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Abstract— Gait analysis is an important tool for monitoring 

and preventing injuries as well as to quantify functional decline 

in neurological diseases and elderly people. In most cases, it is 

more meaningful to monitor patients in natural living 

environments with low-end equipment such as cameras and 

wearable sensors. However, inertial sensors cannot provide 

enough details on angular dynamics. This paper presents a 

method that uses a single RGB camera to track the 2D joint 

coordinates with state-of-the-art vision algorithms. 

Reconstruction of the 3D trajectories uses sparse representation 

of an active shape model. Subsequently, we extract gait features 

and validate our results in comparison with a state-of-the-art 

commercial multi-camera tracking system. Our results are 

comparable to those from the current literature based on depth 

cameras and optical markers to extract gait characteristics. 

I. INTRODUCTION 

Clinical gait analysis aims to describe human locomotion 
based on quantitative parameters such as step length, stride 
length, speed, and joint angles. Features extracted from gait 
analysis are used to characterize normal and abnormal gait in 
several clinical scenarios that range from orthopedics and 
posture control to functional decline in neurological conditions 
and elderly people [1]. In a normal gait cycle, the ankle drives 
the foot during the toe-off phase of the gait and it is the first 
joint to absorb the impact with the floor at heel strike. 
Therefore, the ankle’s inversion/eversion, dorsiflexion/ 
plantarflexion and foot progression angle are of significance 
importance for detecting abnormal gait patterns [2].  

Current methods adopted in gait analysis are based on 
either sensor systems or video/optical tracking. Wearable 
sensor system for gait analysis could use one or multiple 
sensors attached to the body [3]–[5] to measure acceleration, 
angular rate or pressure. Although inertial sensor systems can 
be used to monitor subjects 24/7, they are limited in that they 
do not measure joints angle directly [2].   

To this end, multi-camera systems represent the current 
state-of-the-art in measuring joint displacements and angles 
based on markers [6]. However, these systems are expensive, 
difficult to set up and they cannot be used outside the 
clinic/laboratory. Therefore, the use of a single RGB or depth 
camera to extract gait parameters is desirable for monitoring 
patients/subjects in more natural settings [2]. Gait analysis 
based on a single RGB camera is challenging because it 
requires tracking the person while it is walking, to accurately 
locate the body joints as well as to be able to extract angular 
information invariant to the camera’s perspective projection. 
Furthermore, gait indices extracted based on 2D joint angles 
only are difficult to interpret and compare with standard 
clinical systems. Another option is to directly reconstruct 3D 
information of the joint locations from the video recordings.   
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In the field of computer vision, human pose estimation 
from monocular videos has been extensively researched in 
recent years [7], [8]. For example, OpenPose is an open-source 
library for real-time multi-person joints detection. It is a 
bottom-up approach that consists of two-branch convolutional 
neural networks trained based on annotated 2D keypoints. 
Although it provides relatively accurate and stable estimation 
of human skeleton points, it does not reconstruct the 3D 
coordinates of the joints. Several challenges arise in the 
reconstruction of 3D human pose from 2D skeleton points that 
include the non-linear motion, occlusions and ambiguity 
between 2D and 3D poses. A promising method of estimating 
3D human pose via an expectation maximization algorithm 
reduces uncertainty over the estimated 3D joints location along 
the entire video [8]. However, these approaches are focused on 
tracking the upper limbs and they are not tailored to gait 
analysis. Furthermore, the training datasets are based on 
specific activities that do not attempt to model gait variability 
in pathological scenarios.  

In this article, we present a novel method for gait analysis 
based on a single RGB camera system on a cell phone. 
Compared to previous related work, we do not set any strict 
standards to camera position and background settings, whereas 
3D reconstruction of the joint coordinates takes place [9]. The 
2D-3D reconstruction methods we adopted has been proved to 
be able to efficiently achieve global optimality. Furthermore, 
here we focus only on the lower limbs with six key points that 
represent the knees, ankles, and toes. Therefore, it is not 
possible to impose anthropometric constraints that take into 
account the whole body [7], [10]. We validate our methods 
with a state-of-the-art multi-camera system. Our results 
compare well with the depth camera systems based on 
markers, which achieve up to 10 degrees accuracy [11].  

II. METHODS 

The framework of our method is displayed in Fig.1. We 
use OpenPose to track the 2D coordinates of human joints [12]. 
To accurately detect the foot orientation, the GrabCut 
algorithm [13] is applied. Subsequently, we use active shape 
modelling combined with sparse dictionary learning to reduce 
the parameters in 3D space [14]. Finally, a weak perspective 
projection is used to map the 2D extracted coordinates to 3D. 
Our methods are validated based on a multi-camera acquisition 
system (SMART-DX) as well as 2D manually annotated 
points of joints. 

A. 2D Joint Points Detection 

Firstly, we track human pose with OpenPose, which is an 
open-source state-of-the-art approach based on Part Affinity 
Fields [12], [15]. This allows multi-person tracking, which is 
important in accounting human interactions in natural settings. 
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In addition, it can accurately locate key points when occlusion 
occurs. OpenPose does not detect toe positions and it may fail 
to track the lower limbs when the camera view does not 
include the upper limbs. To circumvent this problem and 
distinguish foreground pixels of the foot from the background, 
we use GrabCut [13], which is a mixture-models image-
segmentation method. This is refined based on morphological 
image processing that involved dilation and erosion 
operations. Subsequently, ellipse fitting is applied to the foot 
contour points and the foot orientation is defined based on the 
centre of the ellipse and the ankle joint. GrabCut is initialised 
based on a region of interest. We utilise the time consistency 
across different frames to detect and avoid failures. In this 
section, we denote as 𝑾𝒋 ∈ ℝ2×𝑝 , 2D locations of lower limb 
points (𝑝=6, left and right knees, ankles and toes) of the 
𝑗𝑡ℎ frame (the frame number is n). 

B. 3D Sparse Reconstruction 

It is well known that reconstructing 3D human pose from 
the perspective projection of the joints to the image plane is an 
ill-posed problem. However, the ambiguity of the 3D 
reconstruction can be reduced significantly if we express the 
3D pose as a linear combination of basis postures based on the 
motion of the joints across time. Similarly, to active shape 
models, this will significantly reduce the reconstruction 
parameters. Subsequently, the 2D image coordinates of the 
joints are mapped to 3D based on a weak perspective camera 
projection. Below we describe this in details.  

Instead of using a conventional active shape model, a 
sparse dictionary is used to further reduce dimensionality and 
to represent the sparsity in motion patterns [7], [9]. We have 
also used principal component analysis to verify the sparsity 
of the extracted 3D points. In fact, the first five principal 
components can well represent signals over 95%.  

We denote the 3D lower limbs posture of the 𝑗𝑡ℎ frame as 
𝑺𝒋 ∈ ℝ3×𝑝  with the 3D coordinates of 𝑝  points. Its sparse 
representation of our model takes the form: 

 𝑺𝒋 = ∑ 𝜔𝑖𝑗𝑩𝒊
𝑘
𝑖=1  

where  {𝑩𝟏, 𝑩𝟐, … , 𝑩𝒌} is an overcomplete dictionary of k 
atoms, 𝑩𝒊 ∈ ℝ3×pis the 𝑖𝑡ℎ atom of the dictionary, and 𝜔𝑖𝑗  is 
the coefficient of 𝑩𝒊. {ωij} is assumed to be sparse.  

An online dictionary learning method is applied to update 
the dictionary during an iterative learning process mentioned 
in [16]. It can solve the problem by alternately updating 

{𝜔𝑖𝑗} and { 𝑩𝒊}  in the following formulation ( λ1 is a 
regularization coefficient to constrain the sparsity): 
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Finally, a weak perspective projection is used to map 2D 
points to 3D coordinates [17]. As in our model, all postures are 
centred and normalized, we do not take the translation matrix 
into consideration. 𝑾𝒋 is represented by the formula below, 

 𝑾𝒋 = 𝜫𝑹𝑺𝒋 = 𝜫𝑹 ∑ 𝜔𝑖𝑗𝑩𝒊
𝑘
𝑖=1 =  ∑ 𝑴𝒊𝒋𝑩𝒊

𝑘
𝑖=1   

where 𝜫 = [α, 0, 0; 0, α, 0]  ∈ ℝ2×3 is the scaling matrix (α is 
the scaling parameter), and 𝑹 ∈ 𝑆𝑂(3) is the rotation matrix. 
Equation (3) projects 3D into a 2D plane after rotation and 
scaling.  

For 3D Reconstruction, we have to infer the parameters 
{𝑴𝒊} in (3). The objective function, combination of (2) and (3), 
shows an optimization problem:  

  
1

2
‖𝑾 − ∑ 𝑴𝒊𝑩𝒊

𝑘
𝑖=1 ‖

𝐹

2
+ 𝜆2 ∑ ‖𝑴𝒊‖2

𝑘
𝑖𝑴𝐢,…,𝑴𝒌 

min        

This is a least-squares problem of estimating the 
coefficient of each basis shape. We adopt the algorithm used 
in [9] to solve it globally, which is based on Alternating 
Direction Method of Multipliers [18] and the proximal 
operator of the spectral norm.  

C. Gait Features Extraction 

Inversion and eversion, as well as dorsiflexion and 
plantarflexion angles of the ankle, are important indices of 
abnormal gait [19]. In previous work, these measurements 
have been approximated based on 2D joint data alone [2]. In 
this scenario, dorsiflexion/plantarflexion was estimated as the 
angle of the foot with the vertical image plane axis, whereas 
inversion/eversion was estimated as the angle of the foot with 
the horizontal image plane axis [2]. Here, we also estimate key 
gait parameters based on the 3D reconstructed postures. These 
include foot progression angle and 3D foot-leg (ankle) angle, 
which are used in clinical settings and they are related to 
dorsiflexion/plantarflexion and inversion/eversion angles. 

III. RESULTS 

A. Data Acquisition 

We obtained data from 4 healthy volunteers (3 males and 
1 female). These subjects were instructed to imitate different 
walking conditions in a straight trace, such as normal walking, 
limping, supination and pronation. A single RGB camera (30 
Hz) was used to record the video.  The minimal distance to the 
camera was set around 2m to render full lower body parts 
visible. We used manual annotation to mark the toe of the foot 
in each frame (2D ground truth data) and also obtained 3D 
ground truth data of lower limb points based on a multi-camera 
motion capture system (200Hz, Smart DX, BTS 
Bioengineering). For the acquisition of 3D ground truth data, 
we placed reflective markers on the knees, ankles and toes. 
The recorded points were labelled and tracked semi-

 
Fig.1 Framework of Our Method 

 

  
 

 



  

automatically based on the Smart DX system to extract the 3D 
trajectories of the joints.  

To synchronize the data between the single camera and the 
multi-camera system, we asked each subject to jump before 
and after walking. The peak of knee point locations was 
marked for synchronization.  

B. Sparse Dictionary Learning 

Fig.2 shows the reconstruction error during training on the 
datasets of normal walking, limping, supination and pronation, 
separately, as well as the concatenated set of data across 
conditions. Here, reconstruction error means a normalized 
distance. As for training, the original units of the coordinates 
of point position is in millimeters, we normalized each motion 
with the standard deviation and the error reflects the Euclidean 
distance between reconstructed motion and ground truth. The 
error is less when the system is trained with each condition 
separately. However, in real life, it is more likely to have 
mixed training scenarios of several types of abnormal walking. 
In our work, we trained and validated the system based on the 
concatenated set of data across conditions. As the sparsity of 
the dictionary, namely the number of atoms owning non-zero 
coefficients, becomes larger, the error decreases. Therefore, a 
trade-off should be achieved between the sparsity of the 
learned dictionary and the reconstruction accuracy. In our 
work, we set the sparsity to eight in training mixed conditions 
as the error does not decrease significantly over eight. 

C. 2D Validation of Gait Angular Features 

We validated the accuracy of detecting the 
dorsiflexion/plantarflexion and inversion/eversion angle based 
on manually annotated data of the toes across all video frames. 
This reflects mainly the error in toes estimation and foot 
orientation based on the GrabCut algorithm. We estimated 
dorsiflexion/plantarflexion as the angle of the foot with the 
vertical image plane axis and inversion/eversion as the angle 
of the foot with the horizontal image plane axis similarly to 
[2]. Fig.3 summarizes the results of the angular error in 
degrees with histograms. Fig.3-a) shows two histograms of the 
total angular error of the inversion/eversion and 
dorsiflexion/plantarflexion angles, respectively, across all 
walking conditions. Fig.3-b) refers to the inversion/eversion 
angle and it displays the histograms of angular errors in each 
walking condition separately. Fig.3-c) refers to the 
dorsiflexion/plantarflexion angle and it also displays the 
histograms of angular errors in each walking condition 
separately. 

The results show that in most of the frames the error is less 
than five degrees and compares well with previously published 
work [2]. The estimation of dorsiflexion/plantarflexion angle 
is more accurate than the estimation of inversion/eversion 
angle, especially in the pronation condition. This is because 
the fitted ellipse of the foot often has a larger horizontal 
component, thus having a larger bias from the true toe position 
in the horizontal direction, affecting inversion/eversion angle.  

D. 3D Validation of Gait Angular Features 

We used leave-one-out cross-validation to characterize the 
out-of-sample error of the 3D gait angular features. The 3D 
ground truth data were extracted from the multi-camera 
systems to train the sparse dictionary and extract the bases of 
motion kinematics.  

Fig.4-a-b) shows the 3D angle between foot and shank as 
well as foot progression angle, respectively. To demonstrate 
the error across the gait cycle, we segmented the time-series 
based on Singular Spectrum Analysis (SSA) [2], [4]. 
Subsequently, we averaged the error of angular characteristics 
across gait cycles, Fig.4-a). We also plotted the histograms of 
the errors in each walking condition, normal walking, limping, 
supination and pronation, respectively, Fig.4-c). The error is 
smaller than 10 degrees in most of the frames and across all 
conditions.  

Furthermore, Fig.4-b-d) shows the error in the foot 
progression angle estimation. As we asked that the subjects 
walked in a straight way to the lens, we used the least squares 
method to estimate the walking path and then extract the foot 
progression angle as the angle between the walking path and 
the ankle-toe line, Fig.4-b). For the estimated motions, the line 
connecting the camera and the subject would be Z axis and it 
can be approximated as walking path orientation. Fig.4-b) 
shows the error across the gait cycle, whereas Fig.4-d) shows 
the histogram of error across frames for normal walking, 
limping, supination and pronation, respectively. Although, the 
error is smaller than 10 degrees in most of the frames in normal 
walking, limping and supination, we observe error up to 30 
degrees in pronation. This is because pronation differs from 
the other three conditions and this biases the training. 

 
Fig.2 Reconstruction Error of Dictionary Learning 

 
 

 

 

 
Fig.3 Angular error in degrees based on 2D manually annotated data, 
a) Total error across all walking conditions, b) Inversion/eversion 
angular error estimated in each walking condition separately, c) 
Dorsiflexion/plantarflexion angular error estimated in each walking 
condition separately. 
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c) d) 

Fig.4 Angular error in degrees based on 3D ground truth data, a) Ankle 
angular error of different walking conditions in a gait cycle, b) Foot 
progression angular error of different walking conditions in a gait cycle, c) 
and  d) Ankle and Foot progression angular error histogram  

IV. DISCUSSION AND CONCLUSION 
Gait analysis based on a single RGB camera is a 

challenging problem and to our knowledge, there is no work 
that estimates 3D gait parameters based on a markerless RGB 
scenario. Here we developed a novel framework to estimate 
3D gait angular features of the lower limbs. To this end we 
have used joint detection algorithms and subsequently 
reconstructed the 3D coordinates of the joints based on a 
sparse dictionary representation. We have used a state-of-the-
art 3D multi-camera system to validate our methods. We 
demonstrated that our system achieves accuracy that 
compares well with methods that are based on markers and 
depth information [11]. Further work should aim to validate 
our methods in clinical settings and larger datasets.  
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