the optimal solution.

Continuing with the convergence proof, ifit+!
max(A??), it holds thatpu'*! > u*. Furthermore, since
Yyl > y;, it is also true thatu!™ < u'. Therefore, we can
summarize that

we need to know only the sum of maximums and minimums
since these two values suffice to obtain the primal variables
{yi} and the dual variablg of the proposed algorithm. The
specific quantities per CID, i.6?], are only required at the
lowest level to obtain the scheduling of CIDs.

Intuitively, the proposed method tries to find a consensus
on the value of the dual variabje across the entire network,
often interpreted as the price to be paid for the resouredssr
pt < pttt <t (27) in our case). However, some subsets of terminals (in certain
PMP sub-pieces) may remove from the negotiation if their
local constraints make the current glohalalue not feasible
therein. In this case, those zones in the network negotiafe t
particular consensus price, which is different fram

The election of logarithmic functions of the rates responds

where ! can not tend to any valug’ # p* as the optimal
solution is unique. In the case whare < u*, the same results
hold if we choose/!*! = min(\;|..¢) and the proof is similar.
In the general case, any of the two functions is valid9f>

* t+1 __ : 1 *
i;ksnud v;e choosg +f he min(Aiact), thenp® <p™and we . o oronortional fair criterion as it is discussed in [10Wt b
P-again one ot ihe previous cases. . ther utility functions can be used. We further use the fgior
In the next section, we present some results comparing &ﬁueSp{ to balance the scheduling towards some services
performance of the proposed algorithm to other solutions H%pending on the specific QoS policy and thus the solution is

the literature. asymmetric proportionally fair. These values are depidted
V. RESULTS plu% in iigurg 8hat fe_ach )C:jD.f.Thehmax and mig va(ljue%
. — . in brackets in the figure) define the requested and minimum

SSConsgje( thglgMPhnetwork exag?fpf)le n Flgurg 8, W_:_t:: thl.re%%mted rates of each service, respectively. For examplle, w

Sl ‘1” I SC;X ith ti that manage ,: ererl;\_t ﬁe_rv(ljcets. . edln S one can map the request to the minimum guaranteed rate
?hre ;H$ Ie Wi delr ma:jm_mum rha e, W _Ilc 1S he grrlr_unel }fn our model (which is always assigned) whereas the ertPS can

€ b _-dayetz_:c_n:jo N usel .|_n ?ac &ne.sswotscthe ;éng 3\/_ 8 configured granting part of the requested rate as in UGS
;:an t?] ' SPD' 'Ej; ,trr:ame y: 1) ro(;n gS :t t% he' h ?T Wnd competing for the remaining part (prioritized with). The
rom the s 0 the corresponding >s. € highest lev riginal requests in bytes of information can be transfatme

we compute (1) with to rates taking into account the time basis of such requests.

max Y. U{(r{) ‘ We assess now the convergence speed terms of three dif-
Ui(e;) = ]y T . hi(ri)=>_r], (28) ferent solutions, namely: i) a two-level dual decompositio
st >, rl <g¢ J approach [8], ii) a mean value cross-decomposition aproac

. o ) [15] and iii) the proposed technique.

wherer; is the transmission rate of CjDat SS andc; is the e results of the proposed method are depicted in Figure 9.
rate capacity from SSo the BS. At the lowest level, problem e first subplot contains the evolution of the dual variale
(1) is solved for thei" SS using the highest allocation level and the second subplot showss th

Ul = pllogrd, R (rd) = 1. (29) evolution of the aIIocateq rates at the CIDs (re}tes are edler

. from left to right according to the CIDs in Figure 8). The

In both cases, the subse®s and R} contain the maximum same results with a two-level dual decomposition approaeh a
and minimum rate values of the CIDs within them. Howeveplotted in Figure 10. Dual or primal decompositions require
note that at the highest level and from a practical pointefwi a user-defined adaptation step and in this case we choose a



diminishing step size of the form(t) = 22 with ap = 0.5.
Note that the proposed method does not require the choice 2 —
of any parameter. In both cases, at each iteration at the e
highest level, it is required to attain the solution at each —s—rate 4
CID at the lowest level, which enforces different updating o tmes i
rates. Therefore, a fast convergence of the lower level imo L= = optimal values
necessary as the tree size grows. In the light of results, it i

clear that our algorithm converges with a number of iteratio

orders of magnitude lower.

For the sake of completeness, we compare our method witt
the Mean Value Cross (MVC) decomposition method, which
is described in [15]. It is not distributed but uses also theai
of combining primal and dual decompositions of the problem o ‘ ‘ ‘ ‘
in a single approach. The evolution of the rates at the CIDs 0 100 200 o 400 500
is plotted in Figure 11 and once more, the proposed methoa
converges to the optimal solution much faster. Fig. 11. Evolution of rates using a mean value decompostigproach.

Evolution of received rates with the proposed algorithm
T
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