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Abstract—Motion analysis technologies have been widely used
to monitor the potential for injury and enhance athlete perfor-
mance. However, most of these technologies are expensive, can
only be used in laboratory environments and examine only a few
trials of each movement action. In this paper, we present a novel
ambulatory motion analysis framework using wearable inertial
sensors to accurately assess all of an athlete’s activities in an
outdoor training environment. We firstly present a system that
automatically classifies a large range of training activities using
the Discrete Wavelet Transform (DWT) in conjunction with a
Random forest classifier. The classifier is capable of successfully
classifying various activities with up to 98% accuracy. Secondly,
a computationally efficient gradient descent algorithm is used
to estimate the relative orientations of the wearable inertial
sensors mounted on the thigh and shank of a subject, from
which the flexion-extension knee angle is calculated. Finally, a
curve shift registration technique is applied to both generate
normative data and determine if a subject’s movement technique
differed to the normative data in order to identify potential injury
related factors. It is envisaged that the proposed framework
could be utilized for accurate and automatic sports activity
classification and reliable movement technique evaluation in
various unconstrained environments.

Keywords— Activity classification; Technique assessment;
Sensor fusion; Knee joint angle; Curve shift registration

I. INTRODUCTION

Sport and physical activity have important cardiovascu-
lar, musculoskeletal and mental health benefits [1] and are
enjoyed by large numbers. However, associated lower body
musculoskeletal injuries are very common [2], [3], [4]. Al-
most all injuries are caused by relative excessive loading on
the tissues i.e. high loading relative to tissue strength. One
factor that significantly influences this loading is movement
technique. Athletes can be biomechanically screened to deter-
mine an athlete’s predisposition for injury [5] by recording
and quantifying both their movement technique (i.e. joint
angle and angular velocity) and some measure1 of loading
on their lower body during a series of actions common to
their sport and known to be related to injury (e.g. running [3],
jumping and landing [6], agility cuts [7]). Generally, the

1Direct loading on individual tissues cannot be measured in a non-invasive
fashion but this is possible for aggregate loading on a region of tissues or
structures.

athlete completes 3 − 5 maximum effort trials of each action
[6] and their results are compared to normative values, if
available [8]. These tests are almost exclusively completed in a
laboratory since biomechanics based motion analysis systems
tend to be camera based (6+ cameras typically) which must
remain spatially fixed during the testing session and tend to
be negatively affected by changing lighting conditions. This
screening process creates several assessment and comparison
challenges, which significantly reduce its ecological validity
and usefulness. These include:

1. The athletes are generally highly focused on how they
complete the tasks, and therefore may not utilize a
movement technique that they would normally use in
a training session or match.

2. The controlled laboratory environment does not re-
flect the conditions of the training environment (e.g.
uneven/wet ground, fatigued conditions).

3. The use of only 1 to 5 trials as representative of how
an athlete completes a movement technique is highly
questionable. The low number of trials is common
because of the significant processing time (and cost)
associated with optical based systems.

4. There is a lack of normative data for many sports
based tasks.

5. It is a very expensive process limiting its general
application.

A solution to the above assessment challenges would be to
use sensors that could be worn throughout a training session or
competitive event, detecting an athlete’s joint angular motion
and impact accelerations. Accelerometers mounted on the body
can be used to infer loading based on Newton’s second law
of motion (F = ma)[6] during every foot-ground contact. We
estimate that within a 45 minute training session this could
involve each foot striking the ground (> 2000) times. With
the recent development of more accurate and relatively cheap
wireless/wearable inertial motion units (WIMUs), combined
with improved algorithms to more accurately determine sensor
orientation [9], [10] , it has become feasible to deploy wearable
body sensor networks in training sessions. Some commercially



available systems include Xsens (www.xsens.com) and Shim-
mer (www.shimmersensing.com). If WIMUs are to be used in
this context, data processing time must be very short and user
involvement minimized. This requires a system to automati-
cally and accurately categorize each foot-ground contact based
on the type of movement of the user (i.e. walk, jog, sprint,
jump, land, agility cut). Even with low trial numbers, there
are a number of challenges associated with comparing data
(which are amplified with the larger trial numbers potentially
possible with WIMUs):

6. Continuous data (e.g. joint angle) are usually reduced
to a single/few discrete measure(s) that purportedly
represent a joint’s movement technique (e.g. peak
flexion), but in reality comprises less than 2% of the
available data [11], [12].

7. Continuous data (e.g. angle-time data) contains phase
and amplitude variations both between individuals
(inter-subject) and within multiple trials by the same
individual (intra-subject).

Traditionally normative data is produced by time normal-
izing a trial to 101 data points and averaging across trials (e.g.
mean ±95% confidence intervals) [8]. However, this can result
in a distortion of the data as key events are not time aligned
across trials [12].

These last two challenges can potentially be addressed
using continuous data analysis techniques (e.g. functional
data analysis [13]), although only a handful of biomechanical
studies have attempted to do so [14], [11]. The aim of this
study is to utilize wearable inertial sensors and develop a
method to:

• Automatically and accurately categorize each foot-
ground contact based on the type of movement (i.e.
walk, jog, sprint, jump, land, agility cut);

• Extract joint kinematic data and impact acceleration
data automatically for each foot contact cycle;

• Generate normative data using a functional data ap-
proach;

• Compare an individual to the normative data and
identify the phase over which they differ (if any).

II. PROPOSED FRAMEWORK

The main components of our framework are illustrated in
Fig 1. It consists of three main components: activity classi-
fication, sensor orientation and flexion-extension knee angle
calculation and technique analysis. We present results only
in relation to a single variable (i.e. knee flexion-extension)
in order to exemplify the process and avoid unnecessary
repetition in this paper.

Fig. 1. The main components of the proposed motion analysis framework

A. Activity Classification

Automatic activity classification is used to identify different
training activities as this would allow training sessions to be
more quickly evaluated by sporting and health professionals.
It would allow them to quickly segment an athlete’s training
session by activity and thus allow the desired data to be more
easily located. This approach also facilitates the creation of a
database containing the evolution of an athlete’s movements
within and across training sessions.

Much of the prior research in activity classification has
dealt with identifying mundane tasks such as eating, ascending
and descending stairs, sitting, brushing teeth as well as motion
activities such as being stationary, walking and running [15],
[16] and training exercises and sports activities [17], [18].
Current research has shown that accelerometers can be used
to classify human activity for high energy actions such as
sprinting, jogging, jumping, etc. [19]. In sports, accelerometers
have been used to monitor elite athletes in competition and
training environments. In swimming applications, accelerome-
ters have allowed the comparison of stroke characteristics for a
variety of training strokes and therefore have helped to improve
swimming technique [20]. In competitive rowing, they have
been used for the recovery of intra- and inter-stroke phases
as a means to assess technique [21]. Accelerometers have also
been utilized to identify the various phases of Kinematic chain
during the serve action in tennis [22].

In developing our approach to activity classification, the
exercise routine performed by each athlete was segmented and
annotated for all activities and used to create a training set.
A window length of three seconds was chosen as this was
sufficient time for each of the selected training activities to be
completed. The Discrete Wavelet Transform (DWT) has been
used with much success in extracting discriminative features
from accelerometer data as the basis for classification. It has
been used to assist in identifying sporting activities in soccer
and field hockey [23]. Daubechies 4 wavelet “db4” is a popular
mother wavelet choice in signal analysis problems due to
its regularity and fast computational time, and was chosen
in this work. The total energy ET at level i of the DWT
decomposition is given by [15].

ET = AiA
T
i +

i∑
j=1

DjD
T
j (1)

where Ai is the approximation coefficient at level i and Di

is the detailed coefficient at level i. One feature proven to
be useful in discrimination is the energy ratio in each type
of coefficient [15]. EDRA represents the energy ratio of
the approximation coefficients while EDRDj represents the
energy ratio of the detail coefficients.

EDRA =
AiA

T
i

ET
(2)

EDRDj
=
DiD

T
j

ET
j = 1, . . . , i (3)

In [15], Ayrulu-Erdem and Barshan found that the nor-
malized variances of the DWT decomposition coefficients
and the EDRs provided the most informative features for a



different albeit similar problem. They contrasted their perfor-
mance to informational features such as normalized means,
minimums and maximums of the EDRs and obtained superior
performance. As such we adopt the same approach here.
The variances of the coefficients are calculated over each
DWT coefficient vector at the ith level. A random forest
training algorithm in conjunction with the DWT features was
employed to create an appropriate classifier. Other classifiers
were investigated however the Random Forest achieved the
highest classification accuracy within acceptable computational
limits.

B. Sensor Orientation and Knee Joint Angle Estimation

Measuring accurate orientation plays an important role in
sports activity applications as it enables coaches, biomecha-
nists and sports scientists to monitor and investigate athletes’
movement technique in outdoor environments. Although there
are different technologies to monitor athletes’ technique and
measure their body orientation, wearable inertial sensors have
the advantage of being self-contained in a way that measure-
ment is independent of motion, environment and location. It is
feasible to measure accurate orientation in three-dimensional
space by utilizing tri-axial accelerometers, and gyroscopes and
a proper filter.

The Kalman filter has widely been utilized to measure
orientation for many applications and commercial inertial
orientation sensors, including Xsens and Intersense [24], [25].
However, it has some disadvantages including implementation
complexity [26], [27], high sampling rate due to linear re-
gression iteration (fundamental to the Kalman process) and
the requirement to deal with large scale vectors to describe
rotational kinematics in three-dimensions [25], [10]. There are
some other alternatives to address these issues including Fuzzy
processing [28] or frequency domain filters [29]. Although
these approaches are easy to implement, they are limited
to operating conditions. In this paper, we use an algorithm
which has been shown to provide effective performance at low
computational expense. Using such a technique, it is feasible to
have a lightweight, inexpensive system capable of functioning
over an extended period of time.

The algorithm employs a quaternion representation
of orientation [9] and is not subject to the problematic
singularities associated with Euler angles. The estimated
orientation rate is defined in the following equations [9]:{ S

Eqt =S
E qt−1 +S

E q̇t∆t

S
E q̇t =S

E q̇ω,t − β ∇f
||∇f ||

, (4)

where

∇f(SEq, Eg, Sa) = JT (SEq, Eg)f(SEq, Eg, Sa)

Sa = [0, ax, ay, az]

Eg = [0, 0, 0, 1]

(5)

In this formulation, SEqt and S
Eqt−1 are the orientation of

the Earth frame relative to the sensor frame at time t and
t − 1 respectively. SE q̇ω,t is the rate of change of orientation
measured by the gyroscopes. Sa is the acceleration in the x, y
and z axes of the sensor frame, termed ax, ay , az respectively.

The algorithm calculates the orientation S
Eqt by integrating

the estimated rate of change of orientation measured by
the gyroscope. Then gyroscope measurement error, β, was
removed in a direction based on accelerometer measurements.
This algorithm uses a gradient descent optimization technique
to measure only one solution for the sensor orientation by
knowing the direction of the gravity in the Earth frame. f is
the objective function and J is its Jacobean.

In order to measure flexion-extension knee joint angle, the
orientation of the two wearable inertial sensors attached on the
thigh and shank were calculated using the described fusion
algorithm. Then a technique based on a leg movement was
used to align the reference frame of the two sensors [30].
Typically a joint rotation is defined as the orientation of a
distal segment with respect to the proximal segment. This can
be applied to the shank and thigh segments to calculate knee
joint angles [31]. This is described by the following equation:

qknee =S
E q∗thigh ⊗SE qshank (6)

where S
Eqthigh and S

Eqshank are the quaternion representation
of the orientation of the thigh and shank respectively. The ⊗
denotes the quaternion product and ∗ denotes the quaternion
conjugate. The knee joint angles were measured during the
entire training session. The results are illustrated and discussed
in section III-C.

C. Technique Analysis

The exercise reported in detail in this section is the jogging
task. This was selected because it incorporates three activities
that can make up most actions: an impact (with the ground),
a loading phase and a swing (unloaded) phase. The jogging
task was extracted based on the information given by the clas-
sification approach reported above. Foot contact cycles (heel
strike to heel strike) were identified using knee joint angles
and tibial acceleration. Heel strike was defined as the sudden
change in acceleration after every cyclic local maximum in
knee joint angle data (i.e. the swing phase). The separated
knee joint angle curves demonstrated similar patterns which, as
expected, differed in their temporal characteristics. To maintain
all the information of the curve shapes (magnitude and timing
of local maxima and minima) the normative (representative)
curve was created using two approaches: (a) averaging across
the foot contact cycle without registration (unregistered curve),
which is the most common approach in biomechanics [32],
[33] and (b) performing a phase shift registration approach
before averaging across the foot contact cycles as described
by the following equations [13]:

x∗i (t) = xi(t+ δi) (7)

SSE =
∑N
i=1

∫
τ
([xi(t+ δi)− µ̂(t)]2ds)

=
∑N
i=1

∫
τ
([x∗i (t+ δi)− µ̂(t)]2ds) .

(8)

The phase shift registration alters the time domain by δj for
each waveform x within a foot contact cycle i for multiple δj to
find the δj where a registration criteria is at its minimum [13].
The used criterion (squared standard error; SSE) was cal-
culated for each waveform relative to the overall mean µ̂(t)
over its specific time interval t. This process was applied for
every foot contact cycle to identify the optimal δj for each
foot contact cycle i. Subsequently, these curves were registered



using the optimal δj . After all waveforms were registered, the
overall mean was updated and the whole process was iterated n
times until no significant change (SSEn � SSEn ≈ SSEn)
in the registration criteria occurred. This procedure of estimat-
ing a transformation by transforming to an iteratively updated
average is often referred to as the Procrustes method [13]2.
To examine if differences exist between the mean curve and
the registered mean curve, we examined the curves using
Analysis of Characterizing Phases [11]. This approach offers
a more comprehensive comparison than discrete point analysis
or functional principal component analysis.

To explore the ability of the proposed process to iden-
tify individuals with abnormal movement biomechanics, an
individual with low back pain was also assessed. Clinical
differences were explored both visually and statistically (where
significance is indicated by the mean and confidence intervals
of the single athlete laying outside the 95% confidence inter-
vals of the normal group data [34]).

III. EXPERIMENTS AND EVALUATION

A. Data Collection

To evaluate the proposed framework, recordings of nine
healthy subjects and one injured subject whose actions were
captured using four wearable inertial sensors. WIMUs were
placed on the left/right shank and left/right thigh of a subject
as shown in Fig.2. The location of the sensor on each body
segment was chosen to avoid large muscles; as soft tissue
deformations due to muscle contractions and foot-ground im-
pacts may negatively affect the accuracy of joint orientation
estimates. The sensors were affixed to the subject with double
sided tape and velcro straps with some elasticity in the fabric,
so as not to restrict the subject’s movement and performance
in any way. Next, the subject was asked to perform a series of
actions as they normally do during outdoor training sessions.
Each subject performed a predefined exercise routine on a
large outdoor grass soccer pitch. The exercise routine consisted
of the following motions: agility cuts, walking, sprinting,
jogging, box jumps and football free kicks. Each motion lasted
approximately 60 seconds for a total of approximately 9− 10
minutes for the entire session.

The data from each sensor was recorded to an internal
SD card on board the device. As each sensor recorded data
independently, a physical event was required to synchronize all
devices together. This was achieved by instructing each subject
to perform five vertical jumps, ensuring large acceleration
spikes would occur simultaneously on each device, that would
be clearly visible in the accelerometer stream. In a post
processing step, peak alignment was automatically performed
and all data streams were cropped to two seconds before
the first vertical jump landing. Video footage of each data
capture session was also recorded and annotated, to be used as
ground truth for the automatic segmentation and recognition
of movements categories (i.e. jogging, agility cuts, sprinting
etc.).

2The reader should note that for some biomechanical data (or waveforms)
phase shift registration might not lead to a representative curve shape. For
such cases a dynamical time warping approach can be applied, which uses
specific landmarks (global maxima and minima) to define a warping function
h to which the waveforms are evaluated (Equation x∗

i (t) = xi[hi(t)])

Fig. 2. Placement of two inertial sensor units on the thigh and shank as well
as their local coordinate system in a global coordinate system is illustrated.

B. Classification Evaluation

Using the approach described in section II-A, we achieved
a classification accuracy of 98.3%. This value was computed
using a ten-fold cross validation leave one out method. The F-
measure score, as a harmonic mean of precision and recall that
reaches its best value at 1 and worst score at 0, was calculated.
Precision is calculated as the number of correct results divided
by the number of total results while recall is the number of
correct results divided by the number of results that should
have been returned positive. These metrics are often described
in terms of the metrics true positive (Tp), false positive (Fp)
and false negative (Fn). Since the classifier was trained with
classes which had different instance populations the F-measure
scores are given in table II. The F-measure score gives a better
indication of a models ability to correctly identify an activity
than standard classification accuracy alone.

Table I shows the confusion matrix from the classification
procedure. There is only one area of confusion using this
model which is kicking the football. This difficultly lies with
the variation in kicking styles from person to person. As can

TABLE I. CONFUSION MATRIX FOR THE CLASSIFIER

Activity a b c d e f
a = Agility cut 180 0 0 0 0 0
b = Walking 0 399 0 0 0 0
c = Jumping on box 0 0 27 2 0 0
d = Jogging 0 0 0 205 0 0
e = Sprinting 0 0 0 0 28 0
f = Kicking 3 5 2 3 1 73

TABLE II. THE PRECISION, RECALL AND F-MEASURE FROM THE
CLASSIFIER APPLIED TO THE ACTIVITIES DURING TRAINING SESSIONS.

Activity Precision Recall F-measure
Agility cut 0.984 1 0.992

Walking 0.988 1 0.994

Jumping on Box 0.931 0.931 0.931

Jogging 0.976 1 0.988

Sprinting 0.966 1 0.982

Kicking 1 0.839 0.913



Fig. 3. Registered and unregistered mean curves of an injured subject.

be seen in Table II, F-measures vary between 0.913 to 0.992.
Walking and agility cut have the highest F-measures followed
by jogging, sprinting, jumping on the box and football kicks.

C. Technique Evaluation

In the simulated training intervention the subjects were
asked to jog for one minute where about 30 foot contact cycles
could be identified for each subject. It can be seen in Fig.3
and Fig.4 that the generated curves show the classic bimodal
shape, with a small (0 − 35% cycle) and large (35 − 90%
cycle) sequencing of flexion-extension. The statistical analysis
indicated significant differences between the unregistered and
the registered mean curves. The unregistered mean curve
demonstrated significantly higher (p = 0.002) and lower
magnitudes (p < 0.001), for (32 − 58%) and (62 − 82%) of
the foot contact cycle, respectively. Differences are similarly
evident at an intra-subject level.

It can be seen that in the first phase (1 − 35%) of the
examined foot contact cycle the registered and unregistered
curves are very similar (except for the magnitudes between
(10 − 20%). However, for phases beyond 35%, both curves
start to show differences in magnitude, timing characteristics
and standard deviation. This is due to greater intra-subject
variability beyond 35% of the movement cycle, which affects
the mean curve. By solely averaging the foot contact cycles
(unregistered approach), the generated mean curve is altered
by the intra- or/and inter-subject variability and can lose very
valuable information about the subject. This can be extremely
important in injury studies, where small differences from
normal healthy subjects or small intra-subject differences over
time may indicate a predisposition to injury or the early
stages of injury; requiring the implementation of an appropriate
training intervention. The more complicated or oscillating the
collected biomechanical data, the more important it is likely
to be to register the data.

It can be seen in Fig.4 that the runner with low back
pain exhibited clear differences from the normative data,
especially over phases (8−21%), (33−41%) and (86−99%).
In normal subjects the knee generally flexes during initial
loading (0 − 10%) and early mid stance (10 − 15%) while
in the injured subject it clearly extends. The initial loading
response involves the bi-articular hamstring muscle acting

Fig. 4. Registered and unregistered mean curves of an injured subject in
comparison to the overall registered mean of normal subjects. Phases of
statistically significant differences are indicated by the vertical bands.

concentrically to extend the hip to keep the trunk upright, and
as a consequence of the hamstring also being a knee flexor
muscle, this results in knee flexion. Therefore, the abnormal
knee extension in the injured subject appears to indicate either
a compensatory or injury causing movement strategy indicative
of the trunk inappropriately flexing during the initial loading
response. From a compensatory perspective, this may be a
strategy to reduce lower back impact loading with the trunk
extensors acting eccentrically to cushion the action. Possibly
in response to the abnormal early knee extension, knee flexion
is initiated much earlier in the injured subject (at 15% of the
cycle) compared to normal (at 35%). The greater knee flexion
in the injured subject during the terminal swing phase (85-
100%) may be indicative of a crouched (“Groucho”) running
style aimed at reducing impact loads and hence reducing back
pain and further injury [35].

IV. CONCLUSION

In this paper, we described a novel body worn inertial sen-
sor framework capable of automatically segmenting and clas-
sifying various actions in outdoor unconstrained environments,
calculating extension-flexion knee angles that uses functional
data analysis to both generate accurate normative data and
compare individuals to this normative data. The proposed
novel framework employed a Random forest training algorithm
in conjunction with a DWT feature extraction technique to
successfully classify training session activities with up to 98%
overall accuracy. Using the body-worn inertial sensors on the
thigh and shank of a subject and applying the gradient descent
based filter, the local orientation of each sensor was estimated
and hence the extension-flexion knee angles were obtained.
The calculated knee angles were input to a data analysis tool at
the end of the pipeline to provide accurate movement technique
assessment. In this approach it is necessary to register the
trials before averaging them to ensure the true magnitude and
shape of the data is preserved for both group and individual
based data. If this is ensured, the presented framework has
significant potential for monitoring athletes throughout training
and competition to (a) identify injury and performance related
determining factors, (b) identify individuals early in an injury
pathway prior to extensive tissue damage, and (c) identify



individuals predisposed to injury because of their movement
technique.
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