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Abstract

Given projections of an increase in the number of consumers wearing sensors in the
upcoming years coupled with NASA's technological roadmap for future human space
exploration, there is a need to understand and appropriately incorporate the variabil-
ity of humans during the use of sensors that extract human activity and diagnostics.
Accurate estimations of variability in multiple donnings of sensor suites may aid al-
gorithm development for wearable motion capture systems that make use of Inertial
Measurement Units (IMUs). The accuracy of any algorithm incorporating these sen-
sors is limited by the accuracy of the sensor to segment calibration. In this study,
22 participants self-placed IMUs on three locations and performed six prescribed mo-
tions during each of these five donnings. Placement of the IMU was quantified as
distance, orientation, and rotation. For orientation of the sensors at the beginning of
the prescribed motions, the bicep orientation mean was less than the forearm, which
was less than the chest. No difference in sensor rotation was found between the bicep
and forearm, but both locations differed from the chest location. It was found that
even with a guide to assist with the starting and ending positions of a motion, the
placement of the sensor on the human-body varied at the beginning and end of a
motion. This study found no consistent effect of donning on placement, but did find
an effect of motion on the measures. Since the placement measures did vary through
a motion, the underlying assumptions of a rigid body model used by motion capture
algorithms might not be appropriate. Motion capture algorithms need to be careful
when using these rigid body assumptions and account for the changes in position
and Euler angles due to natural human variability and calibration during multiple
donnings of IMUs by non-experts. This study will aid in the development of quick
don and doff sensor suites that can be reliably used by a non-expert for real-time
decision making.
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Chapter 1

Introduction

1.1 Motivation

The ability to use sensors to extract human activity and diagnostics has both Earth

and extra-terrestial applications. According to the 2014 IHS MEMS & Sensors for

Wearable Report [2], consumers will be wearing close to 500 million sensors by 2019.

This estimate includes devices for motion measurement, user interfaces, and health

industry products, with an emphasis on personal devices that are used daily by non-

experts. Additionally, future space exploration will likely include human crews trav-

eling to other celestial bodies for extended periods of time. NASAs Space Technology

Roadmap places human health monitoring as a sub-technology area in one of its four-

teen technology areas that must be matured before crews venture out beyond low

earth orbit [3]. With increased emphasis on long duration travel beyond Earths grav-

itational influence, there is a growing need for technologies with improved reliability,

self-sufficiency, and minimal-logistical needs. With such small crew sizes proposed for

these missions, crew members are likely to find themselves experts in only a few fields.

Non-experts, both Earth- and space-bound, in the fields of human motion capture

introduce variability during repeated use of these unfamiliar systems.

A necessary requirement to enable such portable and continually-used systems

that are reliable, self-sufficient, and require minimal-logistical needs is to understand

and appropriately incorporate the variability of humans during repeated use in the

19



system architecture. This study specifically considers wearable technology systems

for estimating human motion. Inertial Measurement Units (IMUs) are small elec-

tronic devices that measure acceleration and angular velocity. By quantifying and

characterizing the underlying variability in IMU placement on the human body dur-

ing multiple donnings, we can further understand the effects of calibration poses and

natural human variability on the estimated kinematics and associated parameters.

This work also provides a database for future algorithm development.

1.2 Literature Review

This section will first describe the benefits and disadvantages of various motion cap-

ture systems to support the decision to choose IMUs for this sensor placement study.

It will follow this with a detailed description of how IMUs are implemented in human

motion capture as well as the type of IMU motion capture algorithms commonly used.

Motor control theories describing existing human motion variability and their relation

to the rigid body model assumption are presented. To assist in understanding these

theories, the associated human limb joints used in this study are presented along with

how they are modeled.

1.2.1 Motion Capture Systems

A host of previous research on human motion capture has been conducted in the fields

of sport science and medicine. Examples of human motion capture use are to use the

human kinematic data to improve motion patterns of athletes and to assist patients

in physical rehabilitation. In this section, I provide details on motion capture systems

to highlight the decision to select IMUs for this sensor placement study. Although

many motion capture technologies have been developed, including optical, image-

based, mechanical, and magnetic, these methods do not provide the portability that

IMUs offer.

Optical systems are used extensively for motion capture because they offer a re-

liable and accurate way to record complex motions. Optical systems reconstruct the

20



locations of 3D markers placed on the body using surrounding cameras and triangula-

tion methods. This method of motion capture is expensive and not portable because

it must be used in a structured environment [4].

Image-based solutions, such as Kinect, use computer vision techniques to extract

motion parameters from video streams. This method compares the silhouette in the

foreground with the silhouette of a synthetic figure and uses a distance-based cost

function to determine the subjects pose [5]. This method is limited by the detail

of the synthetic figure and has a high computation bandwidth associated with it.

Additionally, unlike optical systems, image-based systems must compensate for the

loss of 3D information [6].

Exoskeletons are assistive devices currently being researched to augment human

motion for rehabilitation, improving strength and motor control, or improving func-

tional performance. Exoskeletons transmit torques to the appropriate human joints

using actuators [7]. For example, lower extremity exoskeletons have the potential to

assist in load carrying by increasing load capacity and lessening the likelihood of leg

or back injury. An upper extremity exoskeleton, Biomimetic Orthosis for the Neu-

rorehabilitation of the Elbow and Shoulder (BONES) [7], generates rotation about the

shoulder and elbow to assist with rehabilitation. These stiff mechanical systems can

also directly measure joint angles rather than estimating points on the body. How-

ever, exoskeletons can be very uncomfortable, increase normal metabolic cost, and

limit a users range of motion [8].

Magnetic systems are limited by the fact that they are sensitive to external fields

[9]. Although magnetic sensors have the benefit of being portable, they are prone to

temporary magnetic disturbances which may affect the reliability of measurements of

the earth's magnetic field [10], thus they are only reliable in controlled environments

where the surroundings do not alter the local magnetic field.

A common method for estimating rigid body motion is the use of Inertial Measure-

ment Units (IMUs), which are small electronic sensor suites of accelerometers, rate

gyros, and magnetometers that measure linear acceleration, angular velocity, and local

magnetic field. Compared to other motion capture technologies like optical, image-
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based, and magnetic, IMUs provide an inexpensive and portable solution. Recent

technological advances have improved the energy consumption, cost, and availability

of these sensors [11]. Whereas optical and acoustic devices require a source emis-

sion to track objects, IMUs do not, which simplifies system integration and increases

portability.

IMUs use this combination of accelerometers, gyroscopes and sometimes magne-

tometers to estimate the location and orientation of the IMU device in 3D space. The

estimation is done by calculating linear displacement (using accelerometer data) and

rotational displacement (using gyroscope data) of the object, from a reference point.

Although not necessary, a magnetometer can act like a magnetic compass to provide

a reference point to north, much like an accelerometer always has a reference point

in the direction of gravity [121. By mapping or calibrating the IMU to a rigid limb

on the body, the orientation of body limbs can be estimated from the IMU's output.

1.2.2 Implementing IMUs in Human Motion Capture

A great advantage of IMU systems for motion capture is that they eliminate the

restrictions placed on the capture area, that is, they can be as small or big as they

need to be for the specific case. IMUs show a very promising approach to motion

capture systems that can be used almost anywhere because they are portable and

wearable. However, despite these benefits, IMUs have disadvantages.

Accelerometers measure the sum of linear acceleration and gravity. In a quasi-

static movement, linear acceleration can be neglected. In a dynamic situation, it is

difficult to decouple the two measures and may lead to difficulty calculating attitude

accurately [13]. Accelerometer readings start to drift noticeably after a short period

due to the long-term noise that causes samples to gradually become further away from

their true values. Although less noticeable in applications with constant movement,

in applications where values are averaged over longer periods of time, drift can cause

severe inaccuracies [14]. Angular velocity measurements by gyroscopes are prone to

sensor drift over time and gyroscopes sometimes enter a position called gimbal lock.

In control moment gyroscopes, two gimbals can be driven into a configuration where
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an estimation of orientation has more than one solution and the gimbals must be reset.

Depending on what type of representation is used for IMUs, a similar phenomenon

can occur, even with micro-electromechanical system (MEMS) sensors. Magnetome-

ters are susceptible and influenced by electromagnetic interference including ferrous

material in the near vicinity. With an estimated orientation for a given IMU, there is

still a need to calibrate individual sensors to the global body coordinate system every

time the sensor suite is donned.

IMU calibration can be either static or dynamic (e.g. [15], [16], respectively).

The most common pose held for a static calibration is a "T" pose in which both

arms are held straight out to each side. While the directional acceleration is easily

calibrated and initialized on all three arm segments using this pose, the largest error

due to this variability was found in the heading estimation (the location of the IMU

around an arm segment). Orientation and location are typically not computed by

time-integrating the signals from accelerometers and rate gyros, including any sensor

drift and noise, because the estimation errors tend to grow unbounded.

Dynamic calibration motions vary but may include simple one degree of freedom

motions for relevant segments. Wu et al. [17] developed a self-calibration process

incorporating sensor misplacement for in-plane orientation misalignment, but it was

not able to aid misalignment in rotations along local body curvature. All these

calibrations relate the local coordinate system of the IMU to the global placement of

the IMU on the body. Calibration poses increase preparation time for a system and

are also only as accurate as the ability of a human to perform a specified motion and

place the sensor.

1.2.3 IMU Motion Capture Algorithms

To overcome these individual IMU disadvantages, fusion techniques have been im-

plemented. Starting in 1970, Bortz [18] computed sensor orientation by integrating

angular velocity. Since then, others have extended fusion methods and examined

Kalman Filter algorithms to obtain dynamic orientations of IMUs by implementing

an Euler angle representation [19][20]. To avoid singularities in Euler angles and
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to limit the need for linearizing, quaternion-based Extended Kalman Filters (EKF)

have been implemented [21][10]. By taking advantage of a stereotypical feature of

human locomotion to alternate movements of limb segments, Sabatini [10] updated

gyro measurements during zero velocity periods, or rest periods, to try and capture

the bias vectors of accelerometers and magnetometers. Sabatini's study showed that

the use of an external field to compensate for error drifting decreased error estimation

in a controlled environment. However, outside the controlled environment, external

magnetic fields vary greatly, and thus this method is limited. Althougth quaternion-

based EKF limit the need for linearizing, these methods still require an embedded

physical model linearization and is limited to slow motions due to the computation

time.

Results of the use of IMUs on robotic hinges rather than on humans [22] show

that if accelerometers can be placed exactly on the joint center, simpler algorithms

can accurately predict joint-angles without the need for computationally heavy filters.

For example, Cheng et al. [22] use variations of a common-mode rejection algorithm to

estimate joint angles by using combinations of two accelerometers, one accelerometer

and one rate gyro, or two accelerometers on each adjacent limb to the joint angle.

The need for the IMU to be placed exactly on the joint center indicates that

the variability of sensor placement by humans during repeated use may be a large

cause of motion estimation errors. Although Cheng et al. [22] advise on the use

of these methods for experimental setups, they also make the statement that these

methods would not work well on humans because these methods require very precise,

repeatable motions. As Luinge et al. [23] also conclude, the accuracy of any method

is limited by the accuracy of the sensor to segment calibration.

1.2.4 Sources of Human Variability

In order to understand human variability, we must first understand the associated

joints of the movements we plan to study. The upper extremities of the human

body include the shoulder, elbow, wrist, and finger joints, and the associated muscles

crossing these joints. The complex interaction of the bones, muscles, and ligaments
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at joints define human movement. One of the most comprehensive musculoskeletal

models is the Upper Extremity Kinematic Model by OpenSim [24].

The human shoulder is made up of three bones, including the clavicle (collarbone),

the scapula (shoulder blade), and the humerus (upper arm bone) (Fig. 1-la). The

shoulder joint generally refers to the glenohumaral joint (connecting the scapula to the

humerus) and the acromioclavicular joint (connecting the clavicle to acromion, the

highest point of the shoulder blade) [1]. OpenSim models the articulation between

the humerus and scapula as a ball-and-socket joint, but uses a Groot and Brand

regression equation [25] to determine the movement of all three bones as a whole [24].

Because of the multiple bones meeting at multiple joints, the shoulder movement is

difficult to simulate with just a single ball-and-socket joint or hinge joint.

The elbow joint is also at the intersection of three bones (humerus, ulna, and

radius) [1], but two of these bones (ulna, radius) are parallel to each other on the

forearm (Fig. 1-1b). OpenSim models the elbow joint with two fixed axis [24]. The

first is a hinge-joint to allow for the study of flexion and extention. The second

axis runs along the forearm between the radius and ulna to permit pronation and

supination.

Because of the complex interaction of all the components of joints, human move-

ment has some associated variability. Stergiou[26] describes human movement vari-

ability as the normal variations that occur in motor performance across multiple

repetitions of a task. These variations can exist on many levels, from inaccuracies

when throwing multiple darts, to stride-to-stride fluctuations in walking [27], to sway-

ing around a central equilibrium point without ever remaining exactly still [28]. For

some, movement variability can be attributed to random error or noise. However,

there are three theories for the variability in human motion.

The first is the Generalized Motor Program Theory (GMPT) [29]. This theory

considers variation in a given movement pattern to be the result of error by the sys-

tem. In this theory, variation can be considered the result of errors in the ability to

predict the necessary parameters for employing the underlying motor program [30].

This is particularly true for novel motions, where corrections of these errors during the
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(a) Clavicle. scapula and humerus bones. (b) Elbow joint and associated bones.

Figure 1-1: Shoulder and elbow joints with associated bones. Images taken from
Human BioDigital [1].

motion leads to differences in sequential repetitions of the same motion. Uncontrolled

Manifold Theory takes a dynamic systems approach to movements and states that

motor variability is associated with the redundancy of elements necessary to solve a

task [31]. Having more elements than necessary (multiple muscles fibers) results in

the existence of multiple solutions to a motor problem, and thus repeated motions

utilize different, albeit very similar, solutions for the same movement [31]. The third

theory, the Dynamical Systems Theory, proposes that movement is the result of the

interactions of multiple systems within the person, task, and environment [32]. Es-

sentially, all sub-systems self-organize and interact in a specific way, to produce a

given movement with the highest efficiency for a specific task [33]. The efficiency,

and therefore the movement, changes with changing environments and tasks, and

thus the motor system adapts constantly to slightly alter movement to reach higher

efficiencies.

All three theories above are similar in the fact that they all agree that decreased
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variability results from the efficient execution of a given movement pattern. However,

work by Hausdorff has shown that not only do humans always have some natural

variability in movement, but this variability is also important for proper movement

[34]. Research has shown that increasing gait instability leads to increase likeliness

of falling sooner [34] and that after a fall, gait variability increases [35]. Due to loss

of strength and flexibility, older adults have greater variability observed in their gait

[36]. However, results of looking at the breakdown of the variability through the

entropy analysis support a general loss in time series complexity of gait with age [37].

The multi-scale entropy method (MSE) studies a one-dimensional discrete time series

by calculating an entropy measure of each consecutive course-grained time series of

the original signal, and plotting each time series as a function of a scale factor used

to create the course-grained time series [38]. Therefore, even if the magnitude of

variability is low, there are still measures in the signals used by entropy analysis to

determine complexity, and thus having no variability in movement can be as bad

as having a lot of variability. In summary, some variability is needed for efficient

execution of a given movement pattern. Therefore, the performance of the prescribed

motions in this study have an embedded coupling between the natural human motor

variability inherent in humans, and the variability that is due to the rigid body

model assumption not being appropriate for motion estimations. As a whole, there is

a coupling of operational variability (due to sensor noise and placement) with motor-

performance variability (due to the sensorimotor system).

1.3 Objective

The literature suggests that a motion capture system using IMUs where both sensor

placement and calibration poses and motions are exact and repeatable provide good

estimates of the system state. Motor control, however, is not exact and the theories

presented show that variability is inherent in human motion. Despite this underlying

human motion variability, measures in this study should remain constant when using

a rigid body model. Therefore there is a balance; Not only are sensor placement
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(non-expert) and limb motion during calibration (natural human variation) affecting

the estimations, but the estimations are also affected by the assumptions in using the

rigid body model.

This thesis will first test the hypotheses that initial placement (defined as distance,

orientation, and rotation) of IMUs located at the chest, bicep, and forearm by a

non-expert are affected by (1) the number of times the sensors are donned, (2) the

type of functional motions performed, and (3) the location of the IMU on the body.

Next, I will test the hypothesis that placement of IMUs vary throughout a motion

to determine whether a rigid-body assumption is still appropriate during functional

motions. Finally, given an understanding of the underlying variability, the effect of

this variability can be inferred from the calculation of ranges of values commonly used

by motion capture algorithms.

1.4 Thesis Summary

Although it is clear that progress is being made to increase accuracy of IMUs as

a method for a motion capture system, further investigations need to be made to

account for the variability caused by humans. Research has yet to be conducted on

how much and in which way users vary in their placement of sensors on the human

body. Understanding which type of sensor configurations and sensor mounting options

are conducive to less variability provides us with data to assist in designs for housing

sensors and allows for the development of quick don and doff sensor suites that can

be reliably used by a non-expert for real-time data interpretation.

In this thesis, the uncertainty in IMU placement when donned by a non-expert

user is characterized. These data will aid in future algorithm development to min-

imize and compensate for the donning and doffing variability measured in relevant

motions. Chapter 1 provided a background into motion capture systems as well as

the advantages, disadvantages, and algorithms used when implementing IMUs in hu-

man motion capture. Chapter 2 describes the experimental protocol, data acquisition

methods, and statistical analysis methods for this experiment. Chapter 3 presents

28



results of testing each hypothesis, as well as the limitations of those results. Finally,

Chapter 4 describes the application of these results as well as potential future work

given this study.
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Chapter 2

Experimental Methods

This chapter describes the experiment designed and conducted to study the variability

in sensor placement by a non-expert and the natural human variation during limb

motion calibration. The first hypothesis studied is that initial placement of IMUs

on the body by a non-expert are affected by the number of times the sensors are

donned, the type of functional motions performed, and the location of the IMU on

the body. Next, the hypothesis of whether a rigid-body assumption is still appropriate

during functional motions will be tested by studying how the placement of IMUs vary

throughout a motion. Finally, the effect of this variability will be inferred from the

calculation of ranges of Euler angles, which are commonly used by motion capture

algorithms.

2.1 Participants

The study included 22 participants (6 female) aged 23.3 t 3.0 years. The study was

carried out in the Man-Vehicle Laboratory within the Department of Aeronautics

and Astronautics at the Massachusetts Institute of Technology. Procedures were

approved by the MIT Committee on the Use of Humans as Experimental Subjects

(COUHES) and participants provided written consent. Participants received a $20

gift card as compensation. Participants were recruited through emails sent out to

MIT student groups, the Aeronautical and Astronautical Engineering department,
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Figure 2-1: Vicon reflective marker with flat base

and the Mechanical Engineering department at MIT.

2.2 Experimental Protocol

Participants were instructed to self-place four IMUs (APDM, Opal 425 [39]) during

the study to analyze the variability in placement on the upper body for two mounting

configurations, straps and garment based. These sensors are 48.4 x 36.1 x 13.4 mm

in size and have a mass of less than 22 grams each. The accelerometer, gyroscope and

magnetometer are all three axes and range from 6g, 2000 deg/s, and 0.6 mT,

respectively, in each axis.

Prior to data collection, researchers placed 24 passive reflective markers (twelve

9.5 mm diameter markers on the participant aid twelve 6.4 mm diameter markers

on the IMUs) to permit standard motion capture analysis (Vicon 10-camera Bonita

system [40]) (Fig. 2-1). Markers were mounted to the body and to the IMUs using

double sided, miedical grade tape strips adhered to the bottom side of the narker.

All markers were wiped down with alcohol wipes after each subject. On the IMU,

the markers were placed in a 90 degree triad (Fig. 2-2).

For data collection, all subjects were asked to perform five donnings and doffings

of each of the two IMU configurations. During each donning, one calibration T-pose,

in which participants stood still with their arms extended out to their sides to forim

a "T", and one wall calibration pose, in which participants stood with their arms

to their sides aid backs on a wall, were performed prior to the six predetermined
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Figure 2-2: Opal IMU with three Vicon markers in a triad configuration

motions (see Section 2.3.3) that were performed randomly a total of six times each

(total of 36 motions during each donning). The motions were randomized to prevent

learning effects.

An instructional donning was performed during the first mounting configuration,

in which all straps were adjusted for fit and comfort, using the participant's feedback.

The instructional donning was also performed for the garment configuration (C9

by Champion Compression Long Sleeve T-shirt). Participants were able to choose

from 3 male and 3 female black or (lark gray fitted small, medium, and large sizes

(Fig. 2-4). Garments available were the same for both males and females. These

instructional donnings were purely for fit and none of the predetermined motions

were performed. The participants were also fitted for fabric arm braces (McDavid,

Elbow support/elastic). placed on the right forearm and bicep, to prevent subjects

from using the imprint of the IMU on the skin as a reference for placement during

repeated donnings (Fig. 2-5). The braces were not removed during the multiple

donnings of the IMUs. During the garment, fit, the second configuration, a trace of

the silhouette of the participant was created and used as a guide to participants when

they repeated the wall calibration pose, limiting variability (Fig. 2-6). The strap and

garment configurations were not resized after this instructional donning.
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Figure 2-4: Champion compression garments with sewn Velcro for IMU placemeint

Figure 2-5: McDavid arm braces placed oil the bicep and forearm to prevent subjects

froni using JMU imprint
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Figure 2-6: Trace of the silhouette of a participant

2.3 Data Acquisition

2.3.1 Donning Configuration

The IMU strap configuration utilized Velcro straps to independently mount the four

IMUs (Fig. 2-3). One single hoop strap was used for each IMU placed on the hand,

forearm, and bicep (Fig. 2-8a). A chest strap with two connection points, two snap

buttons on one side of the IMU. and hoops for each arm was used to secure an IMU

to the chest (Fig. 2-8b). Velcro strips were sewn onto the garments to allow the easy

and quick placement of IMUs on the garment. One IMU was placed on chest, right

bicep, and right forearm after the participant had chosen a size. to ensure proper

location placement (Fig. 2-4). The fourth I\IU placed on the hand always used a

strap configuration.
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A * B C*

F

Figure 2-7: Predetermined motions showing relevant degrees of freedom (A = elbow
flexion and extension; B = forearm pronation and supination: C = wrist ulnar and
radial deviation, wrist flexion and extension: D = Lifting arm upwards, which in-
cluded elbow flexion and extension, shoulder flexion and extension; E = Lifting arm
forward and to the side, which included shoulder abduction, flexion and rotation:
F = Lifting arm forward from a behind the back starting position. which included
wrist, elbow, and shoulder flexion and extension, shoulder abduction, and forearm
pronation and supination). Motions have numbered figures to indicate sequence of
poses. Subjects performed the sequence in a motion, and then returned to the first
pose in the sequence. Target Apparatus only shown in Motion C but was used by
four motions (A * indicates the motion used a guide).

2.3.2 Motion Capture

Vicon data were sampled at 120 Hz. The IMU data were sampled at 128 Hz and

wirelessly logged in real-time and synchronized to enable comparison of the optical

and inertial data. In addition, all participants were video recorded during the trials.

Motion Studio software by APDM was used to capture data from the IMUs. A 9

pin axial cable connected the IMU wireless access point to the Vicon motion capture

giganet to allow synchronization between the two systems. A 3.3 volt signal from

the access point to the Vicon giganet indicated a sync in command (Fig. 2-9). The
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(a) IMU in single 1o)1 strap mount (b) IMU in chest strap mount

Figure 2-8: Hoop and chest straps for IMUs

Tri ger Triger
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_______ _ ov 0ov

Figure 2-9: Sample of sync in (start) and sync out (stop) signals fron IMU access

point to Vicon giganet.

Vicon system was configured to start and stop on these remote signals. To ensure the

entire motion was captured, each trial captured data a few frames before and after

the motion was performed.

The Opal IMUs utilize docking ports to charge and sync. When programin g a

new session of multiple IMUs, the IMUs must all be plugged into the daisy-chained

docking ports. The IMUs are configured through the Motion Studio Software by

inputting sanple rates, IMU locations, and external signals to sync the IMU and

Vicon systems. When the configuration is uploaded, the IMUs are removed from the

docking ports and given a few seconds to sync, as indicated by all IMUs flashing a

blue LED synchronously. The IMUs then wirelessly transmit their data to the access

point, which parses multiple signals and communicates with the computer running

the Motion Studio software.
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2.3.3 Motions

Six predetermined motions were described to the participants prior to data collec-

tion through text and visual descriptions. The visual descriptions posted on the wall

during the experiment for reference are shows in Fig. 2-7 while the text description

provided to the participants prior to data collection can be found in Appendix B.

The motions were chosen to include a range of single and multiple (more than one) de-

grees of freedom. Motions included elbow, wrist, and shoulder flexion and extension;

forearm pronation and supination; wrist ulnar and radial deviation; and shoulder ab-

duction and rotation. The visual descriptions of the motions were within eye sight

of the participants during data gathering for reference. During 4 of the 6 motions, a

target apparatus was used to determine the starting and ending positions (Fig. 2-7).

Motions were chosen to have both Earth and Space relevance, so results of this

study could be applied to both fields. Activities of Daily Living (ADL) is a term used

in the healthcare industry since 1950's and was used by this study to define an Earth

relevance. ADL refers to people's daily self care activities, and is regularly used

to define a person's functional status. Basic activities include functional mobility,

bathing, dressing, self-feeding, and personal and toilet hygiene. Space relevance of

motions was determined through informal discussions with a former shuttle astronaut

in which he was asked to act out activities he would perform in one work day while in

space. Motions chosen for this study encompassed both Earth and Space applications

(Table 2.1).

Fig. 2-7 describes in detail how to perform each motion. Table 2.1 provides the

rational, through examples, for why the motions chosen have both an Earth and

space relevance. Eating with a spoon in space is very similar to that on Earth [41],

therefore motion A was chosen. Motion B was also chosen not only because it provided

a different degree of freedom of the elbow joint, but also because it is a common way

to lock drawers on the Space Shuttle [41]. Motion C provided a full degree of freedom

characterization of the wrist. Motion D replicates a common way to move around

inside the Space Shuttle to prevent bumping your head [41]. Although a very robotic
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Table 2.1: Final motions chosen based on Earth-relevance (as defined by Activities
of Daily Living) and Space-relevaiice (as defined by Astronaut Jeffrey Hoffman)

Motion Potential Relevant DoF ADL / Earth Relevance Space Relevance
Motion Activities Example Example

Flexion and

A extension of Elbow flexion; Elbow Eating Cleaning face with a neaing fce iththe elbow extension napkin; Exercise awnpkirs os
joint wipes

Pronation Managing controls;
B supination of Pronation; Supination Bathing Managing faucets Locking/unlocking

arm/wrist drawers.

Wrist circles, Wrist utner and radial
C starting with deviation; Wrist flexion Eating Cleaning; Eating; Managing controlswrist and extension Reaching

extended

Elbow Elbow extension; Elbow Reaching buttons;
D extension to flexion; Shoulder flexion; Organization; Placing items on Opening drawersreach above Shoulder extension Reaching top shelf "above" you

you.

Shoulder Shoulder abduction; Reaching;
E range of Shoulder flexion; Shoulder Reaching Placement of Reorientation

motion rotation dinner table

Wrist flexion and
extension; Wrist radial

Wallet deviation; Forearm Self defense;
F motion pronation and supination; N/A Toileting N/AElbow flexion, extension;

Shoulder abduction;
Shoulder Extension
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movement, motion E a way to characterize the shoulder joint by using all of its degrees

of freedom. And finally, motion F, although lacking a space relevance example, was

chosen because it coupled many of the degrees of freedom in motions A through E.

2.3.4 Target Apparatus

The apparatus was created out of 19.05 mm [3/4 inch] PVC pipe and consisted of two

poles at 90 degrees, one vertical at arms reach of the participant and one horizontal

above the head of the participant (Fig. 2-10a). The vertical bar had a red target

placed at shoulder height. The horizontal bar had a purple target placed above the

participant, at a height just above the reach of the participant. The apparatus was

adjusted to the height of each participant and was not adjusted during data collection.

The adjustment was made using a tight fit between concentric PVC pipes. Two screw

holes 304.8 mm [12 inches] apart along the length of the pipe were milled into the

larger of the two pipes. Hemp string was looped repeatedly between the two holes,

exposing half of the loop to the outside of the pipe. This pipe was then fitted over

the smaller pipe. The number of loops of hemp directly correlated with the stiffness

of the coupling between the two pipes. This method allowed for a continuous range

of height to better tailor towards all subjects (Fig..2-10b).

2.4 Data Processing

Vicon Nexus software was used to reconstruct, label markers, fill in gaps, and export

the optical data. A Biomechanical Toolkit was used to import these data to Matlab

[42]. In-house code was used to calculate IMU position, orientation, and rotation.

Here, data for IMUs 1, 2, and 3 are presented. IMU 4, located at the top of the hand,

was not included in the analysis because the location of the triad markers on the IMU

was not continually observable by the Vicon motion capture system.
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(a) Target apparatus stand (b) Hemp loop for continuous height changes

Figure 2-10: Target apparatus stand and hemp loop. Red and purple bands used for
targets are not shown.

2.4.1 Dependent Variable Definitions

As shown in Fig. 2-3, each IMU had a triad of markers labeled A, B, and C cor-

responding to the top left, top right, and bottom left markers, respectively. The

centroid of each IMU was defined as the midpoint between markers B and C. IMU

position was defined as the distance between the IMU's centroid and a pre-specified

body-fixed marker for each IMU (Fig. 2-11). IM\JU orientation was defined as the angle

(in degrees) the IMU had rotated along the plane of initial placement. A vector from

the IMU centroid to the pre-specified body-fixed marker defined zero degrees. The

angle between this vector, and a vector created from marker C to A on each IMU,

defined the IMU orientation (Fig. 2-11).

IMU rotation was defined as the angle about the local body curvature (Torso,

bicep, and forearm for IMU 1, 2, and 3, respectively). IMU rotation was calculated

as the dot product of a normual vector to the IMU plane and a normal vector created

fromn surrounding body-fixed markers (Fig. 2-11). An example of IMU 2 rotation
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Figure 2-11: Definition of the three IMU measurements for each of the three IMUs

and associated markers. IMUs had three markers, labeled A, B, and C, used to define

the local IMU coordinate system. Each subfigure shows the surrounding markers used

in the I\IU's measurement calculation.
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Figure 2-12: Example of how rotation is calculated on IMU 2. This view is from
the elbow looking towards the shoulder. The rotation angle is the angle between the

IMU normal vector and the surrounding body markers' normal vector. From this
view, markers IM2A and RSHO are masked.

being calculated can be found in Fig. 2-12. IMU 1, 2, and 3 distance, orientation, and

rotation were scaled by torso, bicep, and forearm length, respectively, for each subject.

These normalized values then had the overall means by IMU number subtracted such

that comparisons between IMUs could be made.

2.4.2 Segmentation of Motions into Epochs

To analyze muotions in their entirety, each motion was broken down into 11 epochs,

10 through 100 in multiples of 10, in addition to epoch 0 (start of the motion). Each

epoch represents the percentage of time of the motion. These steady state frames of

the data captured were trimmned so that the first and last epoch were representing

the start and stop times of a motion. To determine at which frame to cutoff, 20

frames from the beginning and end of the captured motion were used to determine a

mean and standard deviation of the z-axis value of a marker RWRB (located at the

wrist). The RWRB marker was chosen because it swept through a large range once

the motion started. The z-value was easy to distinguish when the notion started.

Progressing from the start of the captured motion forward, the first frame with

a value that was greater than the mean of the samipled frames plus three standard

deviations was considered the start of the motion. Three standard deviations from
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the mean was chosen as the criteria because it would encompass 99% of the normally

distributed data with that particular mean. The end of the motion was determined

in a similar way, except that a new mean and standard deviation were calculated

from frames sampled from the end of the captured motion. The length of frames

used for determining the mean and standard deviation at the beginning and end of

a motion was set to 20 (160 ms) and 36 (300 ins), respectively. Appendix C.3 shows

the differences between the raw and trimmed data. Appendix C.2 shows the Matlab

code used to trim the data.

2.5 Statistical Analysis

The first objective was to test the hypothesis that initial placement of IMUs is affected

by the number of donnings, types of motions performed, and the location of the

IMU on the body. This was done by performing ANOVAs to examine the main and

interaction effects of the independent variables (location, donning, and motion) at the

first frame of a motion. A p value <0.05 was used to indicate statistical significance.

The Tukey Difference test and the Student-Newman-Keuls test were used for post-hoc

comparisons. Levene's test was used to assess the equality of variances. To test the

second objective of determining whether a rigid-body assumption is still appropriate,

a non-parameteric epoch analysis, which studies the motions at eleven evenly spaced

normalized points in time, was performed. Kruskal-Wallis with Bonferroni corrections

was used to examine differences in epochs for each motion at specific IMU locations.

A Bonferroni corrected value of 0.002778 was used to counteract the effect of multiple

comparisons. The value was determined by dividing the original p = 0.05 significance

value by 18, the number of motion (6) and location (3) combinations. Conover-Inman

was used for post-hoc comparisons and described further in section 2.5.1. SYSTAT

statistical software was used for all calculations.
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2.5.1 Epoch Table Description

Conover-Inman post-hoc statistical tests for all epochs were grouped into tables of

combinations of motions and locations. An example of such a table can be found in

Table 2.2.

The tables show epochs of a particular motion and IMU along the top and left

sides. The table is populated with the Conover-Inman post-hoc significance value

comparing two epochs within a given motion and location. Only half the table is

populated because a Conover-Inman test of two epochs is the same regardless of which

epoch was used first. A red color indicates significance because the test revealed a

value below the significance value located at the top left of the table (Labeled A in

Table 2.2). From this table, five trends of epochs for a particular motion and IMU

can be deduced.

The first trend is the trend of initial epochs (Labeled B in Table 2.2). This group

of values on the top left of the table shows differences between the first few epochs.

If these values are mostly black, it means the first few epochs were not significantly

different from each other. This trend is more often present in IMUs with small ranges

of motion, such as IMU 2 (bicep) during motion A. Similarly, a trend of final motion

epochs (Labeled F in Table 2.2) signifies no difference between the final seconds of a

motion. Again, this trend is present most often in IMUs with small ranges of motions,

either due to the small range of the motion itself, or because the IMU location isolates

the IMU from the dynamics of the motion occurring a few degrees of freedom away.

The third trend, trends in apex epochs (Labeled D in Table 2.2), reveals simi-

larities in epochs during the middle of a motion. Initial and final epoch trends are

caused by the acceleration and deceleration of the limbs at the beginning and end of

a motion, thus small changes in the position of the IMU can occur. Similarly, apex

epochs are similar when an IMU is decelerating to a stop, and accelerating in the

opposite direction. During this change in direction, the position of the IMU may not

change significantly, and thus more black values are seen in the center of the table.

Symmetrical epochs (Labeled E in Table 2.2) are an extension of apex epochs. A
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trend of black values from the bottom left to the center of the table can reveal simi-

larities between symmetric epochs, or epochs that are the same distance from the end

or beginning of a motion. For example, a symmetric motion like Motion D, where

the second half of the motion is the first half done in reverse, would likely show no

differences between epochs 1 and 100, 10 and 90, 20 and 80, etc. because the IMU

is passing through the same position in space during these two different epochs. A

motion like Motion E, however, is not likely to have symmetrical or apex epoch trends

since the first half is the not the same as the second half of the motion.

The last epoch trend is trends in consecutive epochs (Labeled C in Table 2.2). On

the example table in Table 2.2, a significant difference between epochs 1 and 40 is

present. However, there are no significant differences between epochs 1 and 10, 10 and

20, 20 and 30, and 30 and 40. This could be explained by one of two things: either

the change happened slowly enough to not be apparent in a small time frame, but is

large enough to be significantly different on a larger time frame, or the epoch intervals

are too small for the variability present, allowing for overlap of the distribution of

dependent variables of consecutive epochs. IMU 1 (torso) tends to have this trend

because, although a motion requires the torso to stay still, the IMU may shift slowly

during a motion.

48

-1,



Chapter 3

Results and Discussion

As stated in Section 1.3, the specific aims are to characterize the uncertainty in IMU

distance, orientation, and rotation during donning by a non-expert. Participants

performed five donnings of self-placed IMUs on the chest, bicep, and forearm. Within

each donning, participants performed six repetitions each of six prescribed motions.

3.1 Strap Mount Configuration

3.1.1 Effect of Initial Placement on Distance, Orientation,

and Rotation Using a Strap Mount Configuration

The first specific aim tested the hypotheses that initial distance, orientation, and

rotation of IMUs are affected by (1) the number of times the sensors are donned, (2)

the type of functional motions performed, and (3) the location of the IMU.

3.1.1.1 Effect of Location, Donning, and Motion

A three-factor ANOVA was conducted for each dependent variable (distance, orien-

tation, and rotation) to test for main and interaction effects of location, donning, and

motion. Significant effects were found for all main effects, two-way, and three-way

interactions (p <0.0005) for all three IMU dependent measurements (Table 3.1).

As expected, post-hoc pairwise comparisons of the IMU location main effect using
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Table 3.1: Main and Interaction effects of Location, Donning, and Motion for initial
placement. A p-value of 0 means p <0.0005

Distance Orientation Rotation

Source F-Ratio p-Value F-Ratio p-Value F-Ratio p-Value

LOCATION 826.892 0 650.955 0 81.374 0
DONNING 108.384 0 159.805 0 122.235 0
MOTION 111.501 0 267.452 0 355.272 0
LOCATION*DONNING 35.208 0 91.874 0 168.646 0
LOCATION*MOTION 43.733 0 84.86 0 555.957 0
DONNING*MOTION 6.868 0 9.013 0 12.566 0
LOCATION*DONNING*MOTION 5.774 0 9.89 0 9.512 0

Tukey's Difference Test showed significant differences between all three locations for

IMU distance (p <0.0005), which is consistent with different reference markers being

used for each IMU (Table D.1). For IMU orientation, significant differences were

found between locations 1 and 2 (p <0.0005), and locations 1 and 3 (p <0.0005), but

not between locations 2 and 3 (p = 0.554). Similarly, for IMU rotation, significant

differences were found between locations 1 and 2 (p <0.0005), and locations 1 and 3

(p <0.0005), but not for locations 2 and 3 (p = 0.837). This is likely due to IMUs 2

and 3 having the same single hoop strap type, while IMU 1 at the chest had a more

complicated strap with four attachment points and was therefore different than either

of the other two IMUs. Also, the bicep and forearm are closer in shape than the torso

is to either.

Pairwise comparisons for donning main effect showed no significant difference be-

tween donnings 1 and 3 (p = 0.225), 1 and 5 (p = 0.485), and 3 and 5 (p = 0.995).

Donnings 2 and 4 were significantly different from the other donnings (p <0.0005).

This confirms hypothesis 1, that there are significant main effects of donning. How-

ever, no consistent trend in any dependent variable with consecutive donnings was

found. This implies that multiple donnings do not show learning effects. For initial

placement, multiple donnings did not lead to more or less accurate placement.

Student-Newman-Keuls post-hoc tests were used to group similar motions (Ta-

ble D.2). For IMU distance and orientation, there were 3 groupings: (1) motion

A, (2) motions B and C, and (3) motions D, E, and F. For IMU rotation, the only
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groupings were motions A and C, while all other motions were grouped into their own

sub-group. For distance and orientation, motions B and C were consistently grouped

together because they had the same starting position, thus if we are looking at IMU

placement only at the start of a motion, it is expected to see no significant differences

in placement between these similar motions when scaled by anthropometry because

their starting positions are the same during every trial.

3.1.1.2 Interaction Effects of Location and Motion

Since no consistent trend in any dependent variable was found with consecutive don-

nings, the donnings were pooled and interaction effects of motion with location were

analyzed. Fig. 3-1 shows the significant differences within motions for all IMUs.

Dependent variables were normalized by anthropometry to compare between sub-

jects and mean shifted to compare between IMU locations. Hypothesis 2 suggested

that prescribed motions may affect the dependent measurements. IMU 1 showed the

largest variance in orientation. This may be due to the complexity of the shoulder

joint. Although motions A, B, and C had similar starting position, the focus of the

participants was on lining up their hand with the target. This aligning does not

constrain the height of the shoulder. Changes in shoulder height directly correspond

to orientation changes of IMU 1. This effect with shoulder height would not be seen

in distance or rotation of IMU 1 because a change in shoulder height would move

both IMU 1 and the marker at the clavicle up or down (so distance would stay the

same) and a change in shoulder height is orthogonal to plane in which rotation of

IMU 1 is defined (independent of rotation). As seen in the three plots in Fig. 3-1,

motions D, E, and F were consistently grouped together for distance and orientation.

These three motions had different starting positions than motions A, B, and C, but

similar starting positions to each other. Even though we observe embedded groupings

such as motions B and C, as well as grouping of motions D, E, and F in two of the

three independent variables, the groupings are not consistent, which indicates that the

starting orientation has an effect on the dependent variables. Relative placements are

important because the relationship between the local and global coordinate system is
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Figure 3-1: Shown are the within motion interaction effects between location. Ad-
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shown in horizontal bars above graphs in the order of group means from smallest
(Gi) to largest (G3). Bars show one standard deviation from the mean. Above each
graph, asterisks (*) indicate significant difference according to Tukey's Difference Test
(p <0.05).
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Table 3.2: Normalized and mean shifted location variances for all dependent variables

Variable Variance

IMU 1 IMU 2 IMU 3

Distance (mm/mm) 0.0038 *c 0.0172 *4 0.0119 cn

Orientation (degrees/mm) 0.0646 *o 0.0024 *<l 0.0044 oi

Rotation (degrees/mm) 5.5 x 10- *1 1.24 x 10o * 1.21 x 10-5 c

*,0, and < indicate significance (p <0.0005) between IMUs 1 and 2, 1 and 3, and 2
and 3, respectively.

defined in the calibration pose.

Hypothesis 3 suggests that location of IMU may affect the dependent variables.

IMU distance showed significant differences across all locations, with the group mean

lowest for location 1. This is consistent as the torso enabled the most precise place-

ment of the IMU centroid due to having more constraints than the straps on IMUs 2

and 3 (Fig. 2-3). IMU 1 orientation was also found to be significantly different from

IMUs 2 and 3. The similarity in orientation between IMUs 2 and 3 is consistent with

the strap configurations. For the strap configuration evaluated, the location of the

IMU had an effect on IMU placement. There is a component of IMU placement that

may be due to the user's natural placement variability, but there is also a portion

that can be influenced by the strap type.

3.1.1.3 Variance of IMU Distance, Orientation, and Rotation During Ini-

tial Placement

To compare variances, dependent variables were normalized and mean shifted for all

dependent variables. Levene's test showed significant differences in the variances for

the distance (p <0.0005) and orientation (p <0.0005) for all three IMU locations

(Table 3.2). For distance, location 2 was the most variable and location 1 was the

least variable. For orientation, location 1 was the most variable while location 2 was

the least variable. There was no significant difference in rotation variance between

locations 2 and 3 (Table D.3).
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As a component of this variance may be attributed to strap type, it is important

to consider how the straps were implemented. The straps associated with IMU 1 were

constrained by four incoming straps with two connection points while IMUs 2 and 3

had two incoming straps and two connection points (Fig. 2-8). The loop on IMUs 2

and 3 that secured the IMU to the bicep and forearm allowed for more freedom of

movement along the limb as well as movement along the local body curvature. In

order to don these straps, the Velcro was looped through a buckle that was the same

width as the IMU. This fixture limited changes in orientation of the IMU because

the Velcro was as wide as the buckle, causing the IMU to align with the strap more

consistently. The strap on IMU 1 was donned by looping each arm (much like a

sweater is put on) and then snapping two buttons on one side of the IMU. Since the

strap lengths were not changed, the chest strap was expected to provide consistent

placement of the IMU centroid and to limit rotation about the torso. However, each

of the two buttons had snaps that allowed some pivot, and thus small changes in strap

location on the shoulder and under the armpit induced changes in IMU orientation.

The data were consistent with these strap types and showed IMU 1 variance to be

highest for orientation, but lowest for distance and rotation as compared to the other

two IMUs. Comparisons of two variances for all combinations of IMU locations can

be found in Appendix D.4.

3.1.2 Epoch Analysis of Strap Configuration

Specific Aim 2 tests the hypothesis that distance, orientation, and rotation vary

throughout a motion. To test this hypothesis, an epoch analysis was conducted, as

described in Section 3.1.2.3.

3.1.2.1 Testing Equality of Variances

Levene's test was initially used to test if the variances of all eleven epochs were equal

for all three dependent variables. To do this, the data was grouped by motion and

location (Table 3.3). Given the multiple comparisons, a Bonferroni correction was
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Table 3.3: Levene's equal variance test of all 11 epochs performed for each combina-
tion of motion and location, for each dependent variable. A p-value of p<0.00277 8

indicates significance, due to the Bonferroni correction.

Distance

Motion IMU 1 IMU 2 IMU 3 IMU I

A
B
C
D
E
F

0
0.904
0.016

0
0
0

0.017
0
0

0.031
0.019

0

0
0
0
0

0.034
0

0.001
0.028
0.005
0.007

0
0

Orientation

IMU 2 IMU 3

0.011 0
0.055 0

0 0.028
0.011 0

0 0
0 0

implemented, as described in section 2.5. Levene's test revealed that variances in

epochs were not equal (p <0.05) for all but four combinations of motion and location

for distance, orientation, and rotation. The four combinations that did not reveal

significant results were distance for motion B at IMU 1 (p = 0.904), orientation for

motion B at IMU 2 (p = 0.055), and rotation for both motion B at IMU 2 (p =

0.86) and motion C for IMU 2 (p = 0.597). Since this test of variance homogeneity

revealed that there is sufficient evidence to claim that the variances are not equal,

non-parametric tests were used to analyze the epoch data.

3.1.2.2 Non-Parametric Analysis of Epochs within Motion and Location

Combinations

A Kruskal-Wallis non-parametric analysis was conducted on all epochs of a depen-

dent variable with data grouped by motion and location (Table 3.4). Once again, a

Bonferroni corrected value of 0.002778 was used to counteract the effect of multiple

comparisons. The value was determined by dividing the original p = 0.05 signifi-

cance value by 18, the number of motion (6) and location (3) combinations. The

non-parametric analysis revealed a main effect of epoch for all but 3 combinations

of motion and location for distance, orientation, and rotation. The three combina-

tions that did not reveal significant results were distance for motion B at IMU 1 (p

= 0.687), distance for motion C at IMU 1 (p = 0.071), and rotation for motion B
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IMU 2
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Table 3.4: Kruskal Wallis with Bonferroni correction tests of all 11 epochs for each
combination of motion and location, for each dependent variable. A p-value of
p<0.002778 indicates significance.

Distance Orientation Rotation

Motion IMU 1 IMU 2 IMU 3 IMU 1 IMU 2 IMU 3 IMU I IMU 2 IMU 3

A
B
C
D
E
F

0.001
0.687
0.071

0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0 0
0 0
0 0
0 0
0 0
0 0

0
0.484
0.002

0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

at IMU 1 (p = 0.484). IMU 1 did not show significance for distance and rotation

for motion B because motion B was pronation and supination of the wrist with the

arm extended in front, and thus the torso was isolated during the motion. Motion

C explored the range of motion of the wrist, and thus the torso and IMU 1 was also

isolated.

3.1.2.3 Pairwise Comparisons Between All Epochs within Motion and

Location Combinations

This section summarizes the results of all pairwise comparisons between epochs for

all combinations of motion and location. First, examples of rigid body dependent

measurement outcome are presented to gain an intuition for expectations given a

rigid body model. Variability in the three dependent measures is confounded by

variability due to donning position, motor position errors, joint complexity, effects of

posture, and the underlying discretization of time. The results, grouped by motion,

are then presented in the context of the rigid body assumptions and the sources of

variability.

Results of all Conover-Inman test can be found in Appendices E.1-20. As shown

in Table 2.2, summary tables were interpreted through five regions: initial mo-

tion epochs, final motion epochs, apex epochs, consecutive epochs, and symmetrical

epochs.
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Figure 3-2: Side view of motion A at starting point and some angle phi after the

elbow has gone through flexion.

3.1.2.3.1 Dependent Variable Expectations for a Prescribed Motion given

Rigid Body Model

Prior to discussing the results of the pairwise comparisons between all epochs, we

must first develop an intuition for expected results given (1) a rigid body model and

(2) how the dependent variables in this study were defined (Fig. 2-11). We will use

motion A as an example of a pure motion that can be coupled with other degrees

of freedom, but the logic can be applied to any prescribed motion in this study.

Figure 3-2 shows the location of the forearm at the beginning of the motion and at

some flexion angle c/ after the forearm has rotated about the elbow.

Distance for IMU 3 (forearm) was defined as the distance between the centroid of

IMU 3 and marker RELB located on the outside of the elbow.

Since distance was defined to be a straight line between two points on the same

rigid body (RELB and the centroid of IMU 3), the distances d and d2 should be

equal (Fig. 3-2). Given a rigid body model, we should expect the distance value of
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the IMUs to not change throughout motions.

Orientation was defined as the angle (in degrees) the IMU had rotated along the

plane of initial placement. It was defined by two vectors. The first vector points in

the direction of the length of distance defined for IMU 3 (from the centroid of IMU

3 to RELB). The second vector is a vector created from marker C to A on IMU 3.

If we assume a rigid body model, the first vector would not change during motions,

similar to how distance did not change. The second vector, defined by two markers

on the IMU, would not change in magnitude either because the IMU is rigid. On a

global reference frame, these two vectors will experience changes in direction, not in

magnitude, induced by performing a motion. However, given that the two vectors

are defined by markers on the same rigid body, and the distance between any two

markers is not changing, both vectors experience the same exact rotations due to

the motions, and the angle between the two vectors remains constant (01 = 02 in

Fig. 3-2). Given a rigid body model, we should expect the orientation value of the

IMUs to not change throughout motions.

Finally, IMU rotation was defined as the angle about the local body curvature.

It was calculated using the dot product between the normal vectors of two planes

(Fig. 2-11). The first plane is made from three markers (RELB, RELA, and RWRB)

on the same rigid body. The three markers uniquely define a plane on the rigid body

segment. The second plane is defined by the triad of markers on IMU 3. Given that

the IMU is one solid piece, the configuration of these three markers on each IMU

will not change during motions. If we assume a rigid body model, then the relative

distance between any two markers and the angles at marker points in either plane

would not change during motions. The two normal vectors are on the same rigid body

segment, so from a global reference frame, a change in direction of one normal vector

due to a motion will be the exact same change experienced by the second normal

vector. The distributive property of the dot product tells us that any transformation

applied to both unit vectors will result in the same dot product. Therefore, given

a rigid body model, we should expect the rotation value of the IMUs to not change

throughout motions.
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There are limitations to the expectations given above due to the definition of

the dependent variables themselves. The first is that the definition of the dependent

variables assumes single axis motion, which is not typically observed in the naturalistic

motions performed. Trends found with these definitions do not inform how many axes

were used during specific motions. Therefore, conclusions on changes in dependent

variables can be attributed to coupling of motion or joint complexity that is not

modeled in the rigid body assumptions. Second, postural changes such as arching

your back or slouching your shoulders can cause shifting of the IMUs, the mounts,

or the body markers. For example, there are many positions the shoulder joint can

be in while still leaving the rest of the arm parallel to the ground and in front of the

participant, as they were instructed to do for some motions. Dependent measures of

IMU placement, more so in those that use multiple body markers such as rotation,

can change due to these postural shifts. With single axis motion, we would not

expect these measurements to change, however, coupled motions and postural changes

confound our ability to assess the rigid body model with these metrics.

3.1.2.3.2 Relating Pairwise Comparisons Between All Epochs to Rigid

Body Model Expectations

The Conover-Inman pairwise comparisons of all epochs within groupings of IMUs and

motions reveal that significant differences in the distance measurement of IMUs are

present at different epochs of a motion. Even a single degree of freedom motion like

motion A showed significant differences between initial and final epochs for distance

for the IMUs on the forearm and bicep.

Motion A required participants to begin with their right arm completely extended

in front of them pointing at a target, and then flex and extend their elbow while

keeping their bicep parallel to the ground. Because motion A is a symmetric motion,

as expected, no consistent significant differences between symmetric and apex epochs

were found for IMU 1 for all three measures. IMU 3 showed significant differences

in final epochs for distance and orientation, but not for rotation, showing that al-

though a guide was provided, variability in final hand positioning was still present.
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Orientation showed significant differences in final epochs for all three IMUs. These

final epoch trends in distance and orientation for all three IMUs may be caused by

the shifting in height of the shoulder (IMU 1), not keeping their bicep parallel to

the ground (IMU 2), and coupling forearm pronation with elbow flexion (IMU 3).

We cannot decouple what is responsible for the differences seen using our current

definition of the dependent variables since they could be due to the rigid body model

not being appropriate or postural changes by the participants. Although Motion A

showed significant differences between different epochs for all three IMUs for rotation,

no consistent significant epoch trends defined earlier were found. These embedded

differences may be due to the postural changes that affect the shoulder joint. How-

ever, since we do see significant differences, it is important to take these into account

when interpreting IMU data.

Motion B required the participant to pronate and supinate their hand from a

palm facing the ceiling position, to a palm facing the ground, and back, all while

maintaining their arm extended directly in front of them. For the Conover-Inman

epoch post-hoc tests, IMU 1 did not have many significant differences between all

epochs for all three independent variables. This is likely because IMU 1 is located on

the chest and motion B required movement of the wrist. IMU 2 showed differences

between consecutive epochs for rotation, likely due to the complexity of the shoulder

joint which could have also rotated when the forearm pronated. All other differences

between consecutive epochs were sporadic and showed no consistency in the five epoch

trends defined earlier. As expected from a symmetric motion where the second half

is the first half of the motion in reverse, IMU 3 showed no significant differences

between epochs in symmetric, apex, initial, or final areas for distance, meaning the

distances calculated in the first half were similar to the distances calculated in the

second half. While the distance measure showed these trends, all three measures

for IMU 3 did show significant differences in epoch areas not defined in Table 2.2.

These inconsistent significant differences in IMU 3 outside of the defined areas signify

relative motion between the fixed markers on the body and the markers on the IMU,

which are assumed to be on the same rigid body, and thus should show no significant
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differences at all.

Motion C explored the degrees of freedom in the wrist. Kruskal-Wallis analysis

did not show significant differences for IMU 1 for distance, but did show significant

differences for all other combinations of IMU and dependent measures (Table 3.4).

Due to the triad of markers on IMU 4 on the hand not being continually observable

by the Vicon motion capture system, IMU 4 was not analyzed. Given a rigid body

model, the isolated movement of motion C about the wrist should lead to no significant

differences in any measure for IMUs 1, 2, and 3. However, in practice, these motions

were not isolated to the wrist and differences were found for all IMUs for all measures.

Motion D was a more complex (more degrees of freedom) motion than motions A,

B, and C, requiring the participant to move their arm through 180 degrees of shoulder

flexion and extension. IMU 1 showed no significant differences in initial epochs, final

epochs, or apex epochs for distance, but did show significant differences for epochs

outside of the epoch trends defined earlier. Given the large angles of flexion and

extension of motion D, these differences may be attributed to the complexity of the

shoulder joint. This complexity may alter the plane created by the shoulder and clav-

icle markers and may cause measurements to vary, even for IMU 1. As expected for a

symmetric motion, IMU 2 for distance and IMU 3 for rotation showed no significant

differences for symmetric epochs. However, all three measures showed significant dif-

ferences in asymmetric portions of motion D for all IMUs. With a rigid body model,

only shoulder and elbow flexion and extension are assumed for this motion. Small

changes in pronation and supination and small changes in shoulder rotation during

the motion cause changes in all three measures. The kinematic chain coupling joints

is more apparent in this motion since multiple joints are used. Although symmetric

epoch trends exist, the significant differences in asymmetric epochs for this complex

motion means that further disambiguation of actual body motion and model assump-

tion is required.

Motion E required the participant to move their shoulder through three different

planes while maintaining their arm straight. Post-hoc tests revealed that IMU 1

showed no significant differences for distance and orientation in the final three epochs
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of the motion. This is consistent with the large movements of the arm in the first

three parts of the motion that, due to the center of mass of the subject changing,

induce a torque that may cause the torso to shift, while a rotation about the axis

of the arm in the last quarter of the motion will not. This final rotation about

the shoulder also explains why IMU 2 showed no significant differences in the final

epochs for orientation. Rotation of IMU 2, which was about the same axis as the final

quarter of the motion, did show significant differences in final epoch trends because

the reference markers for IMU 2 from which rotation was calculated (two on the

elbow joint, one on the acromion) shifted with this motion due to the complexity of

the shoulder joint. During the final quarter of the motion, IMU 3 showed a higher

number of significant comparisons than IMU 2 for orientation. This could be due to

subjects focusing on their hand orientation and pronating their forearm to face the

palm of their hand to their thigh. Additionally, significant differences are seen outside

of the trends defined earlier for all IMUs. Given that the motion was selected to only

explore the three degrees of freedom of the shoulder, we expected no differences in

measures between IMUs 2 and 3. Because we do see these differences, they are likely

do to the confounding factors discussed earlier and should be further explored.

Motion F was the most fluid of all the motions, but its symmetry leads one to

expect to still see no significant differences between symmetric epochs. This is true

for IMUs 1 and 2 for distance but not for any other measures. Motion F also shows an

inconsistent significance in initial and final epoch trends for all IMUs. Because there

was no guide behind the participant to assist in making the motion symmetrical,

we are seeing an effect of posture (unintentionally slouching, for example) of the

participant playing a role since they lack a visual feedback to adjust for variations

in limb positions. Significant differences are seen between beginning and middle

epochs, and middle and final epochs for all IMU and dependent measure combinations.

This means that the distances between body markers and markers on the IMUs are

changing because of the complexity of the shoulder, elbow, and wrist joints.

It would be possible to differentiate pronation, supination, and other degrees of

freedom with marker data from that trial. Similarly, posture during the experiment
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could defined and determined given the arrangement of markers. However, this dis-

ambiguation was not studied in the scope of this experiment but is future work.

3.1.3 Potential Effects on Algorithms

Given an understanding of the underlying variability of IMU placement on the human

body, the next steps are to understand how placement variations affect Euler angles,

which are commonly used in current motion estimations algorithms. Interpretation

of Euler angles should consider how estimating these parameters can be confounded

with the variability in IMU placement. Essentially, IMUs are in a kinematic chain

and the relative orientations between joint angles are dependent on placement and

calibration.

As an example, the mean Euler angles and standard deviations for IMU 3 for

motion A are shown in Figure 3-3. The solid line shows the average Euler angles

for IMU 3 for all five donnings for all participants. The shaded areas represent the

standard deviation calculated from the repetitions of motion A for each donning. For

example, the red line in the top graph of Figure 3-3 represents the average yaw of

IMU 3 for all repetitions within the second donning of each participant. The pink

shaded region represents the standard deviation across all subjects. Euler axes means

and standard deviations for all motions can be found in Appendix G. Although the

graphs in Appendix G show mean and standard deviation values for the entirety of

the motions, this section will only study the ranges of position measures and Euler

angles for the first epoch (initial placement).

3.1.3.1 Range of Placement Parameters During Initial Placement

First, the ranges of the dependent variables (distance, orientation, and rotation)

were calculated. The range was defined as the difference between the maximum and

minimum variable values for a particular IMU, for all motions and donnings for each

subject. A table of the ranges of each dependent variable for each subject, grouped

by IMU location, can be found in Appendix F.1. Table 3.5 shows the mean and
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Table 3.5: Mean and standard deviation of ranges of values for distance, orientation,
and rotation of all subjects within each IMU location grouped by motion

Motion IMU Distance (mm) Orientation (deg) Rotation (deg)
Mean SD Mean SD Mean SD

1 12.01 17.94 9.61 14.20 38.16 28.72
A 2 44.91 38.95 11.51 7.64 30.78 22.30

3 27.95 27.72 5.12 10.38 13.68 24.3.1
1 12.94 16.59 10.21 13.69 35.24 33.67

B 2 43.87 41.04 9.15 8.15 21.74 26.25
3 22.70 35.04 3.17 6.80 20.05 29.76
1 13.21 15.37 10.07 12.41 10.07 12.41

C 2 35.50 44.72 6.11 8.40 17.86 21.65
3 27.29 35.95 3.55 7.53 24.07 22.28
1 12.12 20.61 4.75 11.50 19.94 39.42

D 2 45.45 49.09 3.89 9.42 17.61 28.09
3 24.34 39.06 2.31 8.04 10.64 29.48
1 15.92 18.45 5.25 10.09 27.49 27.66

E 2 51.89 43.35 3.77 8.50 25.38 24.80
3 30.63 27.16 3.60 7.38 14.62 24.08
1 15.45 17.30 6.42 10.75 30.77 29.91

F 2 48.53 45.97 1.40 11.53 13.33 26.29
3 18.05 26.91 3.01 6.70 14.06 25.78
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Figure 3-3: Euler axes (Yaw, Pitch, Roll) mean and standard deviations values for

IMU 3 for multiple donnings of Motion A.
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standard deviation of all 22 subject ranges. grouped by IMU location and motion.

These numbers represent the average range you can expect from a subject during a

given motion for all three dependent variables for all three IMUs.

Distance for IMU 1 was defined as the distance between the centroid of IMU 1

and a marker on the center of the clavicle. Since the distance between these two

points is small when the strap is worn correctly, it can be expected that the average

range when pooling all subjects would also be small. The distance variable for IMU

2 corresponds to the distance of the centroid of IMU 2 to a marker on the shoulder

of the participant. The shoulder is the niost coniplex joint of all joints in this study.

The distance between an IMU on the bicep and a marker on the acromion can vary

depending on the starting position of a motion and the location of the hoop strap on

the bicep, which varies more than the strap used for IMU 1. The distance between

the centroid of IMU 3 and a marker on the outside of the elbow joint define the

distance variable for IMU 3. Variation in distance of IMU 3 caii be attributed to

pronation and supination of the forearm, where the total distance parameter would

change because the elbow joint would pronate relatively less than the forearm.

Orientation of all IMUs was defined as the angle between two vectors. The first
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vector was from the centroid of the IMU to the associated body marker used for the

distance measurement. The second vector was a vector from marker C to marker

A on the triad of the IMU, as seen in Figure 2-11. Orientation of IMU 1 could

affect algorithm estimations by confounding torso lateral flexion into the variability

in orientation of the IMU. Similarly, orientation of IMU 2 can couple movement

variability in different axes (which axis depends on the starting position of IMU 2)

with variability in the orientation of the IMU. Variability in the orientation of IMU

2 may be affected by shoulder posture since the marker on the acromion defines one

of the vectors for the calculation of orientation. These orientation changes confound

all three degrees of freedom in the shoulder. As with distance, differences in angles

rotated of the forearm and elbow during pronation and supination may lead to changes

in the orientation of IMU 3, counfounding elbow flexion and extention and elbow

pronation and supination.

Rotation was defined as the deviation, in degrees, about the local body curvature.

The chest is the least uniform local body curvature (as compared to the bicep and

forearm). Although participants were sized for the straps, muscle and bone movement

on the chest and back of a participant during different starting positions, as well as

the increased curvature on female participant's chests, could also lead to rotation of

the chest strap during initial placement. This large range of rotation could couple

variations in the torso rotation with variations in IMU rotation, especially when

studying small torso movements. Similarly, the use of the bicep and forearm muscles

during motions can cause tilts in IMUs 2 and 3 that confound estimations of rotation.

3.1.3.2 Range of Euler Angles During Initial Placement

Given that many algorithms use Euler angles of IMUs to estimate orientation, a

better method of determining the effect of IMU placement variability on algorithms

is to study the range of Euler angles experienced by the IMUs during repeated use.

Table 3.6 shows the average range of all three Euler angles at the first epoch for

each IMU location, grouped by motion. The Euler axes on the IMUs are shown in

Fig. 2-3. When determining ranges of Euler angles for different IMUs results have to
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Table 3.6: Average range (above) and standard deviation of ranges (below) of Euler
angles (in degrees) for all subjects, grouped by IMU location and motion.

IMU Euler Axis A B C D E F

Roll (X) 9.08 8.29 7.68 13.38 10.35 30.07
7.13 2.97 1.87 13.73 8.31 33.78

1 Pitch (Y) 5.40 5.82 8.15 6.36 6.17 9.30
3.29 1.36 4.59 6.16 5.60 2.42

48.55 32.04 14.33 24.09 21.97 44.19
Yaw (Z) 41.31 17.41 16.98 25.14 18.17 29.78

Roll (X) 29.06 20.02 20.40 43.34 98.64 23.52
35.44 22.31 26.35 7.60 45.11 13.64

2 Pitch (Y) 12.18 10.26 9.20 26.61 28.35 16.67
6.23 6.63 6.68 21.28 29.74 8.59

Yaw (Z) 22.28 25.29 13.73 7.49 99.66 6.27
17.66 23.78 6.34 4.55 25.72 8.19

4.36 20.69 21.79 55.70 20.53 29.51
Roll (X) 7.04 23.48 23.92 41.67 13.01 20.60

3 Pitch (Y) 29.98 19.24 8.86 26.55 30.86 29.02
28156 24.86 4.27 36.15 30.80 25.20

3.89 21.64 13.73 26.35 15.64 63.63
Yaw (Z) 3.81 13.96 10.66 15.26 24.07 40.66
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be grouped by motion because the starting positions can be rotated by as much as 90

degrees and would incorrectly show a large range for an IMU Euler angle if grouped

together.

To obtain the values in Table 3.6, all trials in all donnings for each subject were

grouped by motion and the Euler angles for each IMU at the first epoch was obtained.

The range was defined as the difference between the largest and smallest Euler angle

for a specific motion and IMU. The ranges shown in Table 3.6 are the averages of the

ranges and the standard deviation of all 22 subjects.

As can be seen in Fig. 2-3, the yaw axis of IMU 1 points in front of the participant.

Any deviation in this axis would be a result of the participant rotating in the coronal

plane (torso lateral flexion). This means that motion estimation algorithms with in-

appropriate or incomplete calibrations couple deviations in posture with variability of

IMUs. This can affect both standing (torso lateral flexion) and walking (determinants

of gait) estimations. The roll axis of IMU 1 represents deviations in the transverse

plane (torso rotation) and the yaw axis of IMU 1 represents deviations in the sagittal

plane (torso tilt). The large ranges for these axes will be affected by the participant's

posture.

The pitch axis (y-axis) of IMU 2 points in the same direction as the yaw axis of

IMU 1 when the arms are at the side. In that configuration, deviations about the pitch

axis of IMU 2 would be a result of torso lateral flexion of the participant. However,

the pitch axis of IMU 2 can also indicate torso rotation when the participant's arm is

held in front of them, and can indicate torso tilt when the participant's arm is held

in front of them and the shoulder is rotated. Similar to IMU 2, IMU 3 can indicate

different movements depending the starting position. The roll axis of IMU 3 can

indicate elbow pronation and supination at all times, but the same axes give insight

into torso lateral flexion when the arm is held out in front.

Table 3.6 shows that, even within the same IMU, the ranges of Euler angles

vary between different motions that have the same starting positions. The starting

position, as well as the location of the IMU on the body, have an effect on the Euler

angles of the IMU. Thus orientation estimations algorithms need to account for the
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Table 3.7: Main effects of Location, Donning, and Motion for initial placement of
garment configuration. A p-value of p<0.05 indicates significance.

Distance Orientation Rotation

Source F-Ratio p-Value F-Ratio p-Value F-Ratio p-Value

LOCATION 0.634 0.439 0.551 0.701 0.351 0.741
DONNING 1.451 0.256 0.954 0.495 0.329 0.898
MOTION 1.318 0.263 0.089 0.772 0.202 0.933

location on the body of the IMU as well as the functional motions performed.

3.2 Garment Mount Configuration

3.2.1 Effect of Initial Placement on Distance, Orientation,

and Rotation

The first specific aim tested the hypotheses that initial distance, orientation, and ro-

tation of IMUs are affected by (1) the number of times the sensors are donned, (2) the

type of functional motions performed, and (3) the location of the IMU. Participants

performed five donnings of the garment configuration, but within each donning, only

performed one repetition of one motion (either motion A or B) for this portion of the

study. Thirteen participants performed motion A.

A three-factor ANOVA was conducted for each dependent variable to test for ef-

fects of location, donning, and motion. No significant main effects were found using

the garment mount configuration. This can be attributed to the garment mount,

which has fewer attachment points than the strap mount configuration. Since the

garments have less embedded structure, it was expected to see increased placement

variability as compared to the strap configuration, and perhaps a garment worn sys-

tem with increased variability will not be able to distinguish differences based on the

effect size of the placement variability.

To compare variances, dependent variables were normalized and mean shifted for
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Table 3.8: Normalized and mean shifted location variances for all dependent variables

Variable 
Variance

IMU I IMU 2 IMU 3

Distance (mm/mm) 0.0019 *' 0.0277 *i 0.02595 on

Orientation (degrees/mm) 0.0304 *o 0.0541 *i 0.0472 ci

Rotation (degrees/mm) 0.0433 *o1 0.0868 *-1 0.0781 on

*, c, and < indicate significance (p <0.0005) between IMUs 1 and 2, 1 and 3, and 2
and 3, respectively.

all dependent variables. Levene's test showed significant differences in the variances

for all variables (p <0.0005) for all three IMU locations (Table 3.8). For distance,

location 2 was the most variable and location 1 was the least variable. For orientation,

location 2 was the most variable while location 1 was the least variable. For rotation,

location 2 was the most variable and location 1 was the least variable. Again, a

component of this variance may be attributed to mount type so it is important to

consider how the garment was implemented. IMUs 1, 2, and 3 were mounted onto the

garment using Velcro prior to data collection. The IMUs were not removed from this

position during all donnings. Because the garment was a long sleeve garment, the

two markers at the elbow and the marker on the shoulder were placed on top of the

garment, not on the participant's skin. The garments had a "V" neck and the sleeves

were short enough that the markers on the wrist and the clavicle were not affected.

Participants were instructed to pick a garment that was comfortable yet snug enough

for them to have confidence in placing the IMU in the same location.

Distance had consistently low variability for all IMUs, which could potentially be

explained by the markers being on the garment. If the garment was fitting enough,

the distance measurement would be less variable. A tight fitting garment would also

explain why orientation varied less than rotation. Although there was no strap to

help the IMU align, the IMU was still constrained to the garment, and if the garment

was tight enough to remain straightened along the length of the arm, IMUs 2 and 3

would have less range through which to vary in orientation. A similar explanation can

be used for IMU 1. A snug garment would prevent wrinkles when donned, ensuring
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the location between two IMUs is at a maximum limit. As for rotation, similar to the

straps, the garments allowed freedom of movement along the local body curvature

for IMUs 2 and 3, as evidence by the highest variability in the garment configuration

being IMU 2 for rotation.

3.3 Study Limitations

This study made use of strap and garment mounting configurations for the IMUs and

understands that not all sensors are mounted in this manner. These results, how-

ever, can inform sensor attachment design. While an arm brace was used to limit

the imprint on the skin, participants still had proprioceptive feedback which could

aid in re-alignment of the IMU. Additionally, the age of the subjects was based on

volunteers and availability. Care must be taken when applying these results to other

age ranges. IMU 4 was removed from the analysis due to dropped markers, limiting

where we can state if the rigid body model assumptions apply to the hand. The

garment configuration had limited motions performed, so currently, comparisons be-

tween garments can only be made between elbow flexion and extension, and elbow

pronation and supination. Finally, variability in the three dependent measures is

confounded by variability due to donning position, motor position errors, joint com-

plexity, effects of posture, and the underlying discretization of time and therefore we

cannot decouple the expectations of these measurements given a rigid body model

and the expectations of these measurements due to someone coupling a motion that

was not intended.
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Chapter 4

Conclusion

The accuracy of rigid body motion estimation is dependent on sensor placement

and calibration. Therefore, characterization of sensor placement is needed to aid in

development of algorithms and sensor attachment design for wearable motion capture

systems. This thesis first tested the hypotheses that initial placement (defined as

distance, orientation, and rotation) of IMUs located at the chest, bicep, and forearm

by a non-expert is affected by (1) the number of times the sensors are donned, (2) the

type of functional motions performed, and (3) the location of the IMU on the body.

Next, it tested the hypothesis that placement of IMUs varied throughout a motion

to determine whether a rigid-body assumption is still appropriate during functional

motions. Finally, given an understanding of the underlying variability, the effect of

this variability was inferred from the calculation of ranges of values commonly used

by motion capture algorithms.

This study made use of off-the-shelf strap mounting configurations for the IMUs

and found that the chest mount varied the least in initial placement in terms of

distance and rotation, but its orientation varied more than when the IMUs were placed

on the bicep and forearm. Although significant differences in IMU placement were

found between donnings, no consecutive effects were found, showing that repeated

donnings of a sensor suite do not lead to decreased variability in placement. It

also found that the lack of a guide to assist with starting and ending positions of

a motion results in significant differences in placement at the beginning and end
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of motions. The placement of the sensor on the human-body varies throughout a

motion, and cannot be expected to be the same even within a single donning due to

confounding variations in donning position, motor position errors, posture effects, and

the complexity of the joints studied, and thus the underlying assumption of a rigid-

body model used by motion capture algorithms might not be appropriate. Motion

capture algorithms need to account for the changes in position and Euler angles due

to natural human variability and calibration during multiple donnings of IMUs by

non-experts.

4.1 Summary of Contributions

The results presented in this study examined the effects of self-donning on IMU dis-

tance, orientation, and rotation at the chest, bicep, and forearm, both on initial

placement and during motions. It also studied the potential effects of variable ranges

on orientation estimation algorithms. The list of contributions from this study in-

clude:

" Developed a comprehensive database of both IMU data as well as external Vicon

motion capture data, that encompasses motions, locations, and donnings, for

use in future algorithm development.

" Determined that, given the variation in the placement measures of IMUs through-

out a motion, the rigid-body model used by motion capture algorithms might

not be appropriate.

" Quantified variances of IMU distance, orientation, and rotation at 3 locations

on the body to assist with future sensor mount designs.

* Determined that for strap configurations, orientation of the IMU at the chest

varies the most as compared to bicep and forearm IMU orientations. Thus,

algorithms that use chest mounts couple rotations in the coronal plane with

deviations of the IMU itself.

74

__ -- , - , 'V "



4.2 Potential Applications

This research was the first to characterize the way users vary placement of sensors

on the human body. Relating mounting locations, motions, and number of donnings

to IMU placement provides data to assist in designs for housing sensors and can aid

the development of quick don and doff sensor suites that can be reliably used by

a non-expert for real-time decision making. This study made use of IMUs but the

results can be applied to any sensor that uses the same size sensor suite and mounting

configurations and any wearable sensor should consider using these results to guide

the design of their sensors and interpret their data.

For example, let's say a designer wants to use a sensor to measure overall fatigue

of an athlete. The longitudinal axis of the electrode of an electromyography (EMG)

sensor should be aligned parallel to the length of the muscle fibers to obtain the best

readings [43]. In this case, an EMG mount design would want to limit the orientation

of the sensor. According to this study, orientation varies less for the bicep than for

the forearm. If the EMG is used as a measure for overall fatigue, a designer can now

make a quantitative decision on where to place an EMG sensor depending on the

functional motions likely to be performed and muscle groups likely to be activated.

If the designer is only interested in the forearm muscles in particular, then a different

mount should be considered if the Euler angle ranges at the forearm make the EMG

signals to small for the motions performed. Alternatively, they can consider different

motions that use larger ranges of the forearm muscles so the Euler angle ranges affaect

the EMG readings less.

Similarly, future algorithms can benefit from these results. By specifying the

location of the IMU on the body, algorithms can adapt thresholds for Euler angle

estimations to try and remove any confounding human movements. For example, if

studying small changes in human motion (like the tilt of a tight-rope walker during

a performance), estimations of Euler angle changes of an IMU on the chest (IMU 1)

will combine torso lateral tilt with the variability in placement of the IMU, especially

during small angle changes. Below a certain threshold, a future algorithm might weigh
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the values of an IMU located on the forearm of the performer (IMU 3) higher than the

values of IMU 1 located at the chest, since the forearms may also provide an indication

of how much the performer is adjusting their balance. Above that threshold, which is

based on the Euler angle ranges determined in this study, there is increased confidence

that changes in Euler angles of the IMU on the chest are representative of the lateral

tilt of the performer, and not just variations in the placement of the IMU at the

beginning of the study, or variations that the rigid body model is not capturing.
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Appendix A

Recruitment Emails

All emails were approved by the MIT Committee on the Use of Humans as Exper-

imental Subject (COUHES) and sent to MIT student groups, the Aeronautical and

Astronautical Engineering department, and the Mechanical Engineering department

at MIT.

A.1 Initial Recruitment Email

MITs Man Vehicle Laboratory is looking for volunteers to participate in a re-

search experiment studying the variability in placement of.inertial measurement

units (IMUs) on the human body. This study involves donning IMUs and per-

forming a set of predetermined motions inside a motion capture room. No

experience with IMUs or motion capture systems is necessary.

All participants will receive a $20 Amazon gift card for completing the experi-

ment. The study will take approximately 1.5 hours of your time. Participants

must be over the age of 18 and possess no limited range of motion, pain, or

discomfort when performing everyday tasks.

To participate in the study, send an email to Morris Vanegas at mvanegas [at]

mit [dot] edu with the subject "Human Variability Subject: [Your name]"

Thank you!

77



A.2 Reply Email

Hi! Thank you for volunteering to participate in this study!

Please choose and reply with the best day that fits your schedule from the follow-

ing Iink to participate in this study: Human Variability Experiment Available

Time Slots. Although the experiment is only expected to last 1.5 hours, we

encourage a 2-hour block to be able to handle unexpected delays.

A confirmation email will follow your date submission with further details about

the day of the experiment.

Once again, if you have any questions, please contact Morris Vanegas at mvane-

gasamit.edu.

A.3 Confirmation Email

Hello!

We have confirmed your slot as a participant in this study on [Date inserted].

Details about the experiment are below. Once again, send any questions Morris

Vanegas at mvanegasdmit.edu.

Attire

Upper Body

Small Inertial Measurement Units (IMU) will be strapped on directly onto your

skin, therefore tight-fitting clothing that leaves your arms exposed are best.

Examples include undershirts, sleeveless shirts, and tank tops. You will be

donning and doffing garments with sensors attached, therefore a tight fitting

shirt is preferred.

Lower Body
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No IMUs will be placed on your lower body, but baggy clothing can interfere

with the motion capture data. For the lower body, please wear comfortable

shorts or bottoms that are not too loose. Minimizing the movement of your

clothes is best.

Head

You will wear a cap during the experiment. Please plan your hair style for the

day accordingly. Wearing contacts for your vision is recommended.

Motion Capture

The Vicon motion capture system uses reflective markers to determine motion.

Therefore, do not bring clothing with reflective strips, patches, logos, or designs

to the experiment. Darker colored clothes are preferred. You will be provided

with a location to safely store any jewelry. No reflective clothing. The markers

(blue) and IMUs (red) will be placed on your body as described in the bottom

image. If possible, limit skin care lotion immediately before the study to allow

marker adhesive to work well.

Location

The experiment will take place in room 37-127. Please meet your experimenter

in the Man-Vehicle Laboratory waiting area in 37-144 at your confirmed time

slot (the room with a refrigerator). A locked room will be available to house

your possessions. Time has been allocated for changing into your clothes, so do

not feel obligated to walk around campus in your experiment attire.

79



80



Appendix B

Motion Descriptions for

Participants

Motion A:

Begin with your right arm completely extended directly in front of you with

your palm up. Place your left hand under your right tricep to maintain it level

to the ground. Bend at your right elbow to completely flex your bicep while

maintaining your forearm and hand in a straight line. Hold for 1 second. Extend

your right elbow to return to a position where your right arm is completely

extended in front of you with your palm up.

Motion B:

Begin with your right arm completely extended directly in front of you with

your palm up. Place your left hand under your right tricep to maintain it level

to the ground and to keep it from rotating. Rotate your wrist, forearm and

hand until your palm is facing the ground. Rotate your wrist, forearm and

hand until your palm is facing the ceiling.

Motion C:

Begin with your right arm completely extended directly in front of you, with

your palm facing forward and fingers pointed up. Place your left hand under
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your right forearm to maintain it level to the ground and to keep it from rotat-

ing. Using only your wrist, rotate your hand in a complete circle once starting

clockwise.

Motion D:

Begin with your right arm completely extended at your side with your palm

facing your thigh. Reach for the target above you and touch it with your

fingertips. Return to fully extended arm at your side with your palm facing

your thigh.

Motion E:

Begin this multi-step motion with your right arm completely extended at your

side with your palm facing your thigh. Keep your arm completely extended dur-

ing this entire motion. 1. Lift your arm 90 degrees until your arm is completely

extended in front of you, level to the ground, palm facing to your left. 2. Move

your arm 90 degrees to the right until your arm is completely extended to the

right, level to the ground, palm facing in front of you. 3. Lower your arm 90

degrees downward until your arm is completely extended at your side and your

palm is facing in front of you. 4. Rotate your entire arm at the shoulder to the

starting position where your arm is completely extended at your side and your

palm is facing your thigh.

Motion F:

Begin as if you were grabbing your wallet from your right back pocket with your

palm facing the back of the room. Move your hand in front of you with your

palm facing the ceiling as if you are handing your wallet over to the target.
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Appendix C

Matlab Calculations

C.1 Calculation of Independent Variables

The following is the matlab function getDistance.m, which calculates the distance of

each IMU centroid to the associated marker. Similar functions getOrientation.m and

getRotation.m were created and used in the processing of data.

function [ output ] = getDistance( markers, location, epoch, subject

% markers = acq to specific trial

% location = 1,2 or 3, for a specific IMU

% epoch = 1, 10, 20, 30 etc. as a percentage of where in the motion to

% get the data

% global variable to use specific subject anthropometry

global anthropometry;

% Get the range of useful data, without the steady state

indl = find(-isnan(markers.RWRB(:,3)),1,'first');

ind2 = find(-isnan(markers.RWRB(:,3)),1,'last');

range = ind2-indl; % new range with steady state value omitted

% Define the frame you are using, for this particular epoch
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if epoch == 1

frame = indl;

else

% just use this new range

try

% epoch

frame =

percent of the range, plus the start index

indl + floor(range*epoch/100);

catch

frame = 0;

end

end

if frame==0

output = NaN;

else

if location == 1

try

% IMU centroid

centroid = [(markers.IMlB(frame,1)+markers.IMlC(frame,1)

(markers.IMlB(frame,2)+markers.IMlC(frame,2)

(markers.IMlB(frame,3)+markers.IMlC(frame,3)

% IMU distance

distance = sqrt

to associated marker

((centroid(1,1)-markers.CLAV(frame,1)).^2

(centroid(1,2)-markers.CLAV(frame,2)).^2

(centroid(1,3)-markers.CLAV(frame,3)).^2

% Scaling factor with associated body measure

scale = anthropometry(subject, 1);

% Check for zeros

if (markers.IMlB(frame,1)==0 11 markers.IM1B(frame,2)==0

markers.IMlB(frame,3)=0 I...
markers.IM1C(frame,1)==0

markers.IMlC(frame,2)==0

markers.IMlC(frame,3)==0 ..
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markers.CLAV(frame,l)==O

markers.CLAV(frame,2)==O .

markers.CLAV(frame,3)==O)

output = NaN;

else

% Scale

output = distance/scale;

end

catch

output = NaN;

end

elseif location == 2

try

% IMU centroid

centroid = [(markers.IM2B(frame,1)+markers.IM2C(frame,1))/2,.

(markers.IM2B(frame,2)+markers.IM2C(frame,2))/2,.

(markers.IM2B(frame,3)+markers.IM2C(frame,3))/2];

% IMU distance to associated marker

distance = sqrt((centroid(1,1)-markers.RSHO(frame,1)).^2 +

(centroid(1,2)-markers.RSHO(frame,2)).^2 +

(centroid(1,3)-markers.RSHO(frame,3)).^2 );

% Scaling factor with associated body measure

scale = anthropometry(subject, 2);

% Check for zeros

if (markers.RSHO(frame,1)==O

markers.RSHO(frame,3)

markers.IM2B(frame,1)

markers.IM2B(frame,2)

markers.IM2B(frame,3)

markers.IM2C(frame,1)

markers.IM2C(frame,2)

markers.IM2C(frame,3)

11 markers.RSHO(frame,2)==O

==0 ...

==0 ...

==0 ...

==0 ...

==O ...

==0 ...

==O)
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output = NaN;

else

% Scale

output = distance/scale;

end

I
catch

output = NaN;

end

elseif location == 3

try

% IMU centroid

centroid = [(markers.IM3B(frame,l)+markers.IM3C(frame,l))/2,.

(markers.IM3B(frame,2)+markers.IM3C(frame,2))/2,.

(markers.IM3B(frame,3)+markers.IM3C(frame,3))/2];

% IMU distance to associated marker

distance = sqrt((centroid(1,l)-markers.RELB(frame,l)).^2 +

(centroid(1,2)-markers.RELB(frame,2)).^2 +

(centroid(1,3)-markers.RELB(frame,3)).^2 );

% Scaling factor with associated body measure

scale = anthropometry(subject, 3);

% Check for zeros

if (markers.RELB(frarne,1)==O

markers.RELB(frame,3)==O

markers.IM3B(frame,1)==O

markers.IM3B(frame,2)==O

markers.IM3B(frame,3)==O

markers.IM3C(frame,1)==O

markers.IM3C(frame,2)==O

markers.IM3C(frame,3)==O

markers.RELB(frame,2)==O

1 . . .

I . .

I . .

I . .

II . .

86



ma

output = NaN;

else

% Scale

output = distance/scale;

end

catch

output = NaN;

end

end % IMU location

end % frame = 0

end

C.2 Matlab script to trim motions

function [ output ] = plotMarkers( markers, motion

markers.RWRB(markers.RWRB == 0) = NaN;

markers2 = markers;

hold on

figure (1)

loc=1;

if motion=='A'

loc=1;

elseif motion=='B'

loc=2;

elseif motion=='C'

loc=3;

elseif motion=='D'

loc=4;

elseif motion=='E'
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loc=5;

elseif motion=='F'

loc=6;

end

subplot (2, 6, loc);

%X = linspace(0,1,length(markers.RWRB) );

%original = length(markers.RWRB);

plot (markers.RWRB (:,3));

% WITH 3 SD CUTOFF

% 120 hz. 250ns = .25 of second =

framesbeg = 20; framesend = 36;

if motion=='A'

framesbeg = 20;

elseif motion=='E'

framesbeg = 20;

elseif motion=='C'

framesbeg = 20;

elseif motion=='D'

framesbeg = 35;

elseif motion=='E'

framesbeg = 35;

elseif motion=='F'

framesbeg = 20;

end

.25 of 120 = 30 length

framesend = 36;

framesend = 36;

framesend = 36;

framesend = 36;

framesend = 36;

framesend = 36;

cutoff = 3; cutoffend = 3;

indl = find(-isnan(markers2.RWRB(:,3)),1,'first');

ind2 = find(-isnan(markers2.RWRB(:,3)),1,'last');

last = length(markers2.RWRB(:,3));

start = [nanmean(markers2.RWRB(indl:indl+framesbeg,3)),...

nanstd(markers2.RWRB(indl:indl+framesbeg,3))];

stop = [nanmean(markers2.RWRB(ind2-framesend:ind2,3)),...

nanstd(markers2.RWRB(ind2-framesend:ind2,3))];
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Hub

a=1;

b=2;

for i = 1:iast

diff = markers2.RWRB(i,3);

if (diff > (start(1) + cutoff*start(2))

diff < (start (1) -cutoff*start (2)))

markers2.RWRB(1:i,3) = NaN;

a = i;

break

end

end

for i = last:-1:1

diff = markers2.RWRB(i,3);

if (diff > (stop(1) + cutoffend*stop(2)))

markers2.RWRB(i:last,3) = NaN;

b = i;

break

end

end

markers2.RWRB(-any(isnan(markers2.RWRB),2),:);

hold on

figure(1)

loc = 9;

if motion=='A'

loc=7;

elseif motion=='B'

loc=8;

elseif motion=='C'

loc=9;

elseif motion=='D'

loc=10;

elseif motion=='E'

loc=ll;

elseif motion=='F'
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loc=12;

end

subplot (2, 6, loc)

x2 = linspace(0,100,b-a+l);

plot (x2,markers2.RWRB(a:b,3))

set(gca, 'xtick',0:10:100)

output = markers2;

end
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C.3 Untrimmed and trimmed data comparison

8

t 414- 2

448~~~

C w)anC

8 82 8

/-4

(wu > anR

Figure C-1: One subject's RWRB marker z values during multiple repetitions of each

motion before (top) and after (bottom) being trimmed. The bottom row axis is in

percentage of total motion time, or epoch.
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Appendix D

Initial Placement, Strap

Configuration Analysis

D.1 Post-hoc Tukey Tests

D.2 Post-hoc Student-Newman-Keuls Tests

D.3 Levene's test for equality of variances

D.4 Levene's test graphs for all location compar-

isons
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Table D.1: Tukey Post-hoc pairwise comparison tests for Location, Donning, and

Motion during initial placement of IMU

Distance Orientation Rotation

Location(i) Location(j) Difference p-Value Difference p-Value Difference p-Value

1 2 -0.037 0 0.044 0 0 0
1 3 -0.023 0 0.043 0 0 0
2 3 0.014 0 -0.001 0.837 0 0.554

Donning(i) Donning(j) Difference p-Value Difference p-Value Difference p-Value

1 2 -0.007 0 -0.031 0 0 0
1 3 0.002 0.225 -0.025 0 -0.001 0
1 4 0.017 0 0.005 0.065 -0.001 0
1 5 0.002 0.458 -0.002 0.696 -0.001 0
2 3 0.01 0 0.006 0.007 0 0
2 4 0.024 0 0.036 0 0 0
2 5 0.009 0 0.028 0 0 0
3 4 0.014 0 0.029 0 0 0.984
3 5 0 0.995 0.022 0 0 1
4 5 -0.015 0 -0.007 0.002 0 0.984

Motion(i) Motion(j) Difference p-Value Difference p-Value Difference p-Value

A B 0.005 0 0.01 0 0 0
A C 0.007 0 0.012 0 0 0.979
A D -0.012 0 0.049 0 -0.001 0
A E -0.013 0 0.048 0 0 0
A F -0.013 0 0.05 0 -0.001 0
B C 0.001 0.94 0.003 0.675 0 0
B D -0.017 0 0.039 0 -0.001 0
B E -0.019 0 0.039 0 -0.001 0
B F -0.019 0 0.04 0 -0.001 0
C D -0.019 0 0.037 0 -0.001 0
C E -0.02 0 0.036 0 0 0
C F -0.02 0 0.037 0 -0.001 0
D E -0.001 0.933 -0.001 1 0 0
D F -0.001 0.941 0.001 1 0 0
E F 0 1 0.001 0.99 -0.001 0
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Distance Orientation Rotation

Sub-Group LOCATION Group Mean Group Size p-Value Sub-Group LOCATION r Group Size p-Value Sub-Group LOCATION roup Group Size p-Value

1 1 0.021 26,427.00 1 1 2 0.008 25,286.00 1 1 0 22,824.00 1
2 3 0.044 26,619.00 1 3 0.009 22,215.00 0.559 2 2 0 21,564.00
3 2 0.058 28,915.00 1 2 1 0.052 23,869.00 1 3 0 19,040.00 0.269

Sub-Croup DONNING Croup Mean Group Size p-Value Sub-Croup DONNING G Croup Size p-Value Sub-Croup DONNING Croup Size p-Value

1 4 0.027 14,827.00 1 1 4 0.008 12,666.00 1 1 1 0 15,201.00 1
2 3 0.041 15,724.00 2 1 0.013 16,665.00 2 2 0 14,518.00 1

5 0.042 15,050.00 5 0.015 12,598.00 0.193 3 5 0 10,828.00
1 0.044 18,167.00 0.095 3 3 0.037 13,466.00 1 3 0 11,854.00

3 2 0.051 18,193.00 1 4 2 0.043 15,975.00 1 4 0 11,027.00 0.825

Sub-Group MOTION Group Mean Group Size p-Value Sub-Group MOTION Group Size p-Value Sub-Group MOTION Gop Group Size p-Value

1 3 0.03 14,938.00 '1 6 0.002 11,702.00 1 2 -0.001 11,830.00 1
2 0.031 14,655.00 0371 4 0.002 10,518.00 2 1 0 11,262.00

2 1 0.036 13,380.00 1 5 0.003 10,823.00 0.8 3 0 11,779.00 0.483
3 4 0.048 12,264.00 2 3 0.039 13,514.00 3 5 0 9,358.00 1

6 0.05 14,051.00 2 0.042 13,174.00 0.159 4 4 0 8,546.00 1
5 0.05 12,673.00 0.57 3 1 0.051 11,639.00 1 5 6 0.001 10,653.00 1

c.fl
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Table D.3: Levene's test to determine which IMU Location varied most

Distance Orientation Rotation

LOCATION Mean Variance p-Value Mean Variance p-Value Mean Variance p-Value

1 0.022 0.004 0.051 0.065 0 0
0 0 02 0.056 0.017 0.011 0.002 0 0

1 0.022 0.004 0 0.051 0.065 0 0 0
3 0.044 0.012 0.009 0.004 0

0.056 0.017 0 0.011 0.002 0 0 0
3 0.044 0.012 0.009 0.004 0
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Figure D-1: Graphs showing comparisons of two variances for all combinations of
IMU locations
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Appendix E

Epochs, Strap Configuration

Analysis

E.1 Conover-Inman Post-hoc tests for distance, ori-

entation, and rotation for all motions
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Table E.1: Motion A Conover-Inman post-hoc tests for distance. Red indicates p
<0.0033

DISTANCE
IMU 1

0.0033 1 10 20 30 40 50 60 70 80 90 100
1

10 0418

20 0 454 0.99

30 0-007 0.035 0,042

40 0.152 0404 0416 0304

50 0.996 0566 0.585 0031 0-249

60 0188 0043 0065 0,018 0308

70 0-885 0359 0393 0-006 0.132 0.911 0.252

80 0.017 0,098 0114 0.496 0.626 0.078 0.016

90 0922 0.507 0,539 0011 0,191 0946 0.178 0.817 003

100 0 158 0.024 0,035 0012 0314 0 886 0.233 0.154

IMU 2
0.0033 1 10 20 30 40 50 60 70 80 90 100

1
10 0304

20 0,098 0532

30 0,045 0316 0695

40 0112 0.01
50 0.388 0065 0014 0006 0489
60 0 726 0 187 0.056 0.025 0.246 0.633
70 0 715 0506 0 196 0.098 0 051 0224 0,487

80 0.297 0984 0547 0.328 001 0063 0183 0495

90 0019 0182 0,473 0751 001 0046 0191

100 0007 0015
IMU 3

0.00331 1 10 20 30 40 50 60 70 80 90 100

10
20
30
40

50
60

70
80
90

100

0297

0.279

0.095

0046
0053 0845

0033

0.573 0126 0151

0249 0152

0.036 0.015
0539 0684 0,018 0.02

0.005
0,005

0037
0.325 0.281

0094 0.326
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Table E.2: Motion A Conover-Inman post-1hoc tests for orientation. Red indicates p
<0.0033

ORIENTATION
IMU 1

0.0033 1 10 20 30 40 50 60 70 80 90 100

1
10 0.659

20 0112 0 043

30
40 0042 0.413

50 059 0,194

60 0085 0172 0.645 0.066

70 0026 0008 0.546 0011 0.123 0.241

80 0936 0.624 0,159 0 046

90 0,104 0.095 0486 0032 0.817 0.304

100 0.004 0.012 0.005

IMU 2
0.0033 1 10 20 30 40 50 60 70 80 90 100

1
10 0084

20
30 0124

40 058 0038

50 0.493 0 401 0.221

60 0724 0.068 0.858 0315

70 0.08 0005 0026 0.021

80 0599 0236 ....

90 0

100 0025

IMU 3
0.00331 1 10 20 30 40 50 60 70 80 90 100

11
10
20
30
40
50
60
70
80
90

100

0.009

0
0

0 03
0.031

0188 0238

0.41

0.005
0.276

0,079 0.337

0 0
0 0 0

0.004
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Table E.3: Motion A Conover-Inman post-hoc tests for rotation. Red indicates p
<0.0033

ROTATION
IMU 1

0.0033 1 10 20 30 40 50 60 70 80 90 100
1

10 0391

20 03 0.815

30 0059 0216 0315

40 0.018

50 0.054 0.73

60 0005 0014 0.239 0.171 0-349

70 0036 0192 0312 0,871 0004 0-021 0.121

80 0-632 0.201 0,153 0.029 0.016

90 0009 0025 0.382 0068 0.18 0.679 0.216

100 0126 0,501 0694 0464 0.004 0-024 0,491 0.057 0.045

IMU 2

0.0033 1 10 20 30 40 50 60 70 80 90 100
1

10 0734

20

30 Ot.

40 0 0.007

50 0 0006
60 0.082 0361

70 0,78 0 011

80 0,122 0231 0013

90 0004 0467 0.086

100 0904 0.035 0 594

IMU 3
0.00331 1 10 20 30 40 50 60 70 80 90 100

0 982
0.574 0 567

0,005 0005 0,032
0.573 0 598 0.263

0,004 0.023
0.015

0094 0,097 0.29

0 11 0.123 0.036

0729 0.75 0.379
0303 0303 0639

0.877
0694 0808
028 0,022 0223 0158

0274
0 853 005

0115 0113 0088 0061 0.585

100

10

20

30
40

50

60

70
80

90

100

0.228

0012 0185

* U



Table E.4: Motion B Conover-Inman post-hoc tests for distance. Red indicates p
<0.0033

DISTANCE
IMU 1

0.0033 1 10 20 30 40 50 60 70 80 90 100
1

10 0.84
20 0,195 0,271

30 0.948 0891 0.218

40 0655 0,806 0392 0.703

50 0.184 0257 0.976 0207 0375

60 0.846 0.693 0-14 0.796 0-525 0.132
70 0.3 0397 0,825 033 0543 0-802 0225

80 0.637 0785 0.415 0684 0.976 0.397 0,51 0,567

90 0.752 0.605 011 0.704 0.448 0 103 0,904 0.183 0.435
100 0.754 0.608 0.113 0706 0452 0.106 0.905 0.186 0.439 1

IMU 2
0.0033 1 10 20 30 40 50 60 70 80 90 100

1
10 0378
20 0.1 045

30 0.063 0331 0825

40 0,679 0206 0045 0.027

50 0448 0.91 0389 0.283 0253

60 0013 0076 0121 0.01

70 0962 0,368 0.101 0 065 0724 0,434

80 0.68 0637 0.217 0148 0416 0.724 0.655

90 0176 0643 0,768 0607 0,085 0-567 0 04 0175 0347

100 0-145

IMU 3
0.00331 1 10 20 30 40 50 60 70 80 90 100

10
20
30
40

50
60
70
80
90

100

0459
0.38

0 105
0.103
0.018 0,449

0.022 0122

0.076 0 013
0.328 0.087
0.377 0867
0.005 0034

0.336 0.807
0902 0,537
0.081 0.014

01
0.13 0.94

0.219 0.005
0034

0.008
0409

0.01 0.068
0,057

101



MMPIL-

Table E.5: Motion B Conover-Innan post-hoc tests for orientation. Red indicates p
<0.0033

ORIENTATION
IMU 1

0.0033 1 10 20 30 40 50 60 70 80 90 100
1

10 0117
20 073 0054

30 0.459 0,409 0276

40 03 0592 0165 0.771

50 0144 0.023 0046

60 0222 0748 0117 0624 0.838 0079

70 0096 0 884 0,045 0 345 0506 0205 0649

80 045 0423 027 0.984 0787 0025 0.64 0.358

90 0207 0778 0.108 0596 0,807 0086 0968 0.677 0612

100
IMU 2

0.0033 1 10 20 30 40 50 60 70 80 90 100

1
10 0.447

20 009 0.355

30
40 0004 0555

50 0,689 0,848

60 0124 0035 0055

70 0.005 0044 0275 002 008 0.053

80 0025 0148 0616 0016 0009 0,539

90 0004 0.04 0263 0019 0078 0,051 0.991 0.526

100 0952 0614 0.747 0125 003 0,005 0.029

IMU 3
0.00331 1 10 20 30 40 50 60 70 80 90 100

0896
0296
0261

0234

0205 0.921

0086 0062 0.475 0.545

0,843 0938 0238 021 0,07

013 0,097 0,596 0,67 0867 0105
0.004 0006 0034

0007 0.004 0083 0107 0313 0,006

0 024

0.312
0-247 0 304 0.048

102

10
20
30
40

50
60

70
80
90

100

0007
0 004

0092
0 12

0 359
0 006
0283

0216
0026
0887

U U



Table E.6: Motion B Conover-Inman post-hoc tests for rotation. Red indicates p

<0.0033

ROTATION
IMU 1

0.0033 1 10 20 30 40 50 60 70 80 90 100

1
10 0.641

20 0.53 0.871

30 0.3 0.564 0 679

40 0.37 0.665 0788 0884
50 0.945 0689 0.574 0.33 0405

60 0.208 0.42 0518 0813 0.703 0.231

70 0882 0546 0447 0.246 0307 0.828 0169

80 0 052 0135 0.184 0.36 0.287 0.059 0.504 0.041

90 0.654 0.362 0284 0.141 0 182 0,604 0.091 0.772 0,018

100 0,503 0829 0954 0729 0838 0.544 0.566 0,424 0214 0.27

IMU 2
0.0033 1 10 20 30 40 50 60 70 80 90 100

1
10 0.506

20
30 0
40 0 0
50 0051
60 0.843 0102

70 0.004 0,062

80 0362

90 0.007 015 0,583

100 0014 0.037 0.769

IMU 3
0.00331 1 10 20 30 40 50 60 70 80 90 100

11

10
20
30
40

50
60
70
80
90

100

0479
0.046 0.014

0.115
0.277
0.426

0407
0.401 098

0
0
0

0 0

0.106

0.046
0.0270 0 799

103

-fI



Table E.7: Motion C Conover-Inman post-hoc tests for distance. Red indicates p
<0.0033

DISTANCE
IMU 1

0.0033 1 10 20 30 40 50 60 70 80 90 100
1

10 0,399
20 0.154 0561
30 017 058 0.995

40 0.384 0,078 0.017 0,022

50 0,891 048 0197 0,215 0,31

60 0.007 0.05 0 145 0-157 0.009

70 0.525 0866 0.471 0489 0,134 0.614 0043

80 027 0766 0.8 0,812 0.046 0.331 0107 0655

90 0.262 0,774 0.774 0-787 0.041 0 323 0,091 0.659 0,983

100 0394 0979 0.589 0606 0.08 0.472 0.057 0849 079 0799

IMU 2
0.0033 1 10 20 30 40 50 60 70 80 90 100

1
10 026

20 0,608 0,552

30 0948 0.301 0.661

40 0.046 0.373 0145 006

50 0053 0,013 0004 0.307

60 0007 0087
70 0058 0015 0004 0315 0995 0095

80 0.017 0199 0065 0023 0.701 0.523 002 0529

90 0044 0309 0479 0323 01
100

IMU 3
0.00331 1 10 20 30 40 50 60 70 80 90 100

I
0 989

0027 0,023 0102
0,623

0.233 0226 001
0 74

0.025 0022 0.132
0032 0.029 0,108
0254 0247 0011
0,077 0065

0288
0,333
0.238
0.939
0 983
0 327

0049
0889 0.039
0337 0309 0.282
0,291 0.356 0242

0.05 0.976 004
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10
20
30
40

50
60
70
80
90

100

0.924
0.304 0 349

0 004



Table E.8: Motion C Conover-Inman post-hoc tests for orientation. Red indicates p
<0.0033

ORIENTATION
IMU 1

0.0033 1 10 20 30 40 50 60 70 80 90 100

1
10 0,129

20 0.881 0.08

30 0.032 0.507 0016

40 0.814 0187 0,688 0.049
50 0-588 0.332 0,472 0 108 0,75

60 0 598 0,347 0485 0119 0756 0-998

70 0126 0927 0081 0591 018 0312 0.326

80 0 006 0 192 0.514 001 0.027 0 032 0.25

90 019 0.831 0,125 0-382 0269 0.446 0.461 0769 0.131

100 0 009

IMU 2
0.0033 1 10 20 30 40 50 60 70 80 90 100

1
10 0.125
20 0,761 0068
30 0.296 0.011 0.462

40 0911 0.1 0847 0.351

50 017 0,871 0096 0.017 0 138

60 0564 0352 0.383 011 0.492 0441
70 0 745 0.065 0 984 0,474 0 831 0.092 0 372

80 0.918 0,151 0.684 0.251 083 0.203 0.632 0.669

90 0.091 0.064 0,01

100
IMU 3

0.00331 1 10 20 30 40 50 60 70 80 90 100

0 536
0.024

0.029 0004 0.988
0 136

0.977 0.521 0028
0116 0026 059

059 0.948 0.005

0 155

0.033
0594

0.006

0545 0.198 0.076 0.087

006 0.127

0.574 0036

0.571 0.281 0,238

105

10
20

30
40

50

60
70

80
90

100

652



Table E.9: Motion C Conover-Inian post-hoc tests for rotation. Red indicates p
<0.0033

ROTATION
IMU 1

0.0033 1 10 20 30 40 50 60 70 80 90 100
1

10 0811

20 0005 0008

30 0,06 0029

40 0705 0-886 0,012 002
50 0945 0756 0004 0068 0652

60 0322 0.211 0.405 0166 0353

70 0 93 0747 0005 0.081 0,647 0983 0378

80 0581 0,742 0027 0015 0 848 0.534 0,129 0.533

90 0493 0646 0029 0,009 0752 0447 0092 0.449 091

100 0.814 1 0009 0.033 0889 0.76 022 0751 0.747 0.654

IMU 2
0.0033 1 10 20 30 40 50 60 70 80 90 100

1
10 0323
20
30 0136

40 0318 0604

50 0.624 0045 013

60 0039 0014 0044

70 0038 0014 3. 0044 0.993
80 0987 0329 0036 0.035

90 0115 0548 0117

100 0,008 0.039

IMU 3
0.0033 1 10 20 30 40 50 60 70 80 90 100

1
10
20
30
40

50
60
70
80
90

100

0.403

0.026 0.176
0.011 0.091

0 004

0422 0.993
0231

0224 0,012
0 329

0.723
0121 0239
0185 0098 0.005

0 0 0 0 0 768

106

I
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Table E.10: Motion D Conover-Inman post-hoc tests for distance. Red indicates p
<0.0033

DISTANCE
IMU 1

0.0033 1 10 20 30 40 50 60 70 80 90 100
1

10 0335
20 0127 0013

30 0029

40

50 0179

60 0 0.008 0245

70 0405 0504 0.037

80 0164 0 055

90 0128 0013 099 0027 0

100 0291 0045 064 0.009 0 0 0 C 0.647

IMU 2
0.0033 1 10 20 30 40 50 60 70 80 90 100

1
10
20 0

30 0 0
40 0 0
50 0883

60 0 54

70 0242

80 0752 . 0 0173

90 0417 0 0
100 1

IMU 3
0.00331 1 10 20 30 40 50 60 70 80 90 100

11
10
20
30
40
50
60
70
80
90

100

0.022
0055

0363

0.644
0093
0287

( I
0 32

0.813 0007
0,04 0,004 0928 0656

0 55

0467

0033
0.086

0 915
0.009
0 239

0.006
0265

0.021

107

I1

I



Table E.11: Motion D Conover-Inman post-hoc tests for orientation. Red indicates
p <0.0033

ORIENTATION
IMU 1

0.0033 1 10 20 30 40 50 60 70 80 90 100
1

10 0775

20
30 0.698

40 0062 0038 0-129 0-077

50 0979 0-787 0.205

60 0.008 0.015

70 0107

80 0-063 017 0,173 0137

90 0.229 0,128 0551 0359 0
100 0.034 0.017 0022 0011 0809 0.085 0274

IMU 2
0.0033 1 10 20 30 40 50 60 70 80 90 100

1
10 002

20
30
40 0 0,005

50 0 039

60 0.026

70 0 093

80 0706 0075 0 0.008

90 0203

100 1 017
IMU 3

0.00331 1 10 20 30 40 50 60 70 80 90 100

0 653
0036 0029
0446 0169

07 0987 0.103 0.251
0037 0038 0 791 0,004

0.023

0632 0.371 0.028 0876

0 004

0195 0267 0-543 0-038

0,094

0423 0.027 0.043
0.015

0368 0.445

108

IW-

10
20
30
40

50
60
70
80
90

100

0.28
0.393
0 509
0073
0472
0422

0 168
0.004
0-915 0.117 .uu



Table E. 12: Motion D Conover-Ininan post-hoc tests for rotation. Red indicates p
<0.0033

ROTATION
IMU 1

0.0033 1 10 20 30 40 50 60 70 80 90 100
1

10 0573

20 0.435 0-825

30 0109 0,283 0.39

40

50 032

60 072 0479

70 0.008

80 0808 043 0317 0073 0

90 0.776 0.782 0.62 0.183 0 0 0.605

100 0 163 0.405 0,544 0 772 011 0.268

IMU 2
0.0033 1 10 20 30 40 50 60 70 80 90 100

1
10 0,164

20
30 0""
40 0022 0,234

50 0094 0053 0472

60 0.006 0.724 0.473 0.171

70 0644 0.694 0005 0 042 0113 0,015

80 0049 0373 0.358
90 0.007 0.014

100 0.01 0.222 0941 0.384 0482 0031
IMU 3

0.00331 1 10 20 30 40 50 60 70 80 90 100

10
20
30
40
50
60
70
80
90

100

0.037
0.484 0.079

0.63 0.005
0.219 0.492
0.168 0929
0 79 0.038

0 105

0 188
0 189
0.467
0 329
0.371

0 075
0004 0.069 0698

0883 0.176 0.136
0.008

109
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Table E. 13: Motion E Conover-Inman post-hoc tests for distance. Red indicates p
<0.0033

DISTANCE
IMU 1

0.0033 1 10 20 30 40 50 60 70 80 90 100
1

10 002
20

30 0.147

40 014 0-996

50 0048 0.614 0603

60 0,187 0.857 0-858 048

70 0018 0109

so 023 0247 0
90 014 0,382 0 0 0 0 0C 0.776

100 0349 016 0,796 0.589

IMU 2
0.0033 1 10 20 30 40 50 60 70 80 90 100

1
10 0175
20
30
40 0 0906

50 0

60 0359 0377 0091

70 0193 0027 0024 0-047

80
90 0.021

100
IMU 3

0.00331 1 10 20 30 40 50 60 70 so 90 100

10
20
30
40

50

60
70

so
90

100

06
0.093 0027

0

0001

C0 ,

o 0005
0462

0.042 007
0

u u u 0

0 0 0 0

0
0
0

0277

0.043

110



Table E. 14: Motion E Conover-Inman post-hoc tests for orientation. Red indicates p
<0.0033

ORIENTATION
IMU 1

0.0033 1 10 20 30 40 50 60 70 80 90 100

1
10 0124

20 0056 0645

30 0.094 0258

40 0,008 0.041 0361

50

60 0.07

70 0.543 0222

80 0 004 0025 0.281 0.892

90 0.032 0124 0.719 0.551 0 0447

100 0,02 0451 0.812 0329 0,05 0.029 0157

IMU 2
0.0033 1 10 20 30 40 50 60 70 80 90 100

1
10
20 0

30 0 0
40

50 0.02 0007 0.441

60 0.005

70 0024 0078

80 0023 0 0613
90 0027 0 0 0 0,415 0718

100 0.703 0.818 0,479

IMU 3
0.00331 1 10 20 30 40 50 60 70 80 90 100

11

0.043
0.008 0,411

0.21 0.681 0298
0,027 0.004

0703
0.775 0 233 0,088 0.457

0.093 0.289 0.076 0.434

111

___ I

10
20

30

40
50

60
70

80
90

100

0 04
0.023

0006 0818
0,295

0.548 0.115

0 102
0197 0,48 0.022

i
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Table E.15: Motion E Conover-Inman post-hoc tests for rotation. Red indicates p

<0.0033

ROTATION
IMU 1

0.0033 1 10 20 30 40 50 60 70 80 90 100
1

10

20 0417

30
40 0,478

50 0015 0136 0012 0066

60 0,006 0074 0026 0123 0761

70 0636 0209 0004

80 0312 0076 0.596

90 0763 0,268 0.005 0.858 0.47

100 0535
IMU 2

0.0033 1 10 20 30 40 50 60 70 80 90 100

1

10
20 0

30 0 0

40 0

50 0.015 0.942

60 0341 0043 0417 0051 0.064

70 0.27 0,426 0.473 0.193

80 0.241 0254 0148

90 0.201

100 035 0,681

IMU 3
0.00331 1 10 20 30 40 50 60 70 80 90 100

10

20
30
40

50

60
70
80
go

100

0484

0,012

0

0011

0 157

0081 0402

0.007
0048

0022

0829 0031

0.048
0.23

0431 0016 0811

J VU' 0.073

112



Table E.16: Motion F Conover-Inmian post-hoc tests for distance. Red indicates p

<0.0033

DISTANCE
iMU 1

0.0033 1 10 20 30 40 50 60 70 80 90 100

1
10 0752

20 0878 0.632

30 0,028 0.055 0.018

40
50 0459

60 0004 0.21 0.041

70 038 0.037

80 0,027 0055 0017 0,913 0,296

90 0.716 0961 0598 0061 0 0004 0.061

100 0133 0,064 0174 0.057

IMU 2
0.0033 1 10 20 30 40 50 60 70 80 90 100

1

10 0.036

20 0039

30
40 016

50 0.016 0.049 0.2

60 0.69 0008 013

70 0344 0386 0009

80 0476 0.273 0.005 0.836

90 0043 0.927 0.032 0 0,427 0.305

100 0 006 0.587 0.093 0.173 0109 0,52

IMU 3
0.0033 1 10 20 30 40 50 60 70 80 90 100

10
20
30
40
50
60
70
80
90

100

0016
0.019
0019
001

0 722
0008

0221
0383
0 106

0.028

0,035
0.286

0 796

0019
0825 0.007

005
0023 0.8270644 0.019 0023

113



Table E. 17: Motion F Conover-Inman post-hoc tests for orientation. Red indicates p
<0.0033

ORIENTATION
IMU 1

0.0033 1 10 20 30 40 50 60 70 80 90 100
1

10 0995

20 0044 0,041

30 0-009

40 0,012 0-991

50 0078 0-455 0.474

60 0021 0.024

70 0,012

80 0.141 0.15 0.026 0.354

90 0873 0.867 0 342 0-021 0159

100 0013 0.012 0 684 0.021 0.026 0148 0007

IMU 2
0.0033 1 10 20 30 40 50 60 70 80 90 100

1

10 093
20 0.758 0709

30
40

50 0 0 0357

60
70 069 0751 0543 0 u 0

80 0.01 0 0

90 0,01 0771

100 0.971 0901 0777 0.664

IMU 3
0.00331 1 10 20 30 40 50 60 70 80 90 100

0 742

0.027
0.243

0.034 0063 0128
0.386 0,226
0285 0.169

0.378
0.387

0005
0005 0.756

0.27 0,033 0005
0309 0.047 0007

114

10
20
30
40

50
60
70
80
90

100 0.979
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Table E.18: Motion F Conover-Inman post-hoc tests for rotation. Red indicates p

<0.0033

ROTATION
IMU 1

0.0033 1 10 20 30 40 50 60 70 80 90 100

1
10 0407

20
30 0.021 0676
40 0004 0.031 0.627 0.94

50 0,646 0415 0-385

60 0039 0.2 0126 0,305 0,358 0065

70 0.73 0.241 0017

80 0,606 0759 0 01 0016 0119 0.391

90 0.674 0.206 0.013 0945 0.346

100 0004 004 0328 0636 0708 0.176 0.519 0.019

IMU 2

0.0033 1 10 20 30 40 50 60 70 80 90 100

1
10 0,855

20 0,571 0.678

30
40 0 0

50 0 0 0,689

60 0379 0.221

70
80 0006 0.081

90 0.183 0261 0.629 0 01 0,005

100 022 0.31 0704 0887

IMU 3
0.0033[ 1 10 20 30 40 50 60 70 80 90 100

10
20
30
40

50
60
70
80
90

100

0116

0752 0192

0,415

0.318

0,913

0 173
0 75

0,022

0073

0.559 0,013

0-077

033

115

ad-I



116



Appendix F

I
Effect size

F.1 Dependent variable and IMU individual sub-

ject ranges by location

Table F.1: Dependent variable individual subject ranges

]MU 1 I41 2 INIU 3

Subject distance (Oun) orient at ion (deg) rotation (deg) distance (tim) orient ation (deg) rotation (deg) distance (mm) orientation (deg) rotation (deg)

1 17.05 28.15 48.15 33.17 11.98 36.28 28.60 119.85 55.05
2 1.36 2.44 12.68 92.79 .9.2( 21.69 18.56 17.40 2.98

3 64.97 44.81 122.88 149.27 25.57 65.22 73.21 20.77 52.84
4, .5( 13.42 28.66 5.13 9.22 14.59 7.01 21.92 22.85
5 0.00 0.00 0.00 0.00 0.00 0.00 0)0 0.00 0.00
6 22.51 7.93 19.92 53.58 14.30 9.15 19.03 5.17 15.91

7 3.93 7.03 11.37 75.73 8.22 6.00 52.03 2.08 1.06
8 29.02 1.44 14.76 87.60 2.11 37.08 86.62 0.14 16.71
9 15.64 0.53 90.72 194.31 9.92 10.60 1 13.17 16.50
10 28.28 3.38 58.72 125.98 7.67 41.20 86.46 2.55 22.89

11 1 A.33 24.24 25.33 10.09 9.97 26.67 6.39 8.69 19.03
12 12.95 15.06 1.48 85.40 0.76 4.04 68.03 0.41 19.88
13 25.98 8.05 65.73 157.95 10.20 61.89 143.00 7.69 35.77

14 12.90 11.60 6.52 27.03 5.63 50.87 12.96 83.18 99.57
15 14.53 8.38 88.94 118.06 3.66 15.71 67.69 6.00 51.03
16 15.99 6.42 116.15 210.48 20.17 52.01 112.01 5.22 31.37

17 35.65 11.11 73.62 200.46 21.21 7.07 132.10 2,46 30.73
18 15.61 2.97 . 33.17 81.11 10.09 3.01 33.86 2.81 1.10
19 5.72 10.63 18.49 166.86 17.15 26.05 109.20 4.51 33.46

20 9.26 10.64 73.13 129.70 9.49 8.57 87.94 23.64 26.73
21 77.87 22.02 93.37 116.71 28.31 73.97 77.99 19.11 69.66
22 1.16 13.21 16.68 22.79 6.61 19.33 66.97 17.33 .5.89
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Table F.2: Euler angle individual subject ranges

IMUl IMU2 IMU 3

Subject Roll (deg) Pitch (deg) Yaw (deg) Roll (deg) Pitch(deg) Yaw(deg) Roll (deg) Pitch(deg) Yaw(deg)

1 128.95 10.01 347.60 144.71 69.30 166.51 121.47 86.14 292.39
2 35.78 41.31 359.42 289.36 99.98 275.92 142.31 113.36 352.53
3 63.07 27.84 111.96 276.62 96.08 355.31 211.33 119.39 358.31
4 359.25 24.52 330.39 219.99 144.88 324.36 347.48 175.75 343.60
5 19.97 41.21 47.21 179.10 134.16 261.86 113.40 90.89 301.45
6 359.13 23.37 359.86 249.62 99.85 242.86 346.03 104.65 358.25
7 48.40 48.27 359.74 242.61 106.82 358.92 357.75 112.17 290.53
8 92.51 29.89 358.73 202.81 97.71 175.72 120.04 91.29 349.36
9 55.60 45.51 359.41 225.42 117.22 186.85 111.82 119.79 355.27

10 356.10 21.35 358.14 229.39 101.60 206.23 204.83 108.31 340.20
11 80.02 35.37 358.19 207.79 86.99 358.77 132.62 142.94 358.93
12 42.05 47.52 351.13 220.07 88.75 153.42 144.89 101.83 329.54
13 352.33 27.34 341.87 238.46 107.12 233.75 342.51 134.76 305.82
14 355.06 45.43 357.26 248.29 97.98 337.85 202.10 98.62 350.61
15 42.10 47.97 356.96 178.07 94.64 197.85 141.83 93.25 357.00
16 45.73 52.97 348.17 344.93 98.61 353.77 154.06 109.91 308.64
17 314.28 59.53 351.91 275.79 106.24 224.10 357.18 108.77 358.11
18 233.19 57.39 359.05 345.29 94.04 354.10 149.68 114.70 326.98
19 258.09 21.36 352.77 319.24 90.87 359.42 168.24 97.76 356.62
20 343.63 22.54 354.26 216.00 98.13 187.04 218.01 87.79 333.74
21 338.74 58.45 353.43 184.96 108.39 246.77 346.63 125.02 357.56
22 66.95 24.56 356.401 350.53 94.24 349.81 155.54 98.01 347.76
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Table F.3: Mean and standard deviation of ranges of values for
of all subjects within each IMU location grouped by motion

roll, pitch, and yaw

Motion IMU Roll (X) Pitch (Y) Yaw (Z)
Mean SD Mean SD Mean SD

1 9.08 7.13 5.40 3.29 48.55 41.31
A 2 29.06 35.44 12.18 6.23 22.28 17.66

3 4.36 7.04 29.98 28.56 3.89 3.81

1 8.29 2.97 5.82 1.36 32.04 17.41
B 2 20.02 22.31 10.26 6.63 25.29 23.78

3 20.69 23.48 19.24 24.86 21.64 13.96

1 7.68 1.87 8.15 4.59 14.33 16.98
C 2 20.40 26.35 9.20 6.68 13.73 6.34

3 21.79 23.92 8.86 4.27 13.73 10.66

1 13.38 13.73 6.36 6.16 24.09 25.14
D 2 43.34 7.60 26.61 21.28 7.49 4.55

3 55.70 41.67 26.55 36.15 26.35 15.26

1 10.35 8.31 6.17 5.60 21.97 18.17
E 2 98.64 45.11 28.35 29.74 99.66 25.72

3 20.53 13.01 30.86 30.80 15.64 24.07

1 30.07 33.78 9.30 2.42 44.19 29.78
F 2 23.52 13.64 16.67 8.59 6.27 8.19

3 29.51 20.60 29.02 25.20 63.63 40.66
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Appendix G

Mean and standard deviation

Values for Euler Axes

Figure G-1: Euler axes (Yaw, Pitch, Roll) mean and standard deviation values for
IMU 1 for multiple donnings of Motion A.

Eulet angle runges wIUh standrd dmtason for repetflons of Motion A for WU I

10 L20 2409

I0 01 02 0,3 04 00 07 06 09
Ncsmatzd Time ol MobEn
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Figure G-2: Euler axes (Yaw., Pitch, Roll) mean and standard deviation values for

IMU 2 for multiple donnings of Motion A.

Euler angle tangs wilh standard davIason for repetisons of Motion A for IMU 2

0-

u 2 0 _________________ 3m

0 39 02 33 14 3.5 lb 01 11: 1.

Ntmoze TTeo oo

U( U 1 1 I o. 0

I 4 I II
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U 1 02 O DA 0 b 07 08 019

Figure G-3: Euler axes (Yaw, Pitch, Roll) mean and standard deviation values for
IMU 3 for multiple donnings of Motion A.

ulWr angle rangs will standard divialon for repellons of Motion A for M 3
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Figure G-4: Euler axes (Yaw, Pitch, Roll) mean and standard deviation values for

IMU 1 for multiple donnings of Motion B.

Euler angle ranges wilh standurd drvlaIon for repethons of Motion 8 for IMU I

-, I I I I

310 v- D- :5-__
L 1f 0 .4 5 0 5 09

O 01 02 02 04 05 06 07 08 09
No raized 4 m8 Of MoU 5 I

Figure G-5: Euler axes (Yaw, Pitch, Roll) mnean and standard dleviationl values for
IMU 2 for multilple donnings of Motion B.

Euler angle twig.. wilt standwd diwAl or 1w epalone of Motion 5 for WUL 2
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Figure G-6: Euler axes (Yaw, Pitch, Roll) mean and standard

IMU 3 for multiple donnings of Motion B.

deviation values for

Euler angle ranges wit stanard dlason gar repetitons of Motian for U 3
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Figure G-7: Euler axes (Yaw, Pitch, Roll) mean and standard deviation values for

IMU I for multiple donnings of Motion C.

Euler angle ranges with stanrd delalon for repetfions of Motion C for IMU I
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Figure G-8: Euler axes (Yaw. Pitch, Roll) mean and standard deviation values for
IMU 2 for multiple donnings of Motion C.

Euler angle range with etandard diaSon for repeulons of Motion C for MU 2

240 -

0 1 02 0.3 94 05 05 07 00 0

09
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Figure G-9: Euler axes (Yaw. Pitch, Roll) mean and standard deviation values for
IMU 3 for multiple donnings of Motion C.

Euler angle wg arng me tandad devlaOn for repettsona of Motion C lot Imu 3
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Figure G-10: Euler axes (Yaw, Pitch, Roll) mean and standard deviation values for
IMU I for multiple donnings of Motion D.

Euler angle rang". wil standard dtvialon for repetimons of Motion D tor IMU 1
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Figure G-11: Euler axes (Yaw. Pitch, Roll) mean and standard deviation values for
IMU 2 for multiple donnings of Motion D.

Eulr angle rang". wia stanurd deviaton for r"pMillons of Motion D for IMU 2
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Figure G-12: Euler axes (Yaw. Pitch, Roll) mean and standard deviation values for

IMU 3 for multiple donnings of Motion D.

Euler angle ranges with standard devlaeon for repetlons of Motion D for IM 3
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Figure G-13: Euler axes (Yaw, Pitch, Roll) mean and standard deviation values for

IMU 1 for multiple donnings of Motion E.

Euler angle ranges with standard deviaton for repetloons of Motion E ltr IMU I

--- 
-Dan 3

1 3

j 

II 

j

60 -

31 02 .3 04 .

4 0

0 0' 3 Q0- 08 09
Normalzed Tine of Moton

127

I

C.



Figure G-14: Euler axes (Yaw, Pitch, Roll) mean and standard deviation values for
IMU 2 for multiple donnings of Motion E.

Eulor angle ranges wit standard deviaion for repatilons of Motion E lor IMU 2

L I I i I I
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Figure G-15: Euler axes (Yaw, Pitch, Roll) mean and standard deviation values for
IMU 3 for multiple donnings of Motion E.
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Figure G-16: Euler axes (Yaw, Pitch, Roll) mean and standard deviation values for

IMU 1 for multiple dounings of Motion F.
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Figure G-17: Euler axes (Yaw, Pitch. Roll) mean and standard deviation values for
IMU 2 for multiple donnings of Motion F.
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Figure G-18: Euler axes (Yaw, Pitch, Roll) mean and standard deviation values for
IMU 3 for multiple donnings of Motion F.

Eulmr angle rangos with sndard deWation for repetitions of Moton F far IMU 3
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