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Abstract

Using gait recognition methods, people can be identi-
fied by the way they walk. The most successful and effi-
cient of these methods are based on the Gait Energy Im-
age (GEI). In this paper, we extend the traditional Gait
Energy Image by including depth information. First, GET
is extended by calculating the required silhouettes using
depth data. We then formulate a completely new feature,
which we call the Depth Gradient Histogram Energy Im-
age (DGHET). We compare the improved depth-GET and the
new DGHET to the traditional GEI. We do this using a new
gait database which was recorded with the Kinect sensor.
On this database we show significant performance gain of
DGHE1I.

1. Introduction

Identifying people has been studied intensively in recent
years. Besides physiologic features, such as fingerprint, iris,
retina, DNA and face, also behavior based features such as
signature, gait and voice (which strictly speaking is also a
physiological trait) have been applied. Gait recognition has
interesting applications, because gait features can be ob-
tained from people at larger distances when other features
such as face are obscured. In addition, capturing gait fea-
tures does not require the cooperation of the subject as it
is necessary for example for fingerprint recognition. Thus,
gait recognition has great potential in access control, law
enforcement, video surveillance as well as tracking and
monitoring.

A multitude of methods and techniques in feature extrac-
tion as well as in classification have been developed. Major
approaches include model-based and model-free (appear-
ance based) methods. In model based methods, a human
pose model is extracted at each frame and the underlying
kinematics are used for individual identification. While this
is in some sense ’true gait recognition”, in practice pose
estimation proves highly difficult and results show limited
performance. In contrast model-free methods bypass the

model fitting and extract a variety of features directly on
the input data. This way, a correspondence of the person’s
appearance to its identity is created. In most experiments,
model-free methods greatly outperform model-based ap-
proaches.

The most successful representatives of model-free meth-
ods are those that are based on the Gait Energy Image
(GEI). Here, the concept of averaging features at each
frame within a full gait cycle has proven to greatly reduce
noise and therefore leads to a robust and efficient identity
representation.

In this paper, we extend the GET by using depth infor-
mation. To this end, we recorded a new database with the
Kinect sensor, which on the one hand captures standard
color images and on the other hand features a depth chan-
nel which gives the physical distance of the camera to the
object at each pixel. We show that simply by using depth in-
formation instead of color images for silhouette extraction,
the GEI can be improved. This, however, also binarizes the
depth data and most of the depth information is discarded.
In order to capture this information, we present the Depth
Gradient Histogram Energy Image (DGHETI). Here, depth
gradients are extracted at each position and are then ag-
gregated into direction histograms. We also compare our
results to the Gait Energy Volume (GEV), which was pre-
sented in [10]. The proposed DGHEI representation greatly
outperforms standard GEI, the depth-GEI, as well as the
GEV.

The remainder of this paper is structured as follows.
First, we present related work on depth data in Section 2. In
Section 3 we present the feature extraction, by first review-
ing the standard GEI and then presenting the GEI improve-
ment, as well as the new DGHEI. Section 4 then briefly sum-
marizes the overall gait recognition system. Experiments,
including database description are given in Section 5. Fi-
nally, we conclude in the last section.

2. Related Work

As outlined in the introduction, there are model-based
and model-free gait recognition methods. In model-based



:
I
v |
depth-GEI DGHEI GEV

Figure 1: Feature extraction: The GEI is calculated using
GMM background modeling on the RGB stream. Depth-
GEI, DGHEI and GEV are extracted on the depth data.
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methods [1][15], in a first step, a human body model is fit-
ted to the input data. Recognition is then performed based
on the model parameters or the change of these model pa-
rameters. While this is conceptionally solid, in practice,
fitting a body model has turned out to be extremely dif-
ficult and fitting results are too noisy to be used for indi-
vidual identification. In contrast to model-based methods,
model-free methods [3][5][6][7][8][13][14] directly extract
features from the input data without an intermediate human
body model and thus a robust statistical person model can
be built. Due to its robustness and efficiency, most current
methods, including ours, are model-free.

Many model-free methods build on silhouette extraction
for each frame in a gait cycle. Silhouettes are either av-
eraged (as in the prominent Gait Energy Image) [3][7], or
all silhouettes are used simultaneously [6][8][12]. Differ-
ent classifiers ranging from nearest neighbor [3], SVM and
HMM [6][12] have been applied with similarly good re-
sults.

A majority of current model-free methods use only 2D
data. Only a few works have so far addressed 3D gait recog-
nition. For example in [9], a multi-camera system together
with a structure from motion algorithm is used to build bi-
nary 3D voxel representations of the human. The voxel set
is then back-projected to the side, front and top view, where
2D gait recognition methods are applied. In [10], the au-
thors use a similar voxel reconstruction and in addition they
use the Kinect sensor to obtain depth data. They define the
Gait Energy Volume (GEV) as a 3D extension to the Gait
Energy Image (GEI).

Our work is similar in the sense that we also do 3D gait
recognition. Our work however differs in the way we make
use of 3D information.

3. Feature Extraction

In the following, we first recap the traditional Gait En-
ergy Image, which we improve in the subsequent section
simply by using depth segmentation. Finally, we present
the Depth Gradient Energy Image (DGHETI), which yields

significant performance gain. Figure 1 shows an overview
of how the features are generated from the color and depth
channels.

3.1. Baseline: Gait Energy Image

The Gait Energy Image (GEI) is often used as a fea-
ture for gait recognition. The idea is simple, yet has proven
highly efficient. Assuming that all gait information is cap-
tured in a full gait cycle, the information of each frame
within this gait cycle is averaged. This averaging seemingly
discards information, however, assuming that the noise in
each frame is independent, averaging removes a substantial
part of the degradation.

The simplest feature (which is assumed to capture the
gait information) is the silhouette. Thus, for the Gait En-
ergy Image, in a first step, binary silhouettes are extracted
at each frame, for example using Gaussian mixture mod-
els [11]. After some possible processing with morphologic
operations, the person is tracked by finding the largest blob.
This found blob is extracted from the binary image and is re-
sized, such that all blobs have the same size. In addition, the
horizontal position is normalized such that the torso in each
frame is roughly at the same location. Finally, the aligned
silhouettes are averaged yielding the Gait Energy Image G:
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3.2. Gait Energy Image on Depth Data

Extracting the Gait Energy Image as above assumes on
the one hand, that the binary silhouettes actually capture
the gait information, and second, it assumes that errors in
silhouette extraction result from independent noise at each
frame. However, in practice the silhouette extraction is per-
formed using background modeling methods which are run
on the color images. Due to difficulties in the segmentation
process, silhouettes can be of quite bad quality and certainly
do not reliably capture the boundary of the subject. In addi-
tion, errors often result to local similarities of the person to
the background. In these regions, the error is certainly not
independent at each frame.

To overcome these limitations, we use depth informa-
tion instead of color information to obtain binary silhou-
ettes S¢(z,y). Depth information can be used to reliably
segment the object from the background. Here, the back-
ground model is defined by the depth in the empty scene.
Since the distance between object and background are rel-
atively large, a large margin exists and simple thresholding
of the depth difference results in good segmentation.

3.3. Depth Gradient Histogram Energy Images

In this section we present the Depth Gradient Histogram
Energy Image (DGHEI). As mentioned above, the noise re-



ducing property by averaging feature vectors of each frame
within a full gait cycle has prove highly efficient. Thus, for
DGHEI, we also make use of this concept. It is interesting
to note, that in the standard GE I, all information is reduced
to binary silhouettes. With the newly available depth infor-
mation, the edges and depth gradients within the person’s
silhouettes can also be used. In order to capture all gradi-
ents and edges in a robust and efficient manner, we propose
the use of histogram binning. This idea is motivated by the
concept of “histograms of oriented gradients’ (HOG) as they
are frequently used for object detection [2].

Extraction of DGHETI therefore in a first step consists of
calculating histograms of oriented gradients at each frame ¢:

To this end, magnitude r and orientation 6 of the depth
data are computed in a first step:

rley) = Vaulz,y)? +o(e,y)? 2)
0(x7y) = atan2(u(a:,y),v(1:,y)) +7 3
with u(z,y) = I(z — 1,y) — I(z + 1,y) and v(x,y) =

I(x,y — 1) — I(xz,y + 1). Then, gradient orientations at
each pixel are discretized into 9 orientations:

Ox.y) = {WJ 4)

These discretized gradient orientations are then aggregated
into a dense grid of non-overlapping square image regions,
the so called “cells” (each containing typically 8 x 8 pixels).
Each of these cells is thus represented by a 9-bin histogram
of oriented gradients. Finally, each cell is normalized four
times (by blocks of four surrounding cells each) leading to
9 - 4 = 36 values for each cell. (Details to be found in [2]).
Next, following the averaging concept of GEI, the cal-
culated gradient histograms are finally averaged over a full
gait cycle consisting of 71" frames and result in the DGHET.

T
HG.j f) = 72 3 haliod.f) )
t=1

Here, ¢ and j are pointing to the histogram cell at position
(¢,7) and f = {1...36} is the index to the histogram bin.
Each gait cycle is finally represented by a multidimensional
feature vector H (i, j, f).

Therefore, our new representation extends the GEI by
using depth information. Instead of simply averaging the
depth information (which has resulted in bad recognition
rates), depth information is first aggregated in gradient di-
rection histograms of non overlapping regions. The final
DGHET representation is visualized in Figure 2 using differ-
ent cell quantizations.

4. Gait Recognition System

For person identification, we use a method similar to
the one presented in [3]. Dimension reduction is done by
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Figure 2: Visual representation of DGHETI using different
quantizations

Principal Component Analysis followed by Linear Discrim-
inant Analysis (PCA+MDA). Classification is done using
nearest neighbor. This combination of dimension reduction
and classifier has proven highly effective for problems with
small amount of training data, such as it is typical for gait
recognition.

4.1. Feature Space Reduction

Because of the high dimension of the DGHEI features
H(i,j, ), we use unsupervised Principal Component Anal-
ysis and supervised Linear Discriminant Analysis (PCA +
MDA) for dimension reduction. A combination of PCA and
MDA, as proposed in [4], results in the best recognition per-
formance. While PCA seeks a projection that best repre-
sents the data, MDA seeks a projection that best separates
the data.

Assume that the training set, consisting of N d-
dimensional training vectors {g1,g2,...,9n}, is given.
Then the projection to the d’ < d dimensional PCA space
is given by

Yk = Upca(ge — 7), k=1,...,N (6)

Here U, is the d’ x d transformation matrix with the first d’
orthonormal basis vectors obtained using PCA on the train-
ing set {g1,92,...,gnv} and g = Eszl gk is the mean of
the training set. After PCA, MDA is performed. It is as-
sumed that the reduced vectors ) = {y1,¥2,...,yn} be-
long to c classes. Thus, the set of reduced training vectors )
is composed of its ¢ disjunct subsets Y = Y1 N Yo N ... V..
The MDA projection has by construction (¢ — 1) dimen-
sions. These (¢ — 1) dimensional vectors zj, are obtained as
follows

2k :Umdayka k= 17"'7N @)

where U,,q4, 1s the transformation matrix obtained using
MDA. This matrix results from optimizing the ratio of the



between-class scatter matrix Sp and the within-class scatter
matrix Sy :
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Here the within-class scatter matrix Sy is defined as Sy =
> ey Siswith S =37 3 (y —mi)(y — m;)T and m; =
NL > yey, Y- Where N; = |Y;] is the number of vectors
in );. The between-class scatter Sg is defined as Sp =
Siy Ni(mi —m)(m; —m)T, withm = % 37 Nym.
Finally, for each Gradient Histogram Energy Image, the
corresponding gait feature vector is computed as follows

k=1,...,N
)

2k = UpcaUmda(gk_g) = T(gk_g)a

4.2. Classification

To classify samples, nearest-neighbor classification is
used. Thus, the class label L; is assigned to each test sam-
ple according to its minimal distance to the sample in the
gallery set:

L; = argmin D;(c) (10)

For distance measure D;(c), we use Euclidean distance for
all our experiments.

5. Experiments

For the evaluation of the proposed depth based methods,
we needed a database with depth information. In the lack of
a publicly available dataset, we recorded our own dataset,
which is described below. We reimplemented the Gait En-
ergy Image (GEI) [3] as well as the Gait Energy Volume
(GEV) [10] and tuned both methods to our new dataset.
Thus, we have a good relative performance evaluation of
our two new approaches (depth-GEI and DGHETI) to the two
established methods.

5.1. The TUM-GAID Database

For our experiments, we use a newly recorded database
(the TUM Gait from Audio, Image and Depth (GAID)
database). This database was recorded with the Kinect
sensor and therefore features both a video stream, a depth
stream as well as a four channel audio stream. Even though
audio was recorded (in order to potentially allow audio
based gait recognition), it is not used in this work. Both
video and depth have a resolution of 640 x 480 at a frame
rate of 30 fps. A total of 176 people were recorded, 103
male and 73 female, which makes the database roughly bal-
anced in gender. Each person is captured in 10 sequences.
Of these 10 sequences, 6 are recorded in normal walking
("normal”), 2 are carrying a backpack (“backpack™) and
the remaining 2 are captured with disposable coating shoes
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Figure 3: Results

("’shoes”). The backpack is meant to degrade the visual ap-
pearance, while the coating shoes are meant to degrade the
audio stream. In each sequence, people walk perpendicular
to the camera at a distance of approximately 4 meters.

5.2. Experimental Setup

We define three experiments for evaluation. In all three
experiments, we use the first two sequences of normal walk-
ing as training data. These sequences are at the same time
used as the gallery set. The test data is composed of two se-
quences of each "normal walking”, “backpack” as well as
”shoes”, respectively. Furthermore, two disjoint sequences
of normal walking are reserved for the development set
which might be used for parameter tuning, however, in this

work no parameter tuning was necessary.

5.3. Results

Results of depth-GEI and our DGHET are shown in Table
1 and 2. In Figure 3 the results of the rank 1 performance
are visualized as bar graphs. It can be seen that the depth-
GETI outperforms the regular GEI, except in the scenario
with the backpack. This leads to the conclusion, that the
new depth-GEI representation is very well capable of pre-
cisely capturing the silhouette, however in case of large vi-
sual degradation (like the backpack), an over-precise mod-
eling is not beneficial. The same goes for the Gait Energy
Volume (GEV), which seems to work better than GEI, how-
ever fails with large silhouette degradation such as with the
backpack.

Using the proposed DGHEI, these limitations can be
overcome. Throughout all experiments, DGHEI surpasses
the other methods by a significant margin. Using a one-
tailed z-test, it can be shown, that the DGHET significantly
(on an o = 0.001 level) outperforms all other methods in
all configurations. Thus, the use of gradient orientations, as
well as the used histogram binning turn out to be a robust
and efficient representation, which is especially capable of
handling large silhouette degradations.



Rank 1
GEI depth-GEI GEV | DGHEI
normal | 0.6932 0.9006 0.7955 | 0.9773
backpack | 0.3494 0.0938 0.1222 | 0.5597
shoes 0.5313 0.8239 0.7415 | 0.9205
mean 0.5246 0.6061 0.5530 | 0.8191 \
Table 1: Recognition rate, rank 1
Rank 5
GEI depth-GEI GEV DGHEI
normal | 0.8097 0.9545 0.9006 | 0.9858
backpack | 0.5455 0.2841 0.3324 | 0.8239
shoes 0.6818 0.9063 0.8523 | 0.9688
] mean \ 0.6790 \ 0.7150 \ 0.6951 \ 0.9261 \

Table 2: Recognition rate, rank 5

6. Outlook and Conclusion

In this paper, we have used depth for gait recognition,
which is a relatively new approach for gait recognition,
since so far, most approaches focus exclusively on the vi-
sual channel. First, we did a straight forward extension of
the Gait Energy Image by using depth segmentations in-
stead of foreground/background segmentation. This worked
well and showed a performance gain over the standard Gait
Energy Image as long as there is no large degradation like a
backpack. However, in practical applications, visual degra-
dations such as the backpack play a crucial role. To over-
come these limitations, we presented the Depth Gradient
Histogram Energy Image (DGHETI), which is a very robust
representation of the person’s identity and shows good per-
formance in spite of visual degradations. Thus, in a direct
comparison, depth data can be beneficial for gait recogni-
tion if combined with a robust feature representation such
as the proposed gradient histograms.

To continue research in depth based gait recognition,
we will extend the database in order to allow for time and
cloth variations, which has proven to add additional chal-
lenges [3]. Furthermore, gait recognition often (including
our work) focuses on closed-set recognition, which is not
very applicable in practice. A larger dataset (with more peo-
ple in the test set than in the training set) will allow to model
the unknown person category.
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