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Abstract 
 

This paper introduces an encapsulated sensor node 
that is devised to monitor and record motion patterns 
over long, quotidian periods of time with potential 
application in psychological studies. Its design fuses 
different sensing modalities to allow efficient capturing 
of tilt and acceleration stimuli, as well as embedded 
algorithms that abstract from the raw sensory data to 
indicative features. By combining tilt switches and 
accelerometers with customized processing techniques, 
it is argued that a power-efficient yet information-rich 
approach is reached for the observation and logging of 
human motion-based activity. 
 
1. Introduction 
 

Many believe that posture and motion patterns of 
the human body are key indicators for a person’s 
emotional state and wellbeing [1]. Capturing the 
gestures and pose of dancers, actors, and more recently 
also patients, is receiving an increasingly amount of 
attention in the research community. 

Common approaches that are currently applied in 
motion capture involve tags and external sensors (such 
as video cameras [2] or ultrasound receivers), or highly 
accurate body suits [3] measuring rotation and 
acceleration. It is, with today’s technology, costly and 
intrusive to capture all aspects of body motion and 
pose throughout the day, in unpredictable 
environments and situations, with these traditional 
methods. 

The sensor node that is described in this paper 
provides data that is accurate enough to tell what type 
of activities the wearer has been doing, but not as fine-
grained a’nd detailed as commercially available motion 
capture suits. The presented approach revolves around 
the abstraction of sensory data in the sensor module 
itself, and a dynamic switching of the most appropriate 
input modality.  

2. Overview 
 

The research that has led to this paper includes both 
hardware and algorithm decisions which are closely 
tied together: The algorithms do not just output pre-
processed sensory data, but also control which sensors 
to activate, and at which speed the micro-controller 
should operate.  

A diagram of the presented approach is given below 
in Figure 1 as an overview of the paper – justification 
and a more detailed explanation will follow from the 
next section onwards. The output of the sensor node 
varies with the mode it is in: the node remains silent in 
sleep mode, a three-dimensional orientation (pose) is 
given in tilt mode, and characteristic pose and peak 
descriptions are produced in acceleration mode. 

Figure 1. Diagram of the three possible states of 
the sensor node (boxes), conditions for transition 
between them (edges), and output types (clouds). 
 

The sensor node is foremost designed to provide a 
low-energy method for sensing motion and posture of 
the body it is attached to. As in many low-power 
designs, this need for preserving as much energy as 
possible has affected the choice of algorithms and 
individual hardware components (in particular 
microcontroller and sensors). In this case, it has also 
propagated to the data analysis, exploiting the fact that 
human motion patterns do not always contain gestures. 
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3. Application 
 

Despite many advances in the genetics of 
psychiatric diseases [4], there is still no single 
laboratory test for the diagnosis of any psychiatric 
“disease”, unlike other areas of medicine. Diagnosis 
and therapy monitoring rely on self-report measures, 
semi-structured interviews, and careful observation of 
a patient’s behaviour. Given the “behavioural” nature 
of these disorders, the “status-quo” of psychiatric 
assessment is unlikely to change any time soon. This is 
where the promise of activity sensors presented in this 
paper lies. 

Mood disorders make a fine example. For instance, 
a depressive episode is characterised by major changes 
in mood, cognition and behaviour (see DSM-IV-TR1 
for major diagnostic criteria). Although activity 
sensing may never be able to tap in a patient’s feelings 
or suicidal thoughts (but see Picard’s work for 
emerging solutions to this, [5]), it can easily monitor 
changes in psychomotor activity. Anergic and agitated 
states as well as disturbances in sleep, are not only 
highly distressing symptoms of mood disorders in the 
patients themselves, but they are also core symptoms 
that have high predictive value for further relapses in 
remitted patients [6].  

Indeed, there is some emerging work in the 
application of activity sensors (Actigraphy) in 
psychiatry ([7], [8]). However, research so far has 
relied on commercial off-the-shelf single sensor 
accelerometers with limited recognition capabilities 
(such as the Actiwatch and the Motionlogger, [9]). The 
commercial cost of such devices (£400-£800) has 
thwarted further research development, and the 
application of such work remains restricted in the 
realms of well-funded research projects rather than real 
life clinical practice. 

Although the low-cost and expandability of the 
presented activity sensors are major advantages for 
many applications in psychiatry, there are also 
important theoretical benefits. From a theoretical point 
of view, psychiatric disorders provide a good pool of 
extreme behavioural and emotional states (such as 
vegetative depressed and highly activated manic states, 
rigid rituals of OCD and Autistic patients and so forth). 
Such extreme states probably represent easier targets 
for recognition by quantitative models used in the 
current sensor network than “normal” behaviours and 
emotions found in healthy populations.  

The challenge lies in the successful collaboration 
between the two fields (computer scientists / engineers   

                                                             
1http://www.behavenet.com/capsules/disorders/dsm4TRclass
ification.htm 

and clinical psychologists / psychiatrists). And also in 
the development of quantitative models, informed by 
activity sensors, which will successfully characterise 
and distinguish between different illness states and 
disorders.  

 
4. Hardware Description 
 

The biggest challenges in engineering such a body-
worn activity sensor node are (1) keeping its power 
consumption down and (2) keeping its form-factor 
unobtrusive to wear comfortably. In order to be able to 
log activity data over long periods of time, the sensor 
node is built to switch between two sensing modes: a 
rough pose-measuring mode and a more accurate 
acceleration sensing mode. A third mode powers the 
node down for periods of no activity. 

The first type of sensor present in the sensor node is 
the tilt switch: the combination of 9 tilt switches 
positioned at 45 degree angles from each other cover a 
very crude sense of tilt for the board in three planes (as 
illustrated in Figure 2 left). The easiest way to visualise 
how this works, is in one plane (Figure 2 right); the 
other two orthogonal planes work the same, only 9 
instead of 12 switches are required since we have 
common tilt switches between the three planes. 

The accelerometer (Analog Devices ADXL202JE) 
covers both acceleration and pose in two axes, but at a 
more fine-grained resolution than the cluster of tilt 
switches.  

There are two important reasons for incorporating 
these sensors this way. Both are related to resources:  

Energy. The tilt switches require less power: with 
heavy pull-up resistors, they draw only a few 
microAmperes, compared to a few hundred for the 
accelerometer. 

Processing. The tilt switches’ output is binary, and 
thus easier and faster to process and store, especially 
when combining multiple switches. The 
microcontroller also does not need to run at a fast 
speed for reading the switches' state, which results in 
an additional way to energy preservation. 

 
Figure 2. Left: The sensor node (25x25mm) with 
accelerometer (a) and tilt switches (t). Right: the 
arrangement of the tilt switches allows for a 
coarse orientation or pose measurement.  
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The microcontroller (PIC16F628A) has specifically 
been chosen because of its capability to change its 
processing speed. For the tilt switches, it runs at a low 
48kHz, while it needs to switch to 4 MHz for 
processing the accelerometer data. The microcontroller 
can also go into a low-power sleep mode if no change 
is detected for a while in the datastreams of both 
switches and accelerometers. 

The speed at which any microcontroller runs affects 
its power consumption heavily (measured with a 3V 
coin cell battery attached): In sleep mode, it consumes 
about 200 nA. It can be woken up by the switches, in 
which case it changes to the 48kHz mode using 
approximately 20 uA. If motion patterns (peaks) are 
detected, the accelerometer is activated and the 
microcontroller switches to 4Mhz for reading and 
processing, which requires about 1 mA. 

This sensor board is designed to piggyback on a 
wireless body sensor network node (BSN node, 
developed at Imperial College, with similar specs as 
the Telos Mote), to which it is interfaced via RS232. It 
contains capabilities for both logging the data locally 
(4Mbit, enough for logging 3 hours in worst case) and 
wirelessly distributing the data over a network. 

 
5. Algorithm Description 
 

The switches’ states are read at a speed of around 
200 Hertz; this information is not stored, but is instead 
processed into two values: one which describes the 
most often occurring set of states during the last 200 
measurements, and another value that reflects how 
many switches have toggled during that period. The 
first is denoted the medoid, the second the cumulative 
hamming distance; the medoid occupies 9 bits, while 
the cumulative hamming distance is assigned to 3 bits. 

The accelerometer’s two signals are read at 
approximately 50 Hertz; out of the raw sensory data, 
the basic statistics (minimum, maximum, mean, and 
variance), and peak features (length, height, sign, and 
area) are calculated over a sliding window. These 
features for the two acceleration sensors are stored in 
96 bits (6 bytes for basic statistics, 6 bytes for peak 
features of the last peak). Figure 3 illustrates how new 
values cause the features to be recomputed. 

For the calculation of average and variance, it 
suffices to keep the sum of the past n elements (sum) 
and the sum of squares (sumsq) as the variance can be 
calculated by (sumsq – (sum2/n)). Note that the 
complete array needs to be transversed only when 
minima and maxima need to be re-calculated (when the 
outgoing element used to be minimum or maximum). 
Otherwise only the first and last values of the first-in-
first-out array need to be examined. 

 

 

 

 

 

 

 

 
Figure 3. Step-by-step example in which a sliding 
window (first-in-first-out array) of past acceleration 
values is used to compute the necessary 
variables for basic statistics and peak features. 

 
The output of the activity sensor node is by default 

a packet that contains both the tilt and acceleration 
information (15 bytes in total, including a 1-byte pre-
amble). After a long period of inactivity (defined by 
the lack of significant peaks), the device will switch to 
output from just the tilt switches (3 bytes in total, 
including pre-amble). If this pose state remains the 
same for a long period, the device will finally go into a 
power-saving “sleep” mode. 

The sleep mode can only be interrupted by activity 
on the tilt switches, in which case it will operate with 
tilt switch output only. The cumulative hamming 
distance measure is then used as a way to spot 
accelerometer-based activity: if a threshold is reached, 
the device goes into a mode that outputs the full tilt- 
and acceleration information. These modes thus allow 
a reduction in power consumption and data storage. 



6. Long-Term Activity Monitoring  
 

The motivation for this work lies in the recording of 
long-term activity patterns. In this aim, the challenge is 
to find an optimal position in the trade-off between 
conserving as much of the activity information as 
possible (but requiring much storage and energy) and 
doing the implementation with limited resources (but 
throwing away potentially useful data). 

To illustrate how much information is retained, 
Figure 4a plots the data produced by an activity sensor 
node, attached to the ankle, while the wearer was 
walking and climbing stairs. The current 
implementation of the sensor board sends an output 
package (if in sensing mode) up to five times per 
second to the BSN node, as opposed to the common 30 
to 50 Hertz found in work such as [10]. This 
bandwidth has been experimentally established to 
avoid missing significant peaks in the accelerometer 
signals.  

Figure 4b shows reconstructed peak patterns from 
the features for both activities, showing promising 
differences that could be exploited by classification 
algorithms to distinguish between the two activities. 
Note that both activities would be difficult to separate 
if just the basic statistics were used as features.  

When the user remains motionless for a while, no 
data is supposed to be recorded. The mechanical nature 
of the tilt switch, however, sometimes causes single tilt 
switches to oscillate, thereby preventing the device to 
go into sleep mode. In our preliminary experiments so 
far, this has occurred only on a few occasions. 

 

 

   
 
Figure 4. a) Example data of the wearer while 
walking and climbing stairs, and b) graphical 
representations of typical peak patterns using the 
peak height and length features. 

7. Conclusions and Future Work 
 

This paper has focused on the design of the sensing 
component for the recognition of valuable features in 
acceleration and tilt measurements. Special care has 
been given on integration of both sensing and feature 
processing, so that as much activity-related data is 
retained, using a minimal amount of storage capacity. 

With the sensing hardware completed, the next 
steps would be to implement storage and 
communication facilities on the BSN wireless node to 
start integration toward long term testing.  

This work was partially sponsored by the UK’s 
DTI-funded UbiCare centre (http://www.ubicare.org) 
and the MRC London/Newcastle eMonitoring Trial 
(http://www.bipolarlab.com). Details on hardware and 
software are available at: http://www.comp.lancs.ac. 
uk/~kristof/research/notes/porcupine 
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