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Abstract—Traditional methods of training a Brain-Computer
Interface (BCI) on motor imagery (MI) data generally involve
multiple intensive sessions. The initial sessions produce simple
prompts to users, while later sessions additionally provide real-
time feedback to users, allowing for human adaptation to take
place. However, this protocol only permits the BCI to update
between sessions, with little real-time evaluation of how the
classifier has improved. To solve this problem, we propose an
adaptive BCI training framework which will update the classifier
in real time to provide more accurate feedback to the user on 4-
class motor imagery data. This framework will require only one
session to fully train a BCI to a given subject. Three variations of
an adaptive Riemannian BCI were implemented and compared
on data from both our own recorded datasets and the commonly
used BCI Competition IV Dataset 2a. Results indicate that the
fastest and least computationally expensive adaptive BCI was
able to correctly classify motor imagery data at a rate 5.8%
higher than when using a standard protocol with limited data.
In addition it was confirmed that the adaptive BCI automatically
improved its performance as more data became available.

Index Terms—Brain-Computer Interface, Electroencephalog-
raphy, Riemannian Geometry

I. INTRODUCTION

In recent years, Brain-Computer Interfaces (BCI) have been
commonly proposed as a method of aiding disabled and
healthy individuals with communication, brain state analysis,
and device control [1]. Efforts are focused on non-invasive
methods of decoding brain signals based on motor imagery
and EEG recordings. However, real-time control of assistive
robots remains challenging. In order to ensure accurate MI
classification, each user needs to complete several intensive
training sessions that match their particular EEG signals to a
classifying algorithm [2]. Using this type of training frame-
work, the classifier can only be evaluated between sessions,
while the user is resting. For this reason, a BCI that can
adapt to incoming labelled data in real-time is highly desirable
for the field. In addition, having a BCI that can improve its
performance in real time is able to provide better feedback
to the user more quickly during training sessions. This will
ensure that their recorded data better reflects their neural
response with proper feedback, further enhancing the process.
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Several attempts at making a robust and adaptive BCI have
previously been explored with promising results. In one of
the first attempts, it was shown that three to four sessions
are required to achieve best performance for a non-adaptive
BCI, while the adaptive BCI only required one session to
achieve similar accuracy [3]. This adaptive BCI was based
off of quadratic discriminant analysis (QDA), updating the
inverse covariance matrix for each class using data from a
selected interval of each trial [3]. Subsequent attempts focused
on adaptive feature selection, including frequency bands [4],
covariate shift estimation [5], [6], and channel and spatial filter
selection [7]-[9]. A more recent attempt used positive and
negative feedback to change fuzzy rules for classification [10].

Most of these adaptive BCIs have utilised the Common
Spatial Patterns (CSP) algorithm to essentially generate spatial
filters and select features for a standard classifier. However,
recent research has suggested that the application of Rieman-
nian geometry to EEG data can achieve better performance
than the CSP algorithm alone in most circumstances [11].
Typically, Riemannian based BCI methods estimate the mean
covariance matrix of the EEG signal for each class by taking
into account the manifold geometry of the multivariate signal.
Subsequently, classification is based on the geodesic distance
between each new covariance sample and the 'mean’. Here
we explore methods to extend this framework into an adaptive
BCI for real-time feedback and control. Our approach achieves
better performance than traditional methods with a fraction of
the training data normally used for successful multi-class BCI.

II. METHODS
A. Datasets

1) Data Collection: For this study, we collected data from
3 healthy volunteers, undergoing 4-class BCI motor imagery
training sessions with and without feedback. There were
approximately 20 trials for each class during each run, each
of which consisted of 2-3 seconds of a prompt (red arrows
pointing either left, right, up, or down) to imagine either
opening and closing their left hand, right hand, both hands,
or both feet. For the feedback sessions, the prompt time was
shortened to 2 seconds, and 2 seconds of feedback were also
provided. These timings are relatively consistent with previous
studies, though typically much more data is recorded. These
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Fig. 1. The protocol for a single trial with (bottom, blue arrows) and without
(top, orange arrows) feedback. This repeated for 20 trials of each class.

experiments were generated using PsychoPy [12], and the
protocol can be seen in Figure 1.

Data was recorded using a 32-channel wet g.Nautilus (g.tec)
EEG cap. The data, labels and feedback information were
streamed via LabSteamingLayer (LSL) to ensure synchroniza-
tion between different computers and to allow for parallel
processing. The data was band-pass filtered (5-30 Hz) before
being streamed to LSL. It was then divided into 50% over-
lapping 0.5 second long samples before being put through the
classifier. Each sample was labelled as one of the 4 classes
from 0.5 to 2.5 seconds after a prompt from the PsychoPy
experiment to avoid visually evoked potential in the training
data. All other data was removed from any training sets.

The feedback for the second stage was generated using the
classifier which was initially trained on data recorded without
feedback, and manifested itself as a purple bar that changed
size based on the certainty that the current data belonged to
a given class. This certainty was computed by subtracting the
minimum Riemannian distance from each class by the mean
of each of these Riemannian distances for each sample, and
scaled to improve visualization of the feedback.
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In testing, the first 20% of each run from this dataset was used
to initially train each classifier, while the remaining 80% was
the initial test data. Because earlier segments of the test data
are continually used to update the classifiers throughout the
adaptive session, the amount of test data decreased as more
updates occurred. To ensure enough test data remained at the
end of the experiment, 80 updates were considered for this
dataset, with each update using only 2 samples of data.

2) BCI Competition 1V Dataset 2a: Datasets from the BCI
Competition IV [13] have been commonly used to compare
new methods of motor imagery classification, and have come
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to be regarded as state-of-the-art and benchmark datasets, also
used to compare adaptive BCI [4], [10]. In this study, we use
dataset 2a, as it is also 4-class motor imagery data. This data
was recorded with only 22 EEG channels, and there were more
trials and subjects in this dataset. Regardless, all preprocessing
was the same in terms of timing, and all channels were used
in each dataset. Because more data was recorded for each
subject in this dataset, only the first 5% of each subject’s data
was used for the initial training of all classifiers. This resulted
in approximately the same number of training samples as
the internally recorded dataset. In addition, 160 updates were
considered instead of 80, and each update used 10 samples
instead of 2. This made the duration of the adaptive session
nearly 10 times longer than our in-house dataset.

B. Adaptive Riemannian Classifier

In this paper we use a Riemannian classifier, which deter-
mines the class of a sample based on the Riemannian distance
between this sample and the geometric (Riemannian) mean of
each of the given classes. Similar methods have been shown
to perform at or above the state-of-the-art accuracy on motor
imagery data [11], [14], [15].

The method begins by converting each sample of data,
consisting of 125 datapoints (0.5 seconds) for each channel,
into a Symmetric Positive Definite (SPD) spatial covariance
matrix. Training samples within the same class are averaged in
Riemannian space using Equation 3, and predictions are made
by measuring the Riemannian distance between the current
sample and the previously calculated mean covariance matrix.
In the below equations, P; and P, are any two covariance
matrices, while P in Equation 3 refers to the predicted Rie-
mannian mean covariance matrix.
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While the method is relatively simple, being able to adaptively
update such a classifier is more difficult, due to the fact that the
calculation of a Riemannian mean is not closed form. Three
ways of updating the Riemannian classifier in real-time were
developed and compared in terms of accuracy and processing
speed. The three methods can be briefly described as follows:

1) Use all previous data as training samples (Retrain Full)

2) Use incoming data as training samples, but remove
earlier training samples at the same rate to save on
computational complexity (Retrain Window)

3) Approximate the Riemannian class means by using the
previously calculated mean as a single sample, but heav-
ily weighting it in future calculations (Mean Estimation)

For Method 2, a "window size” was determined before pro-
cessing that was intended to provide enough data for the
classifier to be accurate, but would also account for recent
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Fig. 2. The proposed framework for data collection and real-time BCI
adaptation. Initially, streamed data (green arrows) and markers (red arrows)
are simply saved with no feedback. Once the classifier can be trained,
feedback (purple arrows) is generated by classifying data streamed over LSL.
Adaptation is achieved by calculating an update after each trial, using part of
the trial for training and the rest to test the update.

environmental changes such as shifts in channel impedance
or external noise. The window size was chosen to be the
same size as the amount of data that trained the non-adaptive
classifier. This was therefore an experiment to see how much
recent environmental changes affect classification accuracy,
and whether this could be useful for an adaptive BCI.

For comparison, each method was tested on the all of
the data that was not used for training in a given session
after the classifier was updated. All three methods were also
compared against a non-adaptive classifier, using only the
training data that was previously defined before the adaptive
session began. In addition, it was found that adding geodesic
filtering (FGDA) to the data before applying the minimum
distance to the Riemannian mean (MDM) classifier had an
effect on the classifiers performance, so the results of the non-
adaptive classifier with and without FGDA are presented.

The proposed framework for data collection and real-time
adaptation is shown in Figure 2. In a single session, some
initial data is recorded without any feedback to provide
training data for each class. Once each class is expressed, the
Riemannian means of each class are calculated and feedback
starts to be shown to the user. After each trial, the Riemannian
means of each class should be updated by recalculating the
Riemannian mean of the prompted class, using 75 percent of
the new trial data for the update while the remaining 25 percent
is added to a changing validation data set. If the accuracy on
the validation set does not decrease, then the official classifier
will be updated, and subsequent feedback will be shown after
passing through the updated classifier.

III. RESULTS AND DISCUSSION

The results from the dataset collected in our lab are shown in
Figures 3 and 4, while the accuracies of the BCI Competition
dataset are shown in Figure 5.

On the in-house dataset, the fully retrained and estimated
mean adaptive BCI showed the best overall performance,
increasing from about 31% to around 43% throughout a given
session, on average. These updating classifiers achieved an
overall average accuracy 3.7% higher than the non-adaptive
classifiers with geodesic filtering, though toward the end of
the adaptive session, this difference improved to 8%. The
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Fig. 3. The average accuracy of each type of Adaptive Riemannian BCI
compared against non-adaptive classifiers (MDM and FGDA+MDM) on our
in-house dataset. The Retrain Full and Mean Estimation methods showed
similar accuracy, and improved over time.
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Fig. 4. The average time taken to update each type of Adaptive Riemannian
BCI on our in-house dataset. The update time of the Retrain Full adaptation
method increased linearly with the amount of data used, while the medium
and fast methods stayed consistently lower.

similarity of these two methods show the success of our
Riemannian mean estimation method, which is much faster
than retraining the classifier using all data. Retraining the
classifier with the most recent window of samples did not show
any major improvement over the non-adaptive classifiers.

As expected, the amount of time to update the fully retrained
adaptive classifier increased linearly with the amount of data it
was using in its calculations. This led to unacceptable update
times of more than 6 seconds on our in-house dataset, and
up to more than 18 seconds with the larger BCI Compe-
tition dataset. The medium and fast adaptive BCI achieved
relatively constant averages of approximately 1.5 (+0.2) and
0.12 (£0.01) seconds, respectively.

On the BCI Competition dataset, the fully retrained and
estimated mean methods of adapting the classifier also showed



0.44

0.42

Classification Accuracy
o I
w w S
@ o Y

=
w
B

M

o
w
%]

03
0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375

Duration of Adaptive Session (s)

“===MDM ===FGDA+MDM Retrain Full===Retrain Window Mean Estimation

Fig. 5. The average performance of each type of Adaptive Riemannian BCI
on BCI Competition IV dataset 2a. The fully retrained and estimated mean
adaptive BCI achieved an average of 5.8% better than the best non-adaptive
BCI, and improved over time.

similar performance in terms of accuracy, achieving approx-
imately 5.8(£2.4)% higher for a given sample than using
the MDM algorithm. The medium adaptive classifier was not
as successful, with only about 1% improvement on the non-
adaptive classifier. In addition, the medium adaptive classifier
was volatile and unreliable, indicating that using only recent
data to train a classifier does not appreciably improve the
classifier’s performance. You may notice that the presented ac-
curacy is lower than what has been reported by other research
[11], [15], but this is due to the fact that the window sizes we
used in this study are smaller, providing less information at a
given time for the classifier to make a decision.

On both datasets, the fully retrained and estimated mean
adaptive Riemannian BCI clearly improved over time, while
the performance of the non-adaptive classifiers and the
medium adaptive classifier stayed within a few percentage
points of their initial accuracy. In addition, the similarity
between the fully retrained and mean estimated adaptations on
both datasets validate our method of estimating the mean for
real-time adaptation of a BCI that uses Riemannian geometry.

We should also note that on both datasets, the success of
the adaptive BCI was most notable in subjects who had better
overall performance. This indicates that BCI illiteracy would
still be a problem when using adaptive BCI.

IV. CONCLUSION

In this study, three methods of adapting a Riemannian
BCI were developed and evaluated in terms of feasibility for
real-time application. The fastest and least computationally
expensive method of estimating the Riemannian means was
shown to be among the most accurate methods, outperforming
the non-adaptive classifier and showing promise for future re-
search into adaptive Riemannian BCI. The other two methods

either took too much computation time or did not enhance the
classification accuracy as desired.

Future work should include other types of adaptation, such
as real-time channel or frequency band selection. In addition,
the adaptive Riemannian BCI should be implemented in train-
ing protocols with more complex feedback for easier transition
to assitive robotic control. Lastly, researchers should inves-
tigate the combination of Riemannian geometry with other
methods of MI classification, such as CSP or deep learning,
which have also shown good results for this application.
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