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Abstract—Raising the awareness of being physically active by
utilizing wearable body sensors has become a popular research
topic. Recent approaches combine physical and physiological
information to obtain a precise prediction of a person’s physical
activity ratio. However, the error in the determination of physical
activity due to invalid physiological values that are resulting from
underlying signal disturbances, has so far not been considered.
We therefore present a robust measure of activity that fuses
accelerometer data, heart rate and other personalized features,
and is adaptively responding to missing physiological sensor
data. To set up the model, we make use of regression analysis
(MARS). Our findings indicate the need for considering signal
quality when estimating physical activity. The predictive model
shows close agreement (R2 = 0.97) to the reference from
indirect calorimetry, even if the physiological information is
partly corrupted.

I. INTRODUCTION

Today, in western societies, many people suffer from the
consequences of a sedentary way of life [1]. Since being
physically active is an important factor towards health and
well-being [2], estimating a person’s total energy expenditure
(TEE) has become a research topic of high interest. Yet,
physical activity is only one fraction of the TEE, which
comprises different components. The energy expenditure that
is attributable to physical activity (PAEE), only contributes
about 15 % to 30 % of the TEE. The remaining energy is as-
cribable to the basal metabolic rate (BMR), the thermic effect
of food (e.g. digestion) and other factors (e.g. growth) [3,4].
To obtain comparable values, describing a person’s lifestyle,
the physical activity ratio (PAR) is one relevant entity. Due
to its definition as a multiple of the BMR, PAR provides a
feasible approximation of the amount of converted energy due
to muscular activity (PAEE).

A well-established method for the laboratory measurement
of TEE is the indirect calorimetry. Measuring the oxygen
uptake and the amount of produced carbon dioxide by wear-
ing a respiratory mask allows precise calculation of TEE.
Although commonly used laboratory methods are the most
accurate to measure PAR, their applicability is usually limited
to indoor use. For monitoring PAR in everyday life conditions
outside of the laboratory, mobile and unobtrusive devices so
called wireless body sensors (WBSs) are increasingly used. In
comparison to laboratory methods, the use of WBSs shows
greater applicability, and is more suitable to elevate PAR
during activities of daily life [5].
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Fig. 1: Technical block diagram of the BG-V4.2 body sensor.

The earliest basic approaches estimated physical activity by
measuring the heart rate and using simple linear regression
models [6]. In addition accelerometers became popular [7] as
they directly measure the physical stress that is more intercom-
parable than measuring the individual physiological strain of a
subject. However, the use of accelerometer signals [8] or heart
rate [9] as a single predictive information source is insufficient
to estimate PAR. Therefore latest WBSs assess physiological
information, like heart rate or respiration rate in addition to
the body movement recorded from accelerometer, gyroscope
or barometer data. Sensor fusion methods are then used to
combine physiological information and body movement. By
fusing the various information sources, WBSs are attaining
satisfactory results in the prediction of physical activity [10].
An overview about recent methods is given in [11].

We have developed a wireless body sensor (BG-V4.2, fig. 1)
that is worn on a chest-strap, and allows to record body
movement as well as multiple physiological parameters. While
investigating the potential of our WBS to obtain PAR, we
noticed that reliable signal quality is a major prerequisite to-
wards an accurate estimation of PAR. Although methods have
been presented to identify and eliminate signal disturbances
e.g. by advanced filtering methods, obtaining a reliable signal
quality might not always be possible, e.g. due to in-band noise,
sensor fault or missing compliance of the subjects using the
WBS [12,13]. In previously performed experiments [14], we
occasionally inspected signal disturbances within the ECG
as a result of dry electrodes, motion artifacts or electrical
interference, which is the reason why the heart rate becomes
invalid, and therefore has to be discarded.



In this paper, we present an approach for estimating PAR,
even if some physiological information need to be rejected.
This is achieved by developing a robust measure of activity,
based on a multivariate regression approach (MARS, sec. II-F),
that allows the modeling of missing sensor data.

The paper is structured as follows: In section II we introduce
our WBS, and outline the elicitation of experimental data as
well as its following preprocessing. Furthermore, the methods
for the quality assessment and the model building process,
using the MARS method, are given. Afterwards, the results
are presented in section III, and subsequently discussed in
section IV. Finally, we describe limitations in section V, and
a conclusion, as well as following implications for further
research, are given in section VI.

II. METHODS

A. Technical Background

Our WBS (BG-V4.2, fig. 1) enables us to determine a per-
son’s heart rate (from recording a 1-lead ECG) and respiration
rate (from thoracic movements [15]). Furthermore, it allows
recording of the skin temperature and the body accelerations
(fig. 1). The accelerometer integrates three sensitive axes and
has an adjustable measurement range (±6 g to ±24 g) in
order to capture accelerations of daily activities as well as
sports. Data is stored in a flash memory, and is optionally
transmitted through a wireless interface (nRF24L01) to a base
station [16]. The whole system is embedded into a single
module, which can be used with a conventional chest strap, and
is powered by a single CR2025 coin cell. An MSP430FG4618
microcontroller from Texas Instruments is utilized to execute
the firmware, and to perform signal processing tasks such as an
estimation of the persons walking and running velocity [17].

B. Experimental Design

To record PAR for different intensities of physical strain, we
conducted an experiment on a treadmill that is designed as an
incremental exercise test. The treadmill experiment included
periods in which the subjects were resting (sitting, standing),
as well as periods of walking or running, with a stepwise
increase of the velocity (2 km·h−1 each step) starting from
3 km·h−1 through to 11 km·h−1 (tbl. I).

In all, 15 healthy subjects (10 male, 5 female) performed
the laboratory treadmill experiment, and were asked to provide
some personal information (tbl. II). All subjects were informed
about the experimental procedure, and gave written consent
for the participation on the treadmill experiment. To prevent
overstraining of the subjects, in 6 cases, running at 11 km·h−1

was skipped or shortened.
As a reference value for the subjects’ TEE, we made use of

the indirect calorimetry system “Cortex Metalyzer 3b” 1. As
recommended by the manufacturer a calibration of the indirect
calorimeter was performed before each test. The Cortex Met-
alyzer provides the oxygen uptake (VO2 [mL·min−1]) and the
carbon dioxide production (VCO2 [mL·min−1]), as the average

1Cortex Biophysik GmbH, http://www.cortex-medical.de/

TABLE I: Duration and velocities within the different stages
of the treadmill incremental exercise test.

Stage 1 2 3 4 5 6 7 8 9

Description sit stand walk / run stand
Duration [min] 10 5 3 3 3 3 3 3 10
Velocity [km·h−1] - - 3 5 7 9 11 5 -

TABLE II: Subject characteristics of learn and test set.

Experiment age [a] height [m] weight [kg] BMI [kg·m−2]

learn (n=15) 26.2 ± 3.1 1.76 ± 0.09 72.9 ± 14.0 23.2 ± 2.8
test (n=5) 26.0 ± 3.5 1.83 ± 0.07 74.8 ± 13.1 22.2 ± 2.4

of 10 s epochs. The output can be utilized to calculate the TEE
as kJ·min−1 (eqn. 1, [18]).

TEE =

((
1.1 · VCO2

VO2

)
+ 3.9

)
· VO2 · 4.1868 (1)

The subjects were simultaneously monitored by our WBS.
We recorded ECG, heart rate, respiration curve, respiration
rate and the upper body movements (x-, y-, z-axis). All signals
were measured with a sample rate of 100 Hz. The data was
stored in the internal flash memory of the WBS.

C. Data Set and Data Processing

The data obtained from the treadmill experiment was used
as learning data set. We used an additional data set from a
previously performed experiment as a test set, on which 5
subjects (4 male, 1 female) participated [15]. The design was
identical to the here described experiment, but it did not cover
the initial sitting phase.

To reduce noise, and hence to obtain plausible data (non-
pathological) from our WBS, we performed the following pre-
processing steps: A fifth order low-pass filter with a cut-off
frequency of 20 Hz was applied to the accelerometer data
(x-,y- and z-axis). Similarly a low-pass filter of 12 Hz and first
order was applied to the respiration sensor signal. The recorded
ECG was band-pass filtered in the range of 1.6 Hz to 33.9 Hz.

Since we were interested in predicting physical activity, we
needed to convert the measured TEE from kJ to PAR. For this
purpose, the BMR for each subject was approximated. The
approximation is based on the measured energy expenditure
of the first stage of the treadmill experiment, while the subjects
were sitting (learning set) or standing (testing set). Therefore,
the mean value of the measured TEE, during the last 5 min of
the first stage, was calculated. The value was then divided by
the factor 1.2 or 1.4, respectively (typical PAR for sitting or
standing [3]).

D. Feature extraction

For feature extraction, we calculated the mean value of the
heart rate (HR [min−1]), respiration rate (RR [min−1]) and the
variance and mean value of the acceleration (ACC [g]). We
considered acceleration on the x- (mediolateral) and z-axis

http://www.cortex-medical.de/


(anteroposterior) as well as the vertical (eqn. 2), horizontal
(eqn. 3) and total acceleration vector (eqn. 4)2. In order to
match with the target value (PAR) obtained from the indirect
calorimetry, each feature was generated for time windows of
10 s length.

ACCH =
√
a2y (2)

ACCV =
√
a2x + a2z (3)

ACCC =
√
a2x + a2y + a2z (4)

We additionally referred to the subjects’ weight (W), height
(H) and body mass index (BMI). We chose a small set
of basic and commonly known features, as we wanted to
create a model, which does not use cardiorespiratory fitness
parameters such as resting heart rate, as these values are
typically unknown.

E. Quality assessment

With the intent to design a predictive model that adaptively
responds to disturbed sensor signals, we examined the obtained
data from our WBS to locate and label time periods containing
severe signal disturbances. For the respiration rate, a reference
value could be obtained from the indirect calorimetry system.
We defined the signal quality of our respiration sensor as
disturbed, for periods of time in which the calculated devi-
ation between both measured values exceeds 5 min−1. Since
there was no reference information for the ECG signal we
manually examined and annotated the ECG data as acceptable
or disturbed (fig. 2).
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Fig. 2: Example of accepted (green) and rejected ECG (red).

The annotated data sets were used to implement two basic
classifiers. To do so, we followed the suggestions from [12],
on how to estimate the noise level of the ECG. As a result,
we derived two minimal decision tree based classifiers to
automatically detect disturbances, in both ECG and respiration
sensor signal.

F. Machine Learning and Model Selection

To establish a model that predicts PAR, the method of
multivariate adaptive regression splines (MARS) was chosen,
as it has shown good results in predicting physical activ-
ity [19]. A MARS model can be written as a weighted
(β) sum of multiple linear regressions (eqn. 5), so called

2Accelerometry features are written as ACC{X|Z|H|V|C}{M|V} where
X,Z,H,V,C defines the corresponding axis or direction (horizontal, vertical,
total) and M or V indicates mean or variance value, respectively.

basis functions (BF, h). Each BF is build up as a linear
function, which describes a local fraction, of one specific
independent variable (x), out of the total feature space (X).
Through interactions between various BF, a MARS model is
suited to map complex, non-linear relationships, between the
independent and the dependent variable (target, Ŷ ). Hence
MARS is offering the advantages of machine learning methods
like neural nets, in modeling non-linear and high dimensional
relations. Yet, a MARS equation is implemented as easily and
resource efficiently as multiple linear regression, because it
only consists of linear functions [20]. To train a MARS model
we made use of the Salford Predictive Modeler suite3.

Ŷ (X) = β0 +

M∑
m=1

βm · hm(x ∈ X) (5)

hm = max(0, x− c) or max(0, c− x) or hn · ho
: c = const., n 6= o

The subjects’ PAR was chosen as target variable y ∈
Y = y1, . . . , yn. The prediction (target variable) is thereby
calculated from the feature vector x ∈ X = x1, . . . , xn,
which consists of heart rate (HR), respiration rate (RR), the
accelerometry features (sec. II-C) as well as of the subjects
characteristics weight (W), height (H) and body mass index
(BMI). In addition, we considered signal quality of the phys-
iological values. The features HR and RR were marked as
missing, in case the underlying signal (ECG or respiration
sensor signal) was discarded due to signal disturbances.

In order to prevent overfitting, we selected the model with
the lowest MSE on the test set. Furthermore, the prediction
is set to 1 PAR for responses below this value to suppress
pathological outcome.

Additionally, to evaluate the model’s predictive perfor-
mance, we referred to the mean squared error (MSE, eqn. 6) as
a value of precision. Furthermore, we discussed the agreement
between indirect calorimetry and the MARS model by the
coefficient of determination (R2, eqn. 7).

MSE =
1

n

n∑
i=1

(Ŷi − Yi)2 (6)

R2 = 1− MSE(Y, Ŷ )

V ar(Y )
(7)

III. RESULTS

A. Model analysis

To obtain comparable predictions of physical activity, we
converted the measured TEE from kJ to PAR, by dividing
the TEE by the previously approximated BMR. Hereby, we
expected to reduce inter-individual variations in the TEE, in-
fluenced by the differences in the BMR (e.g. due to distinctions
in weight or gender). Indeed, while the variation coefficient
between all observations of the TEE has a value of 28.76 %,

3SPM v7.0, http://www.salford-systems.com/products/spm

http://www.salford-systems.com/products/spm
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e)   model equation

Fig. 3: Prediction response of the trained MARS model (a-d) for various accelerometry features (ACC) and heart rate (HR)
both for the cases of accepted (a/b) and rejected (c/d) heart rate information. Additionally, the model’s equation is given (e).

for PAR this value drops to 8.84 %. We infer that through this
conversion a normalization of the target variable was achieved.

To sketch the model’s response, we illustrated its behavior
for the independent variables ACCX|V versus HR and ACCX|V
versus ACCZ|V (fig. 3a/b). The remaining variables are fixed4.
The visual analysis indicates that a relation between high
heart rate and horizontal acceleration to an increased physical
activity ratio has been learned.

Following the design of the experiment, various phases can
be identified in the model’s response (fig. 3a). While the
subject is sitting or standing, a low heart rate in combination
with no acceleration is measured, which accordingly results
in a low physical activity response. When the subject starts
walking or running, the measured acceleration is increased,
which leads to a higher physical activity prediction. As soon
as the heart rate also starts rising, the model’s outcome
correspondingly increases. At the end of the experiment the
subject is resting in a standing position, and its heart rate
slowly decreases. Despite the exercise has ended, the subject
is still physically strained. Therefore, during the recovery,
the TEE is measurably raised, which is known as excess
postexercise oxygen consumption [18]. The model’s response
covers this event by predicting an increased PAR from a
high heart rate, even if no, or practically any, movements are
measured. Furthermore, we found that the model’s response
is discontinuous at a heart rate of 117 min−1. This observation
might be explained by the heart rate deflection point that is
often found during incremental exercise tests (sec. II-B), as it
was discussed in previous work in [21].

As a central finding, heart rate is contributing stronger to the
prediction than the accelerometry feature (fig. 3a). However,
this result only applies as long as the heart rate is available.

4HR = 100, RR = 20, WEIGHT = 75, HEIGHT = 1.75, BMI = 24.5,
ACCXV = 2.5, ACCZV = 1.5, ACCVV = 30, ACCCV = 5.5, ACCHM = 4.5

Otherwise, in case the heart rate information is discarded
(due to signal disturbances fig. 3c/d), the model’s response
adapts by changing the weights for the accelerometry features.
Thus heart rate information is completely replaced by the
information from the accelerometry features (fig. 3c). Quality
information of the heart rate thereby not only results in the
replacement of the heart rate feature, but the interactions
between the various accelerometry features becomes more
complex. Moreover, a previously unconsidered accelerometry
feature (ACCZ|V) is then included (fig. 3c/d).

As can be seen from the models equation (fig. 3e), a link
between respiration and heart rate exists. We found that the
respiration rate is lowering the response function as long as
the respiration rate is below 35 min−1.

Additionally, interactions among BMI, weight, heart rate
and vertical acceleration variance was learned. We found that
the prediction of PAR is increased in respect to the subject’s
weight, height and BMI. Thus, these features are acting as an
intercept parameter to the model’s response.

B. Prediction Performance

Overall, the used data sets contain 3667 (learn set) and 715
(test set) observations, of which in 227 (6.2 %) and 93 (13.0 %)
cases the heart rate was marked as missing.

On the learn set, the model’s prediction and the refer-
ence PAR from indirect calorimetry are in good agreement
(R2 = 0.94, MSE = 0.59 PAR). In addition, including res-
piration rate quality information is not changing the agree-
ment. However, considering the heart rate quality informa-
tion increases the agreement (R2 = 0.97) and the precision
(MSE = 0.32 PAR) of the prediction.

The results of the test set are given in fig. 4. The estimation
of PAR by the established model (green) is close to the ground
truth obtained from indirect calorimetry (blue). The model’s
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Fig. 4: Results of the PAR prediction made by the MARS model, on the test set data.

agreement (R2) reaches 74 % (MSE = 2.22). Again, the esti-
mation is unaffected, if only the quality of the respiration rate’s
determination is considered. Nevertheless, taking the results
of subject 2 and 4 as an example, the consideration of ECG
signal disturbances (marked gray), improves the estimation
of PAR, in contrast to the uncorrected estimation (red). The
model’s agreement increases to 82 %. Moreover, the precision
is improved in case the quality information for the ECG is
included (MSE = 1.54).

The erroneous determination of the heart rate did partly
cause an overestimation of the PAR prediction, as can be
seen with reference to the example of subject 2. This error
is successfully compensated through the adaptive response
of the model. For subject 4 the overall prediction is also
enhanced. However, during light intensity (minute 3 to 9,
walking 3 km·s−1 to 5 km·s−1) the prediction for subject 4 is
smoothed, but also slightly overestimated, in comparison to the
ground truth. Yet, during increased intensity walk (minute 9 to
15, walking 7 km·s−1 to 9 km·s−1), the estimation’s precision
is improved as a result of the rejection of invalid heart rate.

Discarding heart and respiration rate (valid and invalid
information) leads to a loss of precision. This applies to
both, the learn set (R2 = 0.70, MSE = 2.98) and the test
set (R2 = 0.50, MSE = 4.26). If only the respiration rate is
missing, the predictive performance of the model is slightly
affected on the learn set (R2 = 0.93, MSE = 0.72) and almost
unaffected on the test set (R2 = 0.82, MSE = 1.57). As it was
shown in the analytic results (sec. III-A), the contribution of
the respiration rate to the prediction is limited, but still, slightly
lowers the model’s outcome. For some subjects this prevents
overestimation (subject 3, 5), but on the other hand the PAR
is (partly) underestimated for the remaining subjects. For this
reason, we found the mean error shifted from −0.26 PAR to
0.17 PAR.

In summary, the model provides a proper estimation of the
total PAR on the unlearned test data. The mean deviation of
the summarized physical activity, between the prediction and
the ground truth from indirect calorimetry, is 7.2± 18.6 %.
Minimum (−4.5 %) and maximum deviation (33.7 %) was
found with subjects 3 or 5, respectively.

IV. DISCUSSION

The learned MARS model shows close agreement to the
laboratory reference, even on the unlearned test set data
(R2 = 0.82). Due to the fact that the MARS model just consists
of a set of linear equations, and we are utilizing only a basic
feature set, the model has minimal computational cost. This
allows us to utilize it for on-line prediction of PAR, as it can
be directly executed on the microcontroller of our WBS.

While respiration rate only showed little effect, we found
that the heart rate information has a stronger influence on the
prediction of PAR. Furthermore, we found conflicting results
in the test set concerning the respiration rate. A diversity
in respiration rate response during physical exercise among
various subjects was also discussed in previous work [22]. We
therefore deduce, that respiration rate is less crucial to predict
PAR, in comparison to heart rate. However, for some subjects
within our test set, it prevents over or underestimation of phys-
ical activity. Contrary, discarding the heart rate information
noticeable reduces accuracy of the prediction. Accordingly, the
presented model is showing best results when accelerometry
features and heart rate are used in combination.

We demonstrated that the learned model is robust towards
signal disturbances, concerning the heart rate and the res-
piration rate. This is achieved by adjusting weights for the
feature set with regard to the availability of the heart and
respiration rate features. We found that discarding disturbed
heart rate information clearly improves the prediction through
preventing the mapping of the fluctuation from heart rate to
the estimation of PAR. This is realized by dropping heart rate
information, and adjusting the weights of the extracted ac-
celerometry features. Therefore, we conclude that the model’s
ability to exploit quality information improves the prediction,
but it is important that the heart rate information is truly
invalid. Otherwise, the combination of the heart rate and the
accelerometry features may conceivably be preferred. For this
reason, it might be questionable to discard the heart rate if
the ECG signal is disturbed, but the calculated heart rate is
still feasible. For example, this could be the case for short
time periods of signal disturbances within the ECG. It is also
conceivable that in these cases, applying a median filter on the



heart rate, will lead to an improved prediction. However, if the
heart rate information is lost, and not usable for a longer time
period, e.g. due to a sensor’s fault, discarding heart rate seems
substantiated. Instead, relaying on the disturbed sensor signal,
provokes deviations. Therefore, considering signal quality is
mandatory to design a robust regression model that precisely
predicts the physical activity ratio.

V. LIMITATIONS

To the best of our knowledge sensor quality information
has never been considered in predictions that estimate energy
expenditure or physical activity. However, the results are
limited to the conducted treadmill experiment. Furthermore,
the model was evaluated on a relatively small test group that
only contained young healthy subjects. Thus, for future work
it is important to verify our results with a model based on the
data of a larger test group.

VI. CONCLUSION

We implemented a model to predict physical activity from
both physical stress (acceleration) and physiological strain
(heart rate, respiration rate). We conducted a treadmill ex-
periment on which 15 healthy subjects participated. During
the experiment data was obtained by a WBS using indirect
calorimetry as ground truth. The model was designed by
use of regression analysis (MARS). As a particular exten-
sion our model exploits knowledge about the signal quality
of the measured physiological values (heart and respiration
rate). Thereby, we have shown the necessity for an adaptive
estimation that considers sensor value validity.

As we have demonstrated by example, physiological infor-
mation may provoke an erroneous prediction, if the underlying
signal is invalid. We conclude, that a robust measure, which
utilizes signal quality information, enables suppression of
this error source, without relinquishing the advantages of the
combination of physical and physiological information. For
this reason, we recommend future approaches focusing on the
estimation of physical activity, to consider the signal quality
of the recorded physiological values, in order to ensure best
predictive performance.
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