

Freer, D., Deligianni, F. and Yang, G.-Z. (2019) Adaptive Riemannian BCI for Enhanced Motor Imagery Training Protocols. In: 2019 IEEE 16th International Conference on Wearable and Implantable Body Sensor Networks (BSN), Chicago, IL, USA, 19-22 May 2019, ISBN 9781538674772 (doi:10.1109/BSN.2019.8771079)

There may be differences between this version and the published version. You are advised to consult the publisher's version if you wish to cite from it.

http://eprints.gla.ac.uk/208063/

Deposited on 27 January 2020

Enlighten – Research publications by members of the University of Glasgow

http://eprints.gla.ac.uk

Adaptive Riemannian BCI for Enhanced Motor Imagery Training Protocols

Daniel Freer

Hamlyn Centre for Medical Robotics

Imperial College London

London, UK

d.freer15@imperial.ac.uk

Fani Deligianni

Hamlyn Centre for Medical Robotics

Imperial College London

London, UK

f.deligianni@imperial.ac.uk

Guang-Zhong Yang
Hamlyn Centre for Medical Robotics
Imperial College London
London, UK
g.z.yang@imperial.ac.uk

Abstract—Traditional methods of training a Brain-Computer Interface (BCI) on motor imagery (MI) data generally involve multiple intensive sessions. The initial sessions produce simple prompts to users, while later sessions additionally provide realtime feedback to users, allowing for human adaptation to take place. However, this protocol only permits the BCI to update between sessions, with little real-time evaluation of how the classifier has improved. To solve this problem, we propose an adaptive BCI training framework which will update the classifier in real time to provide more accurate feedback to the user on 4class motor imagery data. This framework will require only one session to fully train a BCI to a given subject. Three variations of an adaptive Riemannian BCI were implemented and compared on data from both our own recorded datasets and the commonly used BCI Competition IV Dataset 2a. Results indicate that the fastest and least computationally expensive adaptive BCI was able to correctly classify motor imagery data at a rate 5.8% higher than when using a standard protocol with limited data. In addition it was confirmed that the adaptive BCI automatically improved its performance as more data became available.

Index Terms—Brain-Computer Interface, Electroencephalography, Riemannian Geometry

I. INTRODUCTION

In recent years, Brain-Computer Interfaces (BCI) have been commonly proposed as a method of aiding disabled and healthy individuals with communication, brain state analysis, and device control [1]. Efforts are focused on non-invasive methods of decoding brain signals based on motor imagery and EEG recordings. However, real-time control of assistive robots remains challenging. In order to ensure accurate MI classification, each user needs to complete several intensive training sessions that match their particular EEG signals to a classifying algorithm [2]. Using this type of training framework, the classifier can only be evaluated between sessions, while the user is resting. For this reason, a BCI that can adapt to incoming labelled data in real-time is highly desirable for the field. In addition, having a BCI that can improve its performance in real time is able to provide better feedback to the user more quickly during training sessions. This will ensure that their recorded data better reflects their neural response with proper feedback, further enhancing the process.

This research is partially supported by the UK Engineering and Physical Sciences Research Council (EPSRC) under grant reference EP/R026092/1

Several attempts at making a robust and adaptive BCI have previously been explored with promising results. In one of the first attempts, it was shown that three to four sessions are required to achieve best performance for a non-adaptive BCI, while the adaptive BCI only required one session to achieve similar accuracy [3]. This adaptive BCI was based off of quadratic discriminant analysis (QDA), updating the inverse covariance matrix for each class using data from a selected interval of each trial [3]. Subsequent attempts focused on adaptive feature selection, including frequency bands [4], covariate shift estimation [5], [6], and channel and spatial filter selection [7]–[9]. A more recent attempt used positive and negative feedback to change fuzzy rules for classification [10].

Most of these adaptive BCIs have utilised the Common Spatial Patterns (CSP) algorithm to essentially generate spatial filters and select features for a standard classifier. However, recent research has suggested that the application of Riemannian geometry to EEG data can achieve better performance than the CSP algorithm alone in most circumstances [11]. Typically, Riemannian based BCI methods estimate the mean covariance matrix of the EEG signal for each class by taking into account the manifold geometry of the multivariate signal. Subsequently, classification is based on the geodesic distance between each new covariance sample and the 'mean'. Here we explore methods to extend this framework into an adaptive BCI for real-time feedback and control. Our approach achieves better performance than traditional methods with a fraction of the training data normally used for successful multi-class BCI.

II. METHODS

A. Datasets

1) Data Collection: For this study, we collected data from 3 healthy volunteers, undergoing 4-class BCI motor imagery training sessions with and without feedback. There were approximately 20 trials for each class during each run, each of which consisted of 2-3 seconds of a prompt (red arrows pointing either left, right, up, or down) to imagine either opening and closing their left hand, right hand, both hands, or both feet. For the feedback sessions, the prompt time was shortened to 2 seconds, and 2 seconds of feedback were also provided. These timings are relatively consistent with previous studies, though typically much more data is recorded. These

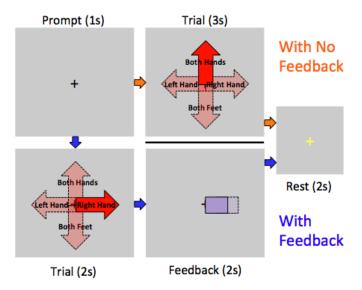


Fig. 1. The protocol for a single trial with (bottom, blue arrows) and without (top, orange arrows) feedback. This repeated for 20 trials of each class.

experiments were generated using PsychoPy [12], and the protocol can be seen in Figure 1.

Data was recorded using a 32-channel wet g.Nautilus (g.tec) EEG cap. The data, labels and feedback information were streamed via LabSteamingLayer (LSL) to ensure synchronization between different computers and to allow for parallel processing. The data was band-pass filtered (5-30 Hz) before being streamed to LSL. It was then divided into 50% overlapping 0.5 second long samples before being put through the classifier. Each sample was labelled as one of the 4 classes from 0.5 to 2.5 seconds after a prompt from the PsychoPy experiment to avoid visually evoked potential in the training data. All other data was removed from any training sets.

The feedback for the second stage was generated using the classifier which was initially trained on data recorded without feedback, and manifested itself as a purple bar that changed size based on the certainty that the current data belonged to a given class. This certainty was computed by subtracting the minimum Riemannian distance from each class by the mean of each of these Riemannian distances for each sample, and scaled to improve visualization of the feedback.

$$cert = \frac{\sum_{i=1}^{C} \delta_{Ri}}{C} - min(\delta_{R1...C})$$
 (1)

In testing, the first 20% of each run from this dataset was used to initially train each classifier, while the remaining 80% was the initial test data. Because earlier segments of the test data are continually used to update the classifiers throughout the adaptive session, the amount of test data decreased as more updates occurred. To ensure enough test data remained at the end of the experiment, 80 updates were considered for this dataset, with each update using only 2 samples of data.

2) BCI Competition IV Dataset 2a: Datasets from the BCI Competition IV [13] have been commonly used to compare new methods of motor imagery classification, and have come

to be regarded as state-of-the-art and benchmark datasets, also used to compare adaptive BCI [4], [10]. In this study, we use dataset 2a, as it is also 4-class motor imagery data. This data was recorded with only 22 EEG channels, and there were more trials and subjects in this dataset. Regardless, all preprocessing was the same in terms of timing, and all channels were used in each dataset. Because more data was recorded for each subject in this dataset, only the first 5% of each subject's data was used for the initial training of all classifiers. This resulted in approximately the same number of training samples as the internally recorded dataset. In addition, 160 updates were considered instead of 80, and each update used 10 samples instead of 2. This made the duration of the adaptive session nearly 10 times longer than our in-house dataset.

B. Adaptive Riemannian Classifier

In this paper we use a Riemannian classifier, which determines the class of a sample based on the Riemannian distance between this sample and the geometric (Riemannian) mean of each of the given classes. Similar methods have been shown to perform at or above the state-of-the-art accuracy on motor imagery data [11], [14], [15].

The method begins by converting each sample of data, consisting of 125 datapoints (0.5 seconds) for each channel, into a Symmetric Positive Definite (SPD) spatial covariance matrix. Training samples within the same class are averaged in Riemannian space using Equation 3, and predictions are made by measuring the Riemannian distance between the current sample and the previously calculated mean covariance matrix. In the below equations, P₁ and P₂ are any two covariance matrices, while P in Equation 3 refers to the predicted Riemannian mean covariance matrix.

$$\delta_R(P_1, P_2) = ||log(P_1^{-1}P_2)||_F = \left[\sum_{i=1}^n log^2 \lambda_i\right]^{1/2}$$
 (2)

$$P_{mean_c}(P_1, ..., P_I) = argmin \sum_{i=1}^{I} \delta_R^2(P, P_i)$$
 (3)

While the method is relatively simple, being able to adaptively update such a classifier is more difficult, due to the fact that the calculation of a Riemannian mean is not closed form. Three ways of updating the Riemannian classifier in real-time were developed and compared in terms of accuracy and processing speed. The three methods can be briefly described as follows:

- 1) Use all previous data as training samples (Retrain Full)
- Use incoming data as training samples, but remove earlier training samples at the same rate to save on computational complexity (Retrain Window)
- Approximate the Riemannian class means by using the previously calculated mean as a single sample, but heavily weighting it in future calculations (Mean Estimation)

For Method 2, a "window size" was determined before processing that was intended to provide enough data for the classifier to be accurate, but would also account for recent

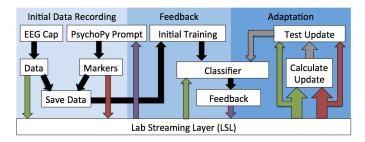


Fig. 2. The proposed framework for data collection and real-time BCI adaptation. Initially, streamed data (green arrows) and markers (red arrows) are simply saved with no feedback. Once the classifier can be trained, feedback (purple arrows) is generated by classifying data streamed over LSL. Adaptation is achieved by calculating an update after each trial, using part of the trial for training and the rest to test the update.

environmental changes such as shifts in channel impedance or external noise. The window size was chosen to be the same size as the amount of data that trained the non-adaptive classifier. This was therefore an experiment to see how much recent environmental changes affect classification accuracy, and whether this could be useful for an adaptive BCI.

For comparison, each method was tested on the all of the data that was not used for training in a given session after the classifier was updated. All three methods were also compared against a non-adaptive classifier, using only the training data that was previously defined before the adaptive session began. In addition, it was found that adding geodesic filtering (FGDA) to the data before applying the minimum distance to the Riemannian mean (MDM) classifier had an effect on the classifiers performance, so the results of the non-adaptive classifier with and without FGDA are presented.

The proposed framework for data collection and real-time adaptation is shown in Figure 2. In a single session, some initial data is recorded without any feedback to provide training data for each class. Once each class is expressed, the Riemannian means of each class are calculated and feedback starts to be shown to the user. After each trial, the Riemannian means of each class should be updated by recalculating the Riemannian mean of the prompted class, using 75 percent of the new trial data for the update while the remaining 25 percent is added to a changing validation data set. If the accuracy on the validation set does not decrease, then the official classifier will be updated, and subsequent feedback will be shown after passing through the updated classifier.

III. RESULTS AND DISCUSSION

The results from the dataset collected in our lab are shown in Figures 3 and 4, while the accuracies of the BCI Competition dataset are shown in Figure 5.

On the in-house dataset, the fully retrained and estimated mean adaptive BCI showed the best overall performance, increasing from about 31% to around 43% throughout a given session, on average. These updating classifiers achieved an overall average accuracy 3.7% higher than the non-adaptive classifiers with geodesic filtering, though toward the end of the adaptive session, this difference improved to 8%. The

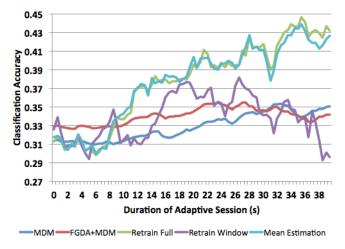


Fig. 3. The average accuracy of each type of Adaptive Riemannian BCI compared against non-adaptive classifiers (MDM and FGDA+MDM) on our in-house dataset. The Retrain Full and Mean Estimation methods showed similar accuracy, and improved over time.

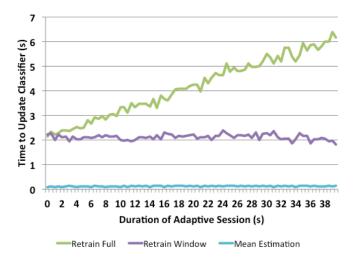


Fig. 4. The average time taken to update each type of Adaptive Riemannian BCI on our in-house dataset. The update time of the Retrain Full adaptation method increased linearly with the amount of data used, while the medium and fast methods stayed consistently lower.

similarity of these two methods show the success of our Riemannian mean estimation method, which is much faster than retraining the classifier using all data. Retraining the classifier with the most recent window of samples did not show any major improvement over the non-adaptive classifiers.

As expected, the amount of time to update the fully retrained adaptive classifier increased linearly with the amount of data it was using in its calculations. This led to unacceptable update times of more than 6 seconds on our in-house dataset, and up to more than 18 seconds with the larger BCI Competition dataset. The medium and fast adaptive BCI achieved relatively constant averages of approximately 1.5 (± 0.2) and 0.12 (± 0.01) seconds, respectively.

On the BCI Competition dataset, the fully retrained and estimated mean methods of adapting the classifier also showed

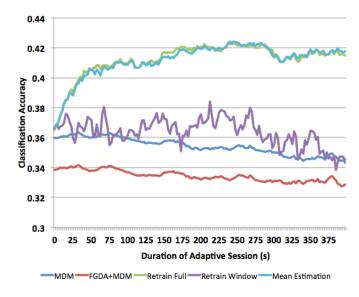


Fig. 5. The average performance of each type of Adaptive Riemannian BCI on BCI Competition IV dataset 2a. The fully retrained and estimated mean adaptive BCI achieved an average of 5.8% better than the best non-adaptive BCI, and improved over time.

similar performance in terms of accuracy, achieving approximately $5.8(\pm 2.4)\%$ higher for a given sample than using the MDM algorithm. The medium adaptive classifier was not as successful, with only about 1% improvement on the non-adaptive classifier. In addition, the medium adaptive classifier was volatile and unreliable, indicating that using only recent data to train a classifier does not appreciably improve the classifier's performance. You may notice that the presented accuracy is lower than what has been reported by other research [11], [15], but this is due to the fact that the window sizes we used in this study are smaller, providing less information at a given time for the classifier to make a decision.

On both datasets, the fully retrained and estimated mean adaptive Riemannian BCI clearly improved over time, while the performance of the non-adaptive classifiers and the medium adaptive classifier stayed within a few percentage points of their initial accuracy. In addition, the similarity between the fully retrained and mean estimated adaptations on both datasets validate our method of estimating the mean for real-time adaptation of a BCI that uses Riemannian geometry.

We should also note that on both datasets, the success of the adaptive BCI was most notable in subjects who had better overall performance. This indicates that BCI illiteracy would still be a problem when using adaptive BCI.

IV. CONCLUSION

In this study, three methods of adapting a Riemannian BCI were developed and evaluated in terms of feasibility for real-time application. The fastest and least computationally expensive method of estimating the Riemannian means was shown to be among the most accurate methods, outperforming the non-adaptive classifier and showing promise for future research into adaptive Riemannian BCI. The other two methods

either took too much computation time or did not enhance the classification accuracy as desired.

Future work should include other types of adaptation, such as real-time channel or frequency band selection. In addition, the adaptive Riemannian BCI should be implemented in training protocols with more complex feedback for easier transition to assitive robotic control. Lastly, researchers should investigate the combination of Riemannian geometry with other methods of MI classification, such as CSP or deep learning, which have also shown good results for this application.

ACKNOWLEDGMENTS

The authors would like to thank Shamas Khan for help in setting up experiments.

REFERENCES

- N. Birbaumer, "Breaking the silence: Brain-computer interfaces (BCI) for communication and motor control," *Psychophysiology*, vol. 43, no. 6, pp. 517–532, 2006.
- [2] J. Meng, S. Zhang, A. Bekyo, J. Olsoe, B. Baxter, and B. He, "Noninvasive Electroencephalogram Based Control of a Robotic Arm for Reach and Grasp Tasks," *Nature Scientific Reports*, vol. 6, no. 1, pp. 1–15, 2016
- [3] C. Vidaurre, A. Schloogl, R. Cabeza, R. Scherer, and G. Pfurtscheller, "A Fully On-Line Adaptive BCI," vol. 53, no. 6, pp. 1049–1050, 2005.
- [4] H. Raza, H. Cecotti, and G. Prasad, "Optimising frequency band selection with forward-addition and backward-elimination algorithms in EEG-based brain-computer interfaces," *Proceedings of the International Joint Conference on Neural Networks*, no. September, 2015.
- [5] H. Raza, H. Cecotti, Y. Li, and G. Prasad, "Adaptive learning with covariate shift-detection for motor imagery-based brain-computer interface," *Soft Computing*, vol. 20, no. 8, pp. 3085–3096, 2016.
- [6] H. Raza, D. Rathee, S. Zhou, H. Cecotti, and G. Prasad, "Covariate Shift Estimation based Adaptive Ensemble Learning for Handling Non-Stationarity in Motor Imagery related EEG-based Brain-Computer Interface," 2018. [Online]. Available: http://arxiv.org/abs/1805.01044
- [7] V. Mondini, A. L. Mangia, and A. Cappello, "EEG-Based BCI System Using Adaptive Features Extraction and Classification Procedures," Computational Intelligence and Neuroscience, 2016.
- [8] C. Sannelli, C. Vidaurre, K. R. Müller, and B. Blankertz, "Ensembles of adaptive spatial filters increase BCI performance: An online evaluation," *Journal of Neural Engineering*, vol. 13, no. 4, 2016.
- [9] J. Andreu-Perez, F. Cao, H. Hagras, and G.-Z. Yang, "A Self-Adaptive Online Brain Machine Interface of a Humanoid Robot through a General Type-2 Fuzzy Inference System," *IEEE Transactions on Fuzzy Systems*, vol. 6706, no. c, pp. 1–1, 2017. [Online]. Available: http://ieeexplore.ieee.org/document/7778142/
- [10] H.-J. Rong, C. Li, R.-J. Bao, and B. Chen, "Incremental Adaptive EEG Classification of Motor Imagery-based BCI," 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–7, 2018. [Online]. Available: https://ieeexplore.ieee.org/document/8489283/
- [11] A. Barachant, S. Bonnet, M. Congedo, and C. Jutten, "Multiclass Brain-Computer Interface Classification by Riemannian Geometry," *IEEE Transactions on Biomedical Engineering*, vol. 59, no. 4, pp. 920–928, 2012.
- [12] W. J. Peirce, "Generating stimuli for neuroscience PsychoPy, Frontiers in Neuroinformatics, 2, ing vol 1-8, 2008. [Online]. January. pp. Available: http://journal.frontiersin.org/article/10.3389/neuro.11.010.2008/abstract
- [13] M. Tangermann, K. R. Müller, A. Aertsen, N. Birbaumer, C. Braun, C. Brunner, R. Leeb, C. Mehring, K. J. Miller, G. R. Müller-Putz, G. Nolte, G. Pfurtscheller, H. Preissl, G. Schalk, A. Schlögl, C. Vidaurre, S. Waldert, and B. Blankertz, "Review of the BCI competition IV," Frontiers in Neuroscience, vol. 6, pp. 1–31, 2012.
- [14] F. Yger, M. Berar, and F. Lotte, "Riemannian Approaches in Brain-Computer Interfaces: A Review," *IEEE Transactions on Neural Systems and Rehabilitation Engineering*, vol. 25, no. 10, pp. 1753–1762, 2017.
- [15] D. Freer, Y. Ma, and G.-Z. Yang, "Toward Real-time BCI Control of Assistive Robots: A Comparison of State-of-the-Art Methods," in Hamlyn Symposium on Medical Robotics, 2018, pp. 55–56.