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Abstract—In this paper we develop a continuous high-precision
tracking system based on Received Signal Strength Indicator
(RSSI) measurements for small ranges. The proposed system uses
minimal number of sensor nodes with RSSI capabilities to track
a moving object in close-proximity and high transmission rate.
The close-proximity enables conversion of RSSI measurements
to range estimates and the high transmission rate enables con-
tinuous tracking of the moving object. The RSSI-based tracking
system includes calibration, range estimation, location estimation
and refinement. We use advanced statistical and signal processing
methods to mitigate channel distortion and packet loss. The
system is evaluated in indoor settings and achieves tracking
resolution of few centimeters. Therefore, it becomes the motion
trackers of notice in many applications.

I. INTRODUCTION

Different motion tracking technologies are used in medicine,
sport and military applications to assess motion patterns, e.g.,
gait analysis for patients with neurological disorders, such as
Parkinson. The most common motion tracking device is a mo-
tion sensor that consists of accelerometers and gyroscopes to
measure the accelerations and angular velocities, respectively.

The advantages of motion sensors over other techniques are
in terms of cost and ease-of-use. However, the motion sensors
suffer from an increased drift over time, which affects the
accuracy of the output and requires continuous calibration.
Wearable Body Sensor Networks (BSN) [1] mounted with
motion tracking devices are recently used for motion analysis.
These sensors exploit the BSN computation power and the
wireless capabilities for efficient continuous motion tracking in
any environment. Every BSN node supports also the Received
Signal Strength Indicator (RSSI), which is an alternative
tracking mechanism.

RSSI is a measurement of the signal power on a radio
link [2]. It has been extensively used as one of the ranging
techniques in Wireless Sensor Networks (WSNs) due to its
simplicity, low power consumption and economical price.
Existing RSSI-based tracking systems are affected by the
channel conditions and provide a resolution in order of meters,
which is not adequate for precise motion tracking needed for
medical applications.

In this paper, we suggest using RSSI-based tracking, for
medical application. The motivation of this paper is to show
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that RSSI is a valid tool for continuous position estimation
and tracking of a proximate object with high transmission rate.
In close proximity and Line Of Sight (LOS) conditions, with
accurate calibration, it is possible to increase the accuracy of
distance estimation to scale of centimeters. With high trans-
mission rate we can further exploit the diversity of consecutive
RSSI measurements, which refer to proximate location of the
moving object. Advanced processing techniques we developed
enable exploiting the diversity in RSSI samples to mitigate
over channel distortion and packet loss. The proposed method
uses fewer sensor nodes than other solutions, and therefore
provides more economical solution. Experiments show a mo-
tion tracking in resolution of few centimeters.

The paper is organized as follows. Section II provides
some background information and reviews related work in
this area. Section III gives description of the system model
and the problem formulation. The data processing algorithms
we use are described in Section IV. Section V provides the
experiment setup and Section VI describes the experiment
results. Conclusion and discussion about future work are
presented in Section VII.

II. RELATED WORK

Conventional RSSI-based location and tracking schemes,
e.g., [3], [4], [5], [6], estimate the range between pairs of
nodes using known channel model characteristics or some cal-
ibration methods. Then, apply methods such as triangulation,
trilateration, or statistical inference like maximum likelihood
or Bayesian estimation to obtain the location [7].

Common range estimation techniques use the path-loss
model. RSSI characteristics according to this model are con-
sidered in [8], [9] and [10]. The path-loss model is statistical
model and cannot overcome fast fading effect, reflections from
walls, shadowing and non-isotropic antenna gains. A calibra-
tion is often used to either find channel model parameters or to
produce a conversion table between RSSI measurements and
distances, e.g., [11], [12], [13].

RSSI-based range estimation methods have been studied in
several works, e.g., [14]. The range estimation is not accurate
as it is sensitive to small variations in channel and is usually
in scale of meters. In proximate environment, with accurate
calibration and LOS conditions, [15] obtained approximation
error of up to 10 cm using raw RSSI measurements without
further processing. The works described in [16] and [17]



provide more advanced RSSI processing methods, such as
histogramic analysis and statistical filters that improved range
accuracy.

RSSI-based tracking exploit diversity of measurements and
motion models. Classical approaches for tracking are based
on Kalman filters [18] or more general Bayesian filters like
particle filters [19].

III. SYSTEM MODEL

A. System Description

The basic system consists of a single mobile node
with a location of (x0, y0, z0) in Cartesian coordinates
and N static nodes, referred to as anchor nodes, placed
at (x1, y1, z1), (x2, y2, z2), .., (xN , yN , zN ), respectively. The
goal of our work is to continuously estimate the mobile node’s
location (xt

0, y
t
0, z

t
0) at any given time t. The mobile node

transmits a data packet with a known transmission power to
the anchor nodes every T ms. The anchor nodes, located in the
transmission range of the mobile node, calculate the received
power values Prt

1, P r
t
2, .., P r

t
N . Each transmitted packet is

labeled with a time stamp, to recover possible packets loss.
No synchronization is assumed among the nodes. The received
signal power using channel pass-loss model for anchor node
i at time t is:

Prt
i = Pt+A− q10 log10 d

t
i + αt , (1)

where dt
i is the distance between anchor node i and the mobile

node, A is a constant power offset, which is determined by
several factors, like receiver and transmitter antenna gains
and transmitter wave length [20], q is the channel exponent
which vary between 2 (free space) and 4 (indoor with many
scatterers), and αt is a Gaussian distributed random variable
with zero mean and standard deviation σ that accounts for the
random effect of shadowing.

B. Problem Formulation

Denote the power measurement matrix of N anchor nodes
over M time units by Pr:

Pr =


Pr11 Pr21 . . . P rM

1

Pr12 Pr22 . . . P rM
2

...
...

...
...

Pr1N Pr2N . . . P rM
N

 .

To track the mobile node, we need to continuously estimate,
using the set of N power measurements, the location of the
mobile node. The Minimum Mean Square Error (MMSE)
optimal transformation of the measurement matrix Pr can be
obtained by solving the following criterion:

f̂ = argminfE(X0 − f(Pr))2 s.t. |Xt+1
0 −Xt

0| < δ , (2)

where X0 consists of M consecutive coordinates of the mobile
node, f is a transformation of the power measurements to
location, E[·] is the expected value over all stochastic sources,
and δ is a bound on the difference between consecutive
location estimations, which is a function of transmission rate

and mobile node velocity. With high RSSI transmission rate
or low mobile node velocity, consecutive RSSI measurements
imply proximate locations.

The problem is neither linear and nor convex [21], thus
the criterion in (2) can only be solved numerically. Further-
more, an optimal transformation requires accurate statistical
knowledge [14], which is not always available. Since the
mobile node moves during observation time, the channel is
not stationary and new frequent update of the transformation
is needed for accurate approximation.

IV. DATA PROCESSING AND ANALYSIS

We assume that the errors in anchor RSSI measurements
are independent. As a result, we can separate the tracking
solution to (2) into two phases. In first phase we estimate the
distance (range) between the mobile node and each anchor
node. In the second phase we integrate the entire information
to obtain MMSE optimal location estimation. The solution has
the following four stages: (a) pre-processing of the RSSI mea-
surements to obtain the received power. This stage includes
conversion of the RSSI measurements to power measurements,
interpolation of missing samples and filtering out the channel
noise; (b) range estimation between the mobile node and
each anchor node according to the power measurements and
calibration; (c) combination of the information from all the
nodes and the MMSE estimation of the mobile node’s location;
and (d) filtering out estimation errors with statistical methods.

A. Pre-Processing of RSSI Measurements

The 8-bit RSSI measurements are converted to power, as
described in [22]. As there might be missing packets and our
solution is based on continuous measurements, we approxi-
mate the missing packets by linear interpolation. To exclude
the noise components in (1), we filter the interpolated data for
each anchor node with a low pass filter:

P̃ r
t

i = Prt
i ∗ h , (3)

where ∗ denotes the convolution operation and h is a low-
pass filter that smoothes the additive noise and eliminates the
fast-fading.

B. Range Estimation

A continuous estimation of the distance between the mobile
node and an anchor node i can be derived analytically from
the filtered received power according to (1):

d̃t
i = 10

P t+A−P̃ rt
i

10q . (4)

This range approximation requires a-priory knowledge of
channel parameters, channel exponent value and receive and
transmit antenna gains, which determine the exponent offset.
Using common channel exponent for indoor in range of 2 −
4 will not provide accurate results and will not compensate
specific channel condition like shadowing.

Calibration is necessary to reflect the specific medium.
A common calibration approach in [9], uses one reference
point in the medium with a known measured received power.



This calibration approach compensates for the bias induced
by the receive and transmit antennas gains, but still uses the
inaccurate channel exponent. Another calibration approach is
to derive both channel offset and exponent for a predetermined
distance before operation, like in [7]. Alternative calibration
method, known as fingerprinting, creates a database of RSSI
values as a function of distances. We use a variant of the fin-
gerprinting method. We measure the RSSI values at different
distances. These measurements form a curve of distance as a
function of RSSI measurements. Unlike fingerprinting method,
we further use a polynomial fitting for the curve to exclude the
effect of noisy measurements. We store the result in a mapping
table. We use the RSSI value to fetch the closest distances and
use linear interpolation to improve accuracy. This calibration
approach is accurate in stationary channel but is not accurate
when the channel varies.

C. Location Estimation

Denote by D̃ the matrix of approximated distances calcu-
lated above:

D̃ =


d̃1
1 d̃2

1 . . . d̃M
1

d̃1
2 d̃2

2 . . . d̃M
2

...
...

...
...

d̃1
N d̃2

N . . . d̃M
N

 .

The following criteria can estimate the mobile node’s location:

ĝ = argmingE(X0 − g(D̃))2 s.t. |Xt+1
0 −X0t| < δ . (5)

There are several methods for solving (5). The most
common one is trilateration. Trilateration is a positioning
technique, [23], which estimates the mobile node’s location
by intersection of the circles, each centered on the anchor
node position, with a radius equals to the estimated distance
between the mobile node and the anchor node. N = p + 1
anchor nodes are required for localization in p dimensional
space. The estimated location is defined by the center of
the region formed by the intersection of the circles. Another
approach [24] utilizes only N = p anchor nodes and estimates
the location by one of the intersection points. It records several
intersection points in consecutive times and estimates the
intersection location by the closest distance.

We choose a variant of [24] to estimate the mobile node’s
location using the Maximum A Posteriori (MAP) criterion.
Assuming that the range estimations have the same statistical
distribution and the mobile node location has Gaussian distri-
bution, the MAP criterion coincides with the MMSE criterion,
[25]. The solution is composed of the following steps: 1)
deriving intersection of the circles formed by the estimated
distance for each anchor node, 2) choosing the intersection
that minimizes the MAP criterion.

1) Deriving Circles’ Intersections Points: To estimate the
mobile node’s location we use the intersection of the circles
described in previous section. For 2-D with two anchor nodes,
the circles formed by the distance estimation are:

(x− rx)2 + y2 = (d̂t
x)2 (6)

Fig. 1. Intersection points of two anchor nodes’ circles. The two circles are
centered on the anchor nodes’ positions with radiuses equal to the estimated
distance between the mobile node and the anchor nodes.

x2 + (y − ry)2 = (d̂t
y)2 ,

where rx, ry are the anchor nodes locations in the x and y axis.
The intersections of the two circles are two points that one of
them indicates the location of the mobile node, as illustrated
in Figure 1.

2) Choosing the Optimal Intersection Points: We want to
choose the intersection points that are likely to be the mobile
node location and minimize (5) in MMSE sense. We define a
state as one intersection point. In 2-D with two anchor nodes,
typically, there are two states, St

1 and St
2, for each intersection

point. We use a trellis diagram that consists of all states in
window of W samples. A path in the diagram is a transition
between states at consecutive discrete time intervals. Each
possible transition represents a possible motion of the sensor
from one position to another. To minimize the criteria in (5) we
need to find the most likely path in the trellis diagram. Each
legal transition between states can be defined as a branch with
a branch metric S, which is a function of the distance between
consecutive states. We use a branch metric that reflects the
continuity constraint in (5). A branch metric can be based on
proximity of consecutive samples and is given by:

BM t
d =‖ d(St+1

i )− d(St
j) ‖ , (7)

where ‖ · ‖ is Euclidian norm. Another branch metric can be
based on continuity of mobile node’s motion and is given by:

BM t
v =‖ v(St+1

i )− v(St+1
j ) ‖ . (8)

The velocity v can be either linear or angular in polar
coordinates. A path metric is the sum of the branch metrics
for a window length of W samples:

PM t =
t∑

t′=t−W

BM t′ . (9)

W is also called the constraint length, W << M .
The MAP criterion chooses the minimum path metric out

of all the possible paths. A more efficient algorithm can
use the Maximum Likelihood (ML) criterion, which can be
implemented by Viterbi algorithm [26]. If we assume that
the distance distribution is i.i.d, both MAP and ML solutions
minimize the error criterion in (5) [25]. Figure 2 illustrates
a selection of the intersection point that estimates the mobile
node’s location.



Fig. 2. Selection of the intersection point that is related to the mobile node’s
location.

(a) Calibration
stage in which
we form a
mapping table
between power
measurements
and distances.

(b) Experiments using circular trail.
The two anchor nodes calculate the
RSSI from the mobile node trans-
missions and transmit the results to
a computer for further processing.

Fig. 3. Experiment setup.

D. Post Processing

We use additional filtering to exclude decisions that are
not likely and to smooth the results. First, we apply on the
approximated distances a median filter [27]. The filter extracts
approximations that are different in relation with the standard
deviation from the mean value and are likely to be errors.
We then use a linear interpolation value instead of the noisy
distances and then we use a low-pass filter on the results.

V. EXPERIMENT SETUP

The experimental setup includes a trail with a toy car,
two anchor nodes, one mobile node, one base station and a
computer. The mobile node is attached to the toy car ,which
moves on a circular plastic trail that is wider than the car
itself. RSSI measurements were sent to the computer through
the base station for analysis.

The two anchor nodes and the mobile node are BSN
nodes. A BSN node includes a processing unit (TI
MSP430), transceivers for the wireless communication (Chip-
con CC2420) [22] and a monopole antenna. An additional
isotropic dipole antenna with length of 4 cm was added
to increase the transmission range. The CC2420 offers a
mechanism for selecting the transmission output power of
the radio in range from −25 dBm to 0 dBm. The actual
transmission power we use is −7 dBm (Power level 15). The
CC2420 has a built-in RSSI providing a digital value in range

Fig. 4. Results of the calibration between the two anchor nodes and the
mobile node. The difference between the two anchor nodes can be explained
either by different antenna gains or by varying channel conditions.

(a) Node x. (b) Node y.

Fig. 5. Received powers of the two anchor nodes with and without filtering.

of −127 to 128 dBm. The RSSI value is always averaged
over 8 symbol periods (128 ms). The conversion of the RSSI
measurements to the received power is done by an addition of
−45 dBm.

The experiments were performed in indoor environment,
with no metal reflectors in a range of 1 meter from the nodes
so they were nearly in line-of-sight conditions. The anchor
nodes are located in the x and y axis, in coordinates of
(30; 0) and (0; 30) centimeters respectively. Figure 3 shows
the experiment setup.

At first phase we performed calibration for 9 different
distances between the mobile node and each anchor node.
Then, we examined circular trail with 4 sets of radiuses: 10,
12, 14 and 16 cm. The toy car, traveled over the trail, moved
with a constant velocity of 0.33 m/s and the sensor node
attached to it transmits a data packet with time stamp every
20 ms. Each anchor node computed the received power as in
the calibration phase and transmitted it to the processing unit.
The overall delay is composed mainly from the transmission
delay and the constraint length.

VI. EXPERIMENT RESULTS

The calibration between the mobile node and each of the
anchor nodes was performed with 9 different distances from
5 cm to 45 cm in ascending order. The anchor node received
packets transmitted from the mobile node with a known power
level, calculated the receive power level and sent it to the
processing unit for analysis. In the processing unit, we used a
degree 3 polynomial fitting and stored the results in a mapping
table. Figure 4 shows the calibration points and its log fitting
for 2-D.



(a) Experiment distance estima-
tion.

(b) Theoretical distance estima-
tion.

Fig. 6. Distance Approximation between the mobile node and the two anchor
nodes. The Theoretical distance estimation is for a circular movement.

(a) Experiment distance. (b) Theoretical distance.

(c) Experiment angles. (d) Theoretical angles.

Fig. 7. The First and Second intersection points in polar coordinates.

Figure 5 presents the received power of the two anchor
nodes, before and after low-pass filtering as described in
Eq. (3), for a circle with radius of 12 cm. We used the mapping
table produced from the calibration stage to convert the
power measurements to distances. We used linear interpolation
between two power measurements to obtain the distance.

The distance approximation between the mobile node and
the two anchor nodes in circular movement is shown in
Figure 6. A phase shift of a quarter of a cycle (90 degrees)
between x and y nodes can be noticed in the distance approx-
imation as in theory. The amplitude of the y’th anchor node is
2 cm lower than the x’th approximation. The difference can
be explained either by inaccurate calibration process or by non
ideal isotropic antennas we used in our experiment.

We found the intersection points of the circles, which are
formed by the distances between the anchor nodes and the
mobile nodes by solving Eq. (6). Figure 7 describes the

(a) Distance before processing. (b) Distance after processing.

(c) Angle before processing. (d) Angle after processing.

Fig. 8. The approximated distance from origin and the angle of the mobile
node, before and after the post-processing stage.

(a) Before post-processing. (b) After post-processing.

Fig. 9. The error mean and standard deviation of the mobile location. The
figure in the left shows noisy results with average error of 4.7 cm and standard
deviation of 10 cm. The figure in the right shows relatively accurate results
after post processing with average error of 0.7 cm and standard deviation of
4 cm.

intersection of the two circles in polar coordinates. The mobile
node’s location is estimated according to Eq. (7)-(9).

We then post process the location estimation as described
in Section IV-C1. Figure 8(a) and Figure 8(c) show the
approximated distance and the angle of the mobile node from
the origin before the post-processing stage. Before filtering
we can see a periodic burst of estimation errors in both
radius and angel approximations. An estimation error can be
explained by choosing the wrong intersection, which does not
indicate the correct mobile node’s location. The burst of errors
means that a consecutive series of the wrong intersections
were chosen. In circular movement, the wrong intersections
are proximate almost as much as the true mobile node location.
This difference in proximity is the noise tolerance of the



algorithm. Burst errors can be a result of a distortion in
system, either by non ideal isotropic antennas or by packet loss
due to communication failure and imperfect reconstruction.
With higher constraint length we include more statistics in the
decision and reduce the probability of error, but increase the
total delay. Figure 8(b) and Figure 8(d) show the approximated
distance and the angle of the mobile node from the origin after
the post-processing stage. It can be noticed that the error bursts
were filtered successfully.

The error mean and standard deviation of the approxi-
mated location for the different circular trails before the post
processing were 4.7 cm and 10 cm, respectively. After the
post processing stage, the error mean and standard deviation
were reduced to 0.7 cm and 4 cm, respectively. Though our
experiment is limited to circular paths, the standard deviation
gives indication for the location approximation error in the
general case of movement as we used low constraint length and
relatively high sampling rate. Consequently, it seems that in a
general tracking we will be able to achieve accuracy of 4 cm
in location estimation. The mean error and standard deviation
for all trails before and after post processing are shown in
Figure 9.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we suggest a new real-time RSSI-based track-
ing system for continuous tracking in close-proximity of up
to 1 meter, using high transmission rate. We use an advanced
calibration method combined with RSSI-based ranging and
MAP location estimation. We further use advanced filtering
techniques to mitigate over channel distortion and packet loss.
Our method assumes that consecutive RSSI samples refer
to the same location, and the processing of the results was
made according to this assumption. Therefore, although the
experiments were taken over a circular path, the results are
relevant for other motion patterns as well. We demonstrate our
system using a mobile node, moving on a circular path, and
two anchor nodes located at proximate distance. We used an
isotropic antenna for simplicity. The experiment shows a dis-
tance estimation error for the radius of only 0.7 cm with stan-
dard deviation of 4 cm for a single measurement. The standard
deviation gives indication of the location approximation error
in the general case of movement as we used low constraint
length and relatively high sampling rate. The proposed system
suffers from inaccurate calibration and channel distortion over
time. Auto-calibration during activation can exclude the need
for calibration in advance and mitigate channel distortion in
non-LOS conditions. The suggested system can provide in the
future a robust and economical solution for tracking and can
be considered as an alternative to inertial motion trackers for
medical applications.
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