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Abstract— Timed-Up-and-Go (TUG) is a simple, easy to 

administer, and frequently used test for assessing balance and 

mobility in elderly and people with Parkinson’s disease. An 

instrumented version of the test (iTUG) has been recently 

introduced to better quantify subject’s movements during the 

test. The subject is typically instrumented by a dedicated 

device designed to capture signals from inertial sensors that 

are later analyzed by healthcare professionals. In this paper we 

introduce a smartphone application called sTUG that 

completely automates the iTUG test so it can be performed at 

home. sTUG captures the subject’s movements utilizing 

smartphone’s built-in accelerometer and gyroscope sensors, 

determines the beginning and the end of the test and quantifies 

its individual phases, and optionally uploads test descriptors 

into a medical database. We describe the parameters used to 

quantify the iTUG test and algorithms to extract the 

parameters from signals captured by the smartphone sensors.  

Keywords-mobile computing, mobile sensing, health monitoring, 

timed-up-and-go test, mobility assessment, Parkinson’s disease. 

I.  INTRODUCTION  

The Timed-Up-and-Go (TUG) is a frequently used 
clinical test for assessing balance, mobility, and fall risk in 
elderly population and people with Parkinson's disease [1]. It 
is simple and easy to administer in an office, and thus can be 
used in screening protocols. The test measures the time a 
person takes to perform the following tasks: rise from a 
chair, walk three meters, turn around, walk back to the chair, 
and sit down. Longer TUG times have been associated with 
mobility impairments and increased fall risks [1]–[3]. Adults 
without balance problems can perform this test in less than 
10 seconds. Alternatively, adults with mobility difficulty 
may require more than 30 seconds. TUG duration is also 
sensitive to therapeutic interventions, e.g., in Parkinson’s 
patients [4], [5]. Whereas the test has been proven valuable 
in early assessment of balance and mobility, it is limited as 
its only outcome is the time to complete the test.  

An instrumented Timed-Up-and-Go (iTUG) test has been 
recently introduced [6], [7]. In this test, the subject is 
instrumented by a dedicated device specially designed for 
gait and movement analysis. A number of additional 
parameters can be derived that can better indicate gait and 
balance impairments, including Sit-to-Stand duration, Stand-
to-Sit duration, the amplitude range of anterior-posterior 

acceleration, etc. iTUG has proven to be sensitive to 
pathologies [6], [7] and useful in fall risk prediction [8].  

The prior TUG studies utilized either specialized devices 
for movement analysis (e.g., McRoberts Dynaport Hybrid) 
or custom inertial sensors (e.g. accelerometers) that were 
mounted on the subject’s lower back. Such devices typically 
include a 3-dimensional accelerometer and can record x, y, 
and z acceleration components during the TUG test. The data 
are later analyzed off-line to parameterize the TUG test. 
Mellone et al evaluated suitability of a smartphone’s built-in 
accelerometer for the iTUG [9]. They compared the subject’s 
anteroposterior acceleration measured concurrently on a 
smartphone and a state-of-the-art device for movement 
analysis, and found the statistical agreement between the 
two. However, this study did not pursue a more ambitious 
goal of using smartphone application for quantifying the 
TUG test.   

Recognition and quantification of human activities using 
small wearable sensors during activities of daily living has 
been increasingly used in many applications. Automatic 
activity recognition and quantification systems that utilize 
inertial sensors are proposed for long-term health and fitness 
monitoring [10], [11], assessment of mobility in elderly and 
people with Parkinson’s disease [12]–[14], automatic fall 
detection [9], [15], and rehabilitation [16], [17]. Approaches 
for automatic activity recognition used by researchers vary in 
number, type, and placement of utilized sensors, as well as in 
processing of recorded signals. While some researchers used 
multiple sensors for automatic activity recognition [18]–[20] 
increasing number of projects use a single inertial sensor 
[21]–[24] usually placed on the subject’s chest.  

Modern smartphones integrate a growing number of 
inertial and location sensors, such as an accelerometer, 
magnetometer (digital compass), gyroscope, and GPS. Major 
mobile operating systems, such as Android, iOS, and 
Windows 8 support frameworks for managing the sensors, 
including continual sampling, thus enabling a wide variety of 
new mobile sensing applications in different domains.  

In this paper we introduce a smartphone iTUG 
application called sTUG. A subject mounts the smartphone 
on his/her chest or belt and starts the application. The 
application records and processes the signals from the 
smartphone’s gyroscope and accelerometer sensors to extract 
the following parameters that quantify individual phases of 
the TUG test: (a) the total duration of the TUG test, (b) the 



total duration of the sit-to-stand transition, and (c) the total 
duration of the stand-to-sit transition. In addition, we extract 
parameters that further quantify body movements during the 
sit-to-stand and stand-to-sit transitions, including the 
duration of sub phases, maximum angular velocities and 
upper trunk angles. These parameters are recorded on the 
smartphone and optionally uploaded to an mHealth server.  

sTUG could be of great interest for older individuals and 
Parkinson’s disease patients as well as for healthcare 
professionals. The procedure requires minimum setup (chair 
and marked distance of 3 meters) and inexpensive 
instrumentation (smartphone placed on the chest or belt 
running the sTUG application). The feedback is provided 
instantaneously to the user in a form of a report with the 
values of all significant parameters that characterize the TUG 
test. It is easy to use and users can take multiple tests in a 
single day at home (e.g., to assess the effects of drugs). With 
automatic updates to the mHealth server, caregivers and 
healthcare professionals can gain insights into overall 
wellness of the subjects. For example, they can assess the 
impact of therapeutic interventions (e.g., impact of drugs) by 
analyzing the parameters from multiple tests performed in a 
single day. Next, healthcare professionals and researchers 
can monitor and evaluate evolution of disease by analyzing 
the trends in the parameters collected over longer periods of 
time.  

To the best of our knowledge, we are the first to propose 
and implement a smartphone application that fully automates 
the iTUG test with minimal user interventions. We introduce 
parameters and procedures for their extraction that improve 
characterization of the iTUG test and especially body posture 
transitions relative to the previously proposed parameters [6].  

The body instrumentation, body movements capturing, 
and signal processing to extract the parameters are described 
in Section II. The smartphone application is described in 
Section III. The results from preliminary tests performed on 
three Parkinson’s disease patients and four healthy 
individuals are given in Section IV. Section V gives the 
concluding remarks.  

II. INSTRUMENTED TIMED-UP-AND-GO:  

FROM SIGNALS TO INFORMATION 

A. Body instrumentation 

Figure 1 illustrates typical phases of the iTUG test that 
involves a sit-to-stand transition, walking forward for 3 
meters, turning around a cone, walking back to the chair, and 
a stand-to-sit transition. We instrument a subject by placing a 
smartphone on his or her chest. The smartphone is placed in 
a holder that is mounted on two elastic textile straps, so it 
remains fixed relative to the trunk position during a test. 
Whereas this setup may pose challenges to some of the 
subjects who are unable to tie a strap over their chest without 
assistance, alternative attachments are possible. For example, 
the smartphone may be placed in a textile holder that is worn 
around the neck and attached to the clothes using a Velcro 
strap. Alternative setups are possible with a smartphone 
placed in a belt or in a holder on the hip. However, in this 
paper we assume that the smartphone is placed close to 

sternum in an upright position or clipped on the front side of 
a waist belt.  

Figure 2 shows the smartphone orientation: the 
smartphone’s z axis corresponds to the sagittal axis, the y 
corresponds to the vertical axis, and the x corresponds to the 
frontal axis of the human body.   

Modern smartphones typically integrate a number of 
inertial and navigation sensors including an accelerometer, a 
gyroscope, and a magnetic sensor. The accelerometer 
measures proper acceleration and is typically used to keep 
the screen upright regardless of the smartphone orientation. 
With the proposed mounting of the smartphone, we record 
the x, y, and z components of the acceleration of the subject’s 
upper trunk and use these signals to determine upper body 
position. The gyroscope measures angular movements, 
specifically the rotation around the x axis (a.k.a. roll), y axis 
(yaw), and z axis (pitch). In our setup, we record the angular 
speeds from the gyroscope and use the signals to detect and 
locate important transitions during the TUG test. The 
magnetic sensor is sensing the Earth’s magnetic field and is 
normally used to aid navigation by determining the Earth’s 
magnetic poles and the smartphone’s orientation. In our 
setup we can use the signal to detect changes in direction 
during walking.    

 

 

Figure 1. iTUG test phases and smartphone instrumentation of the subject. 

 
Figure 2. Smartphone orientation. 

B. iTUG Characterization 

To characterize the TUG test we start from a list of 
parameters suggested by Weiss et. al [6]. We expand this list 
to include new parameters and to refine the definitions of the 
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original parameters that were lacking due to limitations by 
the measuring setup used in [6] and improper interpretations 
of signals. Table 1 lists the proposed parameters and describe 
their meaning and metric units. In addition to the total 
duration of the test (d.TUG), we determine the total duration 
of the sit-to-stand transition (d.S2ST), and the total duration 
of the stand-to-sit transition (d.ST2S). To better characterize 
the sit-to-stand transition we determine its two phases – a 
leaning forward (d.LF) phase and lifting up phase (d.LT), the 
maximum trunk angle (a.S2ST) during the lean forward 
phase, the maximum angular velocities in the lean forward 
(v.LF) and the lift up phase (v.LT). Similarly, we determine 
duration of separate phases of the stand-to-sit transition, a 
preparing to sit phase (d.PS) and a sitting down phase 
(d.SD).  

TABLE I.  PARAMETERS FOR ITUG CHARACTERIZATION. 

Parame-

ter 

Description Units 

d.TUG Total duration of the TUG test seconds 

d.S2ST Total duration of the sit-to-stand transition seconds 

d.LF Duration of the lean forward phase in  

the sit-to-stand transition 

seconds 

d.LT Duration of the lift phase in  
the sit-to-stand transition 

seconds 

a.S2ST Maximum change of the trunk angle  

in the lean forward phase 

degrees 

v.LF Maximum angular velocity  
during the lean forward phase 

degrees/s 

v.LT Maximum angular velocity during  

the lift up phase 

degrees/s 

d.ST2S Duration of the stand-to-sit transition seconds 

d.PS Duration of the prepare-to-sit phase  

in the stand-to-sit transition 

seconds 

d.SD Duration of the sit-down phase in  

the stand-to-sit transition 

seconds 

Figure 3 shows raw acceleration and gyroscope data 
recorded on a smartphone mounted on the chest of a subject 
with diagnosed Parkinson’s disease during the TUG test. The 
top graph shows the x, y, and z components of the 
acceleration measured in m/s

2
, and the bottom one shows the 

angular velocity measured in radian/s. The data are recorded 
using our custom Android application running on a Nexus 4 
smartphone. The sampling frequency is set to 100 Hz. The 
following subsection describes algorithms that process the 
raw sensor data to extract the described parameters as shown 
in Figure 3. 

C. Parameter Extraction 

To determine the duration of the entire TUG test and its 
separate phases, we need to detect and timestamp the 
following events: 

 the beginning of the test (TbTUG), which is also the 
beginning of the sit-to-stand transition (TbS2ST);  

 the end of the sit-to-stand transition (TeS2ST);  

 the start of the stand-to-sit transition (TbST2S); and 

 the end of the stand-to-sit transition, which also 
corresponds to the end of the entire test (TeTUG).  

The first step in detecting the beginning of the sit-to-
stand transition is to search for a change in the angular 
velocity around the frontal axis (the x component of the 
gyroscope). This change is caused by leaning forward as the 
individual prepares to stand up. The angular velocity has a 
distinct profile as illustrated in Figure 4, left. It starts from 
zero or near zero, increases to reach the maximum and drops 
to zero at the end of the lean forward phase. To determine 
the beginning of the transition we first find the maximum 
angular velocity (v.LF) that is above a certain threshold and 
then search backward to find the beginning of the slope. The 

 
Figure 3. Accelerometer and gyroscope signals (the x, y, and z components) recorded on a smartphone mounted on a person with Parkinson’s disease 

during the TUG test. 
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lean forward phase ends when the angular velocity drops 
back to zero (TeLF). At this moment the maximum upper 
trunk angle, a.S2ST, is reached (Figure 4, left). The time 
distance between the beginning of the transition and the end 
of the lean forward phase represents the duration of the lean 
forward phase, d.LF = TeLF - TbS2ST. The second phase of the 
sit-to-stand transition is characterized by the negative 
angular velocity as the subject moves into the upright 
position. The angular velocity reaches the minimum, v.LT, 
and then increases back to zero. The moment when it 
becomes positive is considered to be the end of the lift up 
phase and the end of the sit-to-stand transition. By time 
stamping this moment (TeS2ST), we calculate the duration of 
the lift up phase, d.LT = TeS2ST - TeLF, and the total duration 
of the sit-to-stand transition, d.S2ST = d.LF + d.LT.  

 

 
Figure 4. Angular velocity and upper body trunk angle during the sit-to-

stand (left) and stand-to-sit (right) transitions.  

The stand-to-sit transition can also be divided into two 
separate phases, a prepare-to-sit, PS, and a sit-down, SD, 
phase. The angular velocity and the upper trunk angle 
profiles during the stand-to-sit transition are shown in Figure 
4, right. The angular velocity increases to the maximum and 
then drops back to zero as the subject leans forward in 
preparation to sit down. The moment when the angular 
velocity drops to zero marks the end of the prepare-to-sit 
phase and the beginning of the sit-down phase. By time 
stamping these characteristic points we can determine the 
duration of the preparation phase, d.PS = TePS - TbST2S. In the 
sit-down phase the angular velocity is negative as the 
subject’s upper trunk moves back into the upright position. 
The moment it becomes positive marks the end of the sit-
down phase and the entire stand-to-sit transition. By time 
stamping this moment we can calculate the duration of the 
sit-down phase, d.SD = TeST2S - TePS, and the entire stand-to-
sit transition (d.ST2S = d.PS + d.SD).  

III. STUG 

The sTUG smartphone application captures the signals 
from the smartphone sensors, processes the data to extract 
the parameters described in Section II, and displays the 
parameters at the end of the TUG test. In addition it creates 
an iTUG test descriptor that includes time and date when the 
test is taken as well as all the parameters from Table I. This 

descriptor is stored on the smartphone. It can optionally be 
uploaded to a medical server for long-term storage and 
analysis. 

The user starts monitoring and processing by pressing a 
start button on the screen. Alternatively, the application and 
monitoring can be started automatically using an inexpensive 
Near Field Communication (NFC) tag. The application stops 
monitoring automatically once it detects the end of the stand-
to-sit transition. Figure 5 shows a report generated by the 
application at the end of a TUG test.  

sTUG is developed for Android operating systems and 
requires a smartphone with the accelerometer and gyroscope 
sensors running Android 2.3 or above. The application has 
been tested on a Nexus 4 smartphone, a Motorola RAZR M, 
and a RAZR HD.  

 

 
Figure 5. sTUG: Smartphone TUG Android application screen displaying 

the parameters of the TUG test. 

IV. RESULTS AND DISCUSSION 

A preliminary testing of the sTUG application is 
performed on three individuals with diagnosed Parkinson’s 
disease and four healthy individuals. Each individual was 
asked to perform the TUG test in the shortest amount of time 
and the test is repeated three times. Table 2 shows the 
summarized results with all parameters reported by the 
sTUG application. Expectedly, the individuals with 
Parkinson’s disease needed more time to complete the total 
test (d.TUG) as well as the individual phases of the test. The 
healthy individuals had notably higher the maximum angular 
velocity during the lift up phase (v.LT). The duration of the 
stand-to-sit phase for healthy individuals was notably 
shorter.  
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V. CONCLUSIONS 

Proliferation of smartphones that integrate a growing 
number of sophisticated sensors creates a number of 
opportunities for instrumentation and quantification of 
standard monitoring and diagnostic procedures. The Timed-
Up-and-Go test is frequently used to assess mobility and 
balance of elderly and people with Parkinson’s disease. In 
this paper we introduce a smartphone application called 
sTUG that completely automates the test. The application 
provides an instantaneous feedback to the user and allows for 
automatic uploads of the test results into patient medical 
record. The application quantifies the test phases to allow 
specialists better assessment of body kinematics and 
dynamics.   

The application has been tested on a group of healthy 
volunteers and Parkinson’s disease patients and showed 
promising results. By utilizing commodity smartphones we 
offer an affordable tool for instantaneous quantification of 
the TUG tests. The test can thus be performed at home to 
assess the impact of drugs. Analysis of the parameters 
collected over longer periods of time may help in tracking 
progression of mobility and balance impairments.   
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