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Abstract

In the academic literature, the matching accuracy of a

biometric system is typically quantified through measures

such as the Receiver Operating Characteristic (ROC) curve

and Cumulative Match Characteristic (CMC) curve. The

ROC curve, measuring verification performance, is based

on aggregate statistics of match scores corresponding to

all biometric samples, while the CMC curve, measuring

identification performance, is based on the relative order-

ing of match scores corresponding to each biometric sam-

ple (in closed-set identification). In this study, we determine

whether a set of genuine and impostor match scores gener-

ated from biometric data can be reassigned to virtual iden-

tities, such that the same ROC curve can be accompanied by

multiple CMC curves. The reassignment is accomplished by

modeling the intra- and inter-class relationships between

identities based on the “Doddington Zoo” or “Biometric

Menagerie” phenomenon. The outcome of the study sug-

gests that a single ROC curve can be mapped to multiple

CMC curves in closed-set identification, and that presen-

tation of a CMC curve should be accompanied by a ROC

curve when reporting biometric system performance, in or-

der to better understand the performance of the matcher.

1. Introduction

Biometrics is the science of recognizing humans based

on the physical or behavioral traits of an individual. Ex-

amples of these traits include face, fingerprint, iris, hand

geometry, voice, and gait [11, 12]. A biometric system typ-

ically operates in either verification mode or identification

mode [12]. In verification, the probe biometric data is sub-

mitted along with a claimed identity. To validate the identity

claim, the system compares the probe data strictly with sim-

ilarly labeled identities stored in a reference database. The

output of a verification operation is a match or non-match.

This sort of matching is also referred as 1:1 matching, as

the probe is compared against a single (or relatively small)

number of reference entities.

In identification, the probe biometric data is not labeled

with any identity. Therefore, in order to determine the iden-

tity of the probe, the system compares the probe against ev-

ery reference identity. The output of an identification op-

eration is a sorted list of identities, ordered from the best

match to the worst match. This type of matching operation

is also referred as 1:N matching, with N being the size of

the reference database. The identification operation can be

either closed-set or open-set. In closed-set identification,

the identity of the input probe is known to be present in the

reference database. However, in open-set identification, the

identity corresponding to the probe may or may not be in

the reference database.

1.1. Measuring Biometric System Performance

The performance of a biometric matcher, operating in the

verification or identification mode, can be evaluated based

on the match scores generated from test biometric data. In

a set of test data, let N be the number of identities and

NG be the number of biometric samples (e.g., face im-

ages) per identity. The total number of samples is NT (i.e.,

NT = N ·NG). By comparing each of NT samples against

the remaining NT − 1 samples and assuming a symmetric

matcher, a total of 1

2
NT (NT − 1) similarity match scores

can be computed. Define this procedure as an “all-to-all”

match test. In computing the match scores for an “all-to-

all” match test, two classes of match scores are generated:

genuine match scores and impostor match scores. Genuine

match scores denote the scores generated when comparing

two biometric samples belonging to the same individual.

Impostor scores denote the scores generated when matching

two biometric samples belonging to different individuals.

The total number of genuine and impostor scores that can

be computed are N
(

NG

2

)

and NG
2
(

N

2

)

, respectively. Us-

ing the generated match scores, a pair of probability density

functions regarding the likelihood of observing a genuine or

impostor score with a certain value can be estimated. De-
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note the genuine and impostor score distributions as fG(s)
and fI(s), respectively.

Verification performance is typically evaluated by as-

sessing the false match rate (FMR) and the false non-match

rate (FNMR). The FMR denotes the percentage of impos-

tor scores that exceed a numerical threshold t and are incor-

rectly classified as matches. The FNMR denotes the per-

centage of genuine scores that are below a threshold t and

are incorrectly classified as non-matches. Graphically, the

FMR and FNMR are often expressed by a Receiver Oper-

ating Characteristic (ROC) curve. The ROC curve plots 1-

FNMR versus FMR by varying the threshold t. As such,

we refer to FMR, FNMR, and the ROC curve as aggregate-

based metrics.

When evaluating identification performance, a set of

Nprobe probe samples is compared against a set of Nref

reference samples, resulting in Nprobe sets of match scores,

with each set containing Nref match scores. The match

scores in each set are ordered from highest to lowest. In

open-set identification, these sets are used to assess the false

positive identification rate (FPIR) and true positive identi-

fication rate (TPIR) [8]. The FPIR is defined as the pro-

portion of times a probe that does not have a correspond-

ing reference identity (i.e., no genuine scores were gener-

ated), generates an impostor score exceeding the value of a

threshold, t. The TPIR is defined as the proportion of times

a probe that does have a corresponding reference identity

(i.e., genuine scores were generated), the correct identity is

observed within the top K (K ≤ N ) ranks (i.e., a genuine

score occurs within the top K sorted scores in the set) and

whose match score exceeds the value of t.

In closed-set identification, the ordered score sets from

the Nprobe probes are used to estimate the probability that

the correct matching identity pertaining to a probe is ob-

served within the top K (K ≤ N ) ranks (i.e., compute the

TPIR with t = 0). These probabilities are typically ex-

pressed visually through the Cumulative Match Character-

istic (CMC) curve [13]. Unlike the ROC curve, which is

generated by looking at genuine and impostor scores all-at-

once, the data in the CMC curve is obtained based on the

explicit ordering of NG − 1 and NG −NT genuine and im-

postor scores, respectively, for each biometric probe. As

such, we refer to the CMC curve as a rank-based metric.

An example of both a ROC and CMC curve is presented in

Figure 1.

1.2. Closed­set Identification

In general, most biometric identification systems in real-

world applications operate in the open-set mode [8]. How-

ever, in the literature, most performance evaluations are

conducted in the closed-set mode [10, 17, 14]. For the

purposes of this study, we therefore focus on the closed-set

problem, with the intent of pointing out that reporting only
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Figure 1. Example of an ROC curve (top) and CMC curve (bot-

tom).

identification accuracy in closed-set evaluations may not be

appropriate.

1.3. Relationship Between the ROC and CMC

If the ROC (aggregate-based) and CMC (rank-based)

curves are estimated from the same set of match scores, it

is not unreasonable to expect some degree of “correlation”

between the two curves. This topic has received some at-

tention in the literature, yielding mixed conclusions.

Phillips et. al. [13] first developed a measure for esti-

mating the CMC curve directly from the ROC curve.1 The

measure was found to consistently underestimate the values

of an experimentally derived CMC [9]. Later, Bolle et. al.

[1] argued that the CMC is directly related to the ROC and

can be used to deduce the performance of a 1:1 verification

system. Additionally, Bolle et. al. developed a mathemati-

cal model for estimating the CMC based on the ROC when

NG = 2. Similarly, Hube [9] also argued in favor of a di-

rect relationship between the ROC and CMC, developing a

different model for estimating the CMC from the ROC.

In the recent past, however, the notion that the ROC

and CMC are directly related has been challenged. Gorod-

nichy first presented an argument stating that aggregate-

based metrics such as the FMR, FNMR, and ROC fail to

appropriately evaluate operational systems characterized by

large sample size and non-static populations, or systems

performing identification at a distance (e.g., systems with-

out a controlled biometric acquisition protocol) [6, 7]. Fur-

ther, Gorodnichy argues that verification systems should be

evaluated (and developed) as 1:N identification systems [7],

stating that measures for identification (i.e., ranked statis-

tics) reveal more information regarding the relationships be-

tween users involved in a biometric system. DeCann and

Ross present a case arguing that it is theoretically possible

to observe a “poor” ROC curve and a “good” CMC curve

(and vice-versa) from the same set of match scores [4].

Based on the conclusions drawn from Bolle et. al. [1],

Hube [9], Gordnichy [6, 7], and DeCann and Ross [4], it

is clear that support in the literature for a direct relation-

ship between the ROC and CMC curves is mixed. In Fig-

1In this article, the terms “CMC curve” and “ROC curve” will be inter-

changeably used with the terms “CMC” and “ROC”, respectively
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Figure 2. Output of the CMC prediction models (from ROC

curves) by Bolle et. al. [1] and Hube [9] on match scores obtained

from a fingerprint matcher (top), and a gait matcher [3] (bottom).

Note that neither model perfectly predicts the CMC curve for both

sets of match scores.

ure 2, the CMC prediction models of Bolle et. al [1]. and

Hube [9] are compared on two different sets of match scores

generated by two different matching algorithms. The first

set of match scores represents gait scores generated using

a gait recognition algorithm [3] on the CASIA B dataset

[19]. Here, N = 124 and NG = 2. The second set

of match scores are fingerprint (left-index) scores from the

WVU Multimodal Dataset [2]. These scores were generated

using Verifinger,2 a commercial fingerprint matcher. Here,

N = 240 and NG = 2. Note that the intent of Figure 2 is

not to show the performance of the matchers, but rather to

analyze the ability of the two models to predict the empir-

ically obtained CMC curve. The data in Figure 2 suggests

the prediction models of Bolle et. al. and Hube do not ac-

curately estimate the CMC curve in all cases.

Although the data in Figure 2 demonstrates that there

may be some degree of “correlation” between the ROC

curve and CMC curve, it is clear that neither model com-

pletely predicted the empirical CMC curve based solely

on the ROC data. One reason this might be the case is

that aggregate-based statistics do not account for the unique

manner in which different individuals contribute towards

the overall performance of a biometric system. In other

words, the genuine and impostor score distributions pertain-

ing to two different individuals can be significantly differ-

ent. Such differences cannot be captured in aggregate statis-

tics. Visually, this is depicted in Figure 3, where a subset

of three individual genuine and impostor score distributions

are shown using the left-index (L1) match scores from the

2http://www.neurotechnology.com/verifinger.html

Figure 3. Visual example depicting the contribution of individual

identities towards the overall genuine and impostor match score

distributions, fG(s) and fI(s). Note that genuine and impostor

score distributions corresponding to an identity may be distinct

(above) and the aggregation of these individual distributions com-

prises the global genuine and impostor match score distributions

(below). Here, the individual match score distributions are based

on fingerprint scores computed on the WVU Multimodal Dataset

[2].

WVU Multimodal Dataset [2]. Note that each of the three

genuine and impostor distributions are different from one

another, and that the accumulation of these subsets result in

the aggregate distributions, fG(s) and fI(s).
Doddington et. al. [5] first discussed the notion that dif-

ferent identities contribute differently towards overall bio-

metric system performance by introducing a scheme to

classify identities based on their propensity to generate a

false match or false non-match error in speaker recogni-

tion [5]. This observation is referred to as the Biometric

Menagerie in the literature [18]. If each identity contributes

to the performance of a biometric system differently, it may

be possible that for a single pair of genuine and impos-

tor match score distributions, multiple rank-based statistics

(e.g., CMC curves) can be generated. Further, these differ-

ences in rank-based statistics may result in multiple CMC

curves with large differences in cumulative rank-K accu-

racy.

In an earlier study, DeCann and Ross [4] demonstrated

that a “poor” ROC curve can produce a “good” CMC curve;

however, their analysis did not account for inter- and intra-

class relationships (as manifested through the match scores)

and did not demonstrate the possibility of associating mul-

tiple CMC curves with a single ROC curve. In this study,

our aim is to demonstrate this while accounting for such

relationships (the role of the Biometric Menagerie). By

modeling the inter- and intra-class relationships, it is pos-
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sible to demonstrate that a fixed set of match scores can be

reassigned differently among N identities. This reassign-

ment of existing match scores to virtual identities is accom-

plished by utilizing the “Doddington Zoo” user classifica-

tion scheme.

Thus, the contributions of this study are as follows:

• Given a set of real match scores pertaining to multiple

identities, we describe a method by which the scores

can be reassigned to virtual identities such that they

describe different types of intra-class and inter-class

statistics based on the Doddington Zoo phenomenon.

• Based on this reassignment process, we demonstrate

that match scores sharing common aggregate statistics

(ROC) can have multiple ranked statistics (CMC’s).

2. Match Score Relationships in a Biometric

System

The model for characterizing inter- and intra-class rela-

tionships operates by assigning real match scores to virtual

identities. Here, a virtual identity is defined as an identity,

whose individual genuine and impostor match score distri-

butions, fn
G(s) and fn

I (s) (n = 1, 2, . . . , N ), have been

sampled (without replacement) from sGen (with mean µGen

and variance σ2

Gen) and sImp (with mean µImp and vari-

ance σ2

Imp). Note that sGen and sImp denote sets of gen-

uine and impostor scores generated by a biometric matcher

on a dataset of N identities. For example, sGen and sImp

may be the fingerprint match scores illustrated in the bottom

of Figure 3.

In defining each virtual identity, an assumption is made

that the range of genuine and impostor scores for each vir-

tual identity is smaller than the range of the overall distri-

butions, fG(s) and fI(s). The “tightness” of these ranges

can be defined by the variance in match scores on a per-

identity basis. Define these per-identity variances as σ2

n−n

and σ2

n−m, where σ2

n−n denotes the average variance in

genuine scores for each identity and σ2

n−m denotes the av-

erage variance in impostor scores for each pair of identi-

ties. Here, we remark that the intent of this assumption is

to ensure created virtual identities do not share the same in-

dividual genuine and impostor match score distribution as

the aggregate genuine and impostor score distributions. The

output following the creation of each virtual identity is S, a

matrix of size NT xNT , wherein each column (or row) of

S contains match score information for one “virtual” bio-

metric sample, matched against NG − 1 samples from the

same “virtual” identity and NT −NG samples from the re-

maining N − 1 “virtual” identities. Note that this exercise

preserves the aggregate score statistics; what changes is the

set of match scores pertaining to every identity.
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Figure 4. Visual illustrating the general concept of the proposed

model for defining inter- and intra- class relationships in match

scores, which creates virtual identities based on the “Doddington’s

Zoo” framework [5].

2.1. Modeling Inter­ and Intra­class Variations

Our model for reassigning match scores to virtual

identities is inspired by the “Doddington’s Zoo” user-

classification scheme, which characterizes identities based

on their contribution towards the FMR and FNMR [5]. The

Doddington’s Zoo classification scheme consists of four

classes: Sheep, Goats, Lambs, and Wolves. Sheep are de-

fined as “well behaved” individuals who are easily recog-

nized and do not incorrectly match with others. Goats are

individuals who are intrinsically difficult to recognize and

contribute to false non-match errors. Lambs are individu-

als whose biometric data can often be confused with other

identities, resulting in false match errors. Finally, wolves

are defined as individuals who willfully and successfully

spoof the biometric data of other individuals, increasing the

rate of false match errors.

In terms of match scores, sheep can be loosely char-

acterized as having “high” genuine scores and “low” im-

postor scores. Meanwhile, goats can be loosely character-

ized as having “low” genuine scores. Finally, lambs (and

wolves) can be loosely characterized as having “high” im-

postor scores. These simple characterizations formulate the

basis of our model for reassigning scores to virtual identi-

ties, and is visually depicted in Figure 4.

The score reassignment model consists of two stages:

initialization and sampling. During initialization, each of N

virtual identities are assigned a label, χn (n = 1, 2, . . . , N ),

χn ∈ {Sheep,Goat, Lamb}. The number of virtual iden-

tities corresponding to each label is pre-specified (see Sec-

tion 3). Next, each identity is assigned match scores (from

the original score set) based on the properties of a “Sheep”,

“Goat”, or “Lamb”. Sampled match scores are drawn (with-

out replacement) from the original scores sGen and sImp,

and stored in S
n
Gen and S

n
Imp, which are the reassigned

genuine and impostor scores for the nth virtual identity. Fi-

nally, a matrix of match scores of size NT xNT is created

(denoted by S). Each row in S stores the NG − 1 assigned

genuine scores and NT −NG assigned impostor scores for

each sample of a given virtual identity.
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Algorithm 1: Reassigning Genuine Scores

Input: Vector sGen, containing the genuine scores.

Vector χ, a set containing the labels of each identity

(e.g., “Sheep”, “Goat”, “Lamb”).

Define: δ, ǫGen: Scaling parameters.

Output: Matrix S populated with genuine scores.

\\ begin algorithm

Step 1: For each identity, note the assigned label.

Step 2a: Draw a genuine score (without replacement), φ,

sGen, from within subset srng , where

srng = (µGen + σGen, 1), if χn = Sheep.

srng = (0, µGen − σGen), if χn = Goat.

srng = (0, µGen + σGen), if χn = Lamb.

Step 2b: If srng is a null set, and srng = (a, b),
set a = δ · a, b = b

δ
and repeat Step 2a.

Step 3a: Draw
(

NG

2

)

− 1 scores (without replacement)

from sGen within φ± ǫGen .

Step 3b: If less than
(

NG

2

)

− 1 scores can be drawn

set ǫGen = ǫGen

δ
and repeat Step 3a.

Step 4: Store the sampled genuine scores in S.

return S

\\ end algorithm

Assignment of genuine scores to each virtual identity is a

relatively straightforward process. For each virtual identity,
(

NG

2

)

genuine scores are drawn without replacement3 from

sGen and stored in S. Depending on the label of the vir-

tual identity, a target range from which scores will be sam-

pled, is first defined. This range is assumed to be between

(µGen+σGen, 1), (0, µGen−σGen), and (0, µGen+σGen)
for “Sheep”, “Goats”, and “Lambs”, respectively. Denote

the subset of genuine scores within this range as srng. If

srng is a null set, the target range is opened (i.e., increased)

by multiplying (dividing) the lower (upper) bound of srng
by a factor of δ (0 < δ < 1.0) until srng contains at least

one element. Next, one element (i.e., score) from srng is

sampled and stored in S. Denote the value of this score as φ.

The remaining
(

NG

2

)

− 1 scores are sampled from the range

φ± ǫGen, where ǫGen is a tolerance parameter. As with the

range used to sample φ, if no match scores are found within

φ ± ǫGen, the range is opened by dividing ǫGen by δ. This

process for sampling genuine scores is summarized in Alg.

1. Note that this sampling method ensures that (a) sampled

genuine scores for each identity are consistent, and (b) the

genuine scores for a “Sheep” are distinct from those of a

“Goat”, and a “Lamb” (when possible).

Assignment of impostor scores to each virtual identity

captures the inter-class relationships between identities. As

such, assignment of impostor scores is viewed as being be-

tween pairs of identities (and therefore labels), rather than

for a single identity. This results in six possible scenarios,

viz. “Sheep-Sheep”, “Sheep-Goat”, “Sheep-Lamb”, “Goat-

Goat”, “Goat-Lamb”, and “Lamb-Lamb”.

3equiprobable sampling

When sampling impostor scores between a pair of identi-

ties, NG
2 impostor scores are sampled from sImp, of which

a single score, φ, is first drawn from a target range, srng.

srng is dependent on the labels denoting the pair of iden-

tities. Denote S
n
Gen and S

m
Gen as the set of assigned gen-

uine scores for the nth and mth identities (i.e., the genuine

scores assigned following implementation of Alg. 1). When

both of the labels are a “Sheep” or “Goat”, srng is limited to

(0,min{max{Sn
Gen},max{Sm

Gen}}), the minimum of the

maximum genuine score observed for both identities. This

constraint attempts to ensure that sampled impostor scores

for a “Sheep” or a “Goat” will always be less than their cor-

responding genuine scores, preventing the occurrence of a

false match error.

When one of the labels is a “Lamb”, the only constraint

emplaced is that srng is below the maximum genuine score

for the paired identity. That is, if χn = Lamb, and χm =
Sheep, srng = (0,max{Sm

Gen}). When max{Sm
Gen} >

max{Sn
Gen}, this enables (but does not guarantee) the pos-

sibility of drawing an impostor score which can generate a

false match (at rank-1) for the identity denoted as a “Lamb”,

but not the “Sheep”. If χn = χm = Lamb, no constraints

are emplaced on srng, enabling (but not guaranteeing) the

possibility of a false match (at rank-1) to occur for both

identities.

As with the sampling of genuine scores, if srng is a null

set, srng is opened fully to (0, 1). Once a valid range of

srng is identified, one impostor score is drawn from sImp

and stored in S. The remainingNG
2−1 impostor scores are

sampled from a range of φ±ǫImp, where ǫImp is a tolerance

parameter. If no match scores are found within φ ± ǫImp,

the range is opened by dividing ǫImp by δ. This process for

drawing impostor scores is summarized in Alg. 2. Note that

this drawing method ensures that (a) the impostor scores

between pairs of identities are consistent, and (b) the error

dynamics for a “Sheep”, “Goat”, and “Lamb” are upheld

(when possible).

3. Experimental Results

3.1. Datasets and Evaluation Criteria

The match scores included in our analysis correspond to

the scores generated from face and gait modalities. Face

scores were extracted from the WVU Multimodal Dataset

[2] using the commercial software VeriFace. The face sub-

set consists of NG = 5 frontal face images for N = 240
unique individuals. Gait match scores were collected from

the CASIA B [19]. The CASIA B dataset is a multi-camera

dataset containing N = 124 individuals walking normally

(6 sequences), with a coat (2 sequences), and with a back-

pack (2 sequences) from 11 different viewpoints. Here, we

consider only those biometric samples where a subject is

walking at a normal pace perpendicular to the optical axis
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Algorithm 2: Reassigning Impostor Scores

Input: Vector sImp, containing the impostor scores.

Matrix S, where sampled genuine scores are stored (from

Alg. 1) and sampled impostor scores will be stored.

Vector χ, containing the labels of each identity

(e.g., “Sheep”, “Goat”, “Lamb”).

S
n
Gen, Sm

Gen, Assigned genuine scores for identities n, m.

Define: δ, ǫImp: Scaling parameters.

Output: Matrix S populated with genuine and impostor scores.

\\ begin algorithm

Step 1: For all combinations of n and m (n = 1, . . . , N ,

m = n+ 1, . . . , N ), note χn and χm.

Step 2: Draw an impostor score, φ from sImp, within

interval srng , where

srng = (0, min{max{Sn
Gen}, max{Sm

Gen}}),
if χn = Sheep or Goat, χm = Sheep or Goat.

srng = (0, max{Sn
Gen}),

if χn = Sheep or Goat, χm = Lamb.

srng = (0, max{Sm
Gen}),

if χn = Lamb, χm = Sheep or Goat.

srng = (0, 1), if χn = χm = Lamb.

Step 3: If srng is a null set, srng = (0, 1).
Step 4a: Draw N2

G − 1 scores from sImp within φ± ǫImp.

Step 4b: If less than N2
G − 1 scores can be drawn

set ǫImp =
ǫImp

δ
, and repeat Step 4a.

Step 5: Store the sampled impostor scores in S.

return S

\\ end algorithm

of the camera (i.e., NG = 6). Match scores were extracted

using the gait curves matching algorithm [3].

In our analysis, aggregate statistics are expressed by the

area underneath the ROC curve (denoted by AUC). Rank

statistics are expressed via the Weighted Rank-M identi-

fication accuracy, which is a weighted sum of the identi-

fication accuracies corresponding to the first M ranks in

the CMC curve. Here, M is defined as 5% of the num-

ber of identities, N . The weight of the ith rank, wi (i =
1, 2, . . . ,M ), is defined by 1

i
, and normalized such that

‖w‖2 = 1. In Figure 5, a visualization of fG(s) and fI(s)
is presented for the face and gait scores. A baseline evalu-

ation consisting of AUC, Weighted Rank-M accuracy, pre-

dicted Weighted Rank-M accuracy (via the models of Bolle

et. al. [1] and Hube [9]) and the empirically obtained pro-

portions of “Sheep”, “Goats”, and “Lambs” is provided in

Table 1. The strategy used to obtain empirical proportions

of “Sheep”, “Goats”, and “Lambs” is the same as the one

defined by Ross et. al. [15]. However, it should be noted

that this scheme will always classify at least 30% of identi-

ties as having properties of a “Goat”, or “Lamb”, regardless

of whether these identities contribute to adverse recogni-

tion performance. Note that in Figure 5 and Table 1, the

performance values for both modalities are similar, but the

genuine and impostor distributions, fG(s) and fI(s), for the

gait scores share a larger range of nonzero values.
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Figure 5. Genuine and impostor score distributions, fG(s) and

fI(s), for the datasets used in our evaluation.

Table 1. Baseline AUC, Weighted Rank-M , estimated Weighted

Rank-M , and the empirically obtained proportion of “Sheep”,

“Goats”, and “Lambs” for the face and gait datasets.

Face Scores Gait Scores

Actual AUC 0.999 0.980

Actual Weighted 1.0 0.978

Rank-M

Est. Weighted 0.991 0.895

Rank-M (Bolle et. al.[1])

Est. Weighted 0.991 0.878

Rank-M (Hube [9])

Proportion of

{Sheep, Goat, Lamb} (%) {62, 28, 10} {66, 24, 10}
(Ross et. al. [15])

3.2. Generating Multiple Ranked Statistics

Here, the Doddington-based model for creating virtual

identities is implemented to create alternative realizations

of inter- and intra-class relationships from the same set of

scores. The intent of this experiment is to demonstrate

that two sets of match scores sharing the same aggregate

statistics can result in different ranked statistics. To enable

this, the model is run with multiple proportions of “Sheep”,

“Goats”, and “Lambs”. Parameters for δ, ǫGen, and ǫImp,

are set to 0.98, 0.25σGen, and 0.25σImp, respectively, for

both face and gait scores. These results are tabulated in Ta-

bles 2 and 3.

Table 2. AUC and Weighted Rank-M values after reassignment of

face match scores for different proportions of “Sheep”, “Goats”,

and “Lambs”. Note that in this case, the Weighted Rank-M accu-

racy does not change much.

Sheep (%) Goats (%) Lambs (%) AUC Rank-M

100 0 0 0.999 1.0

82 10 8 0.999 1.0

50 26 24 0.999 0.997

15 10 75 0.999 0.997

In addition, we highlight one such proportion that might

result in a lower Rank-M performance. That is, the labels

of χn are altered such that the number of “Sheep” or “well-

Appeared in Proc. of 6th IEEE International Conference on Biometrics: Theory, Applications and Systems (BTAS), (Washington DC, USA), September 2013



Table 3. AUC and Weighted Rank-M values after reassignment of

gait match scores for different proportions of “Sheep”, “Goats”,

and “Lambs”. Note that in this case, the Weighted Rank-M accu-

racy changes significantly.

Sheep (%) Goats (%) Lambs (%) AUC Rank-M

100 0 0 0.980 1.0

82 10 8 0.980 0.966

50 26 24 0.980 0.915

15 10 75 0.980 0.800
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Figure 6. Comparing Weighted Rank-M accuracies before (above)

and after (below) the score reassignment process for the face

dataset. Note that here, although it is possible to generate a dif-

ferent realization of ranked match scores, the resulting Rank-M

accuracy does not significantly vary (1 and 0.989).

behaved” virtual identities is reduced. The selected propor-

tions for face and gait modalities are {50%, 26%, 24%} and

{15%, 10%, 75%} for “Sheep”, “Goats”, and “Lambs”, re-

spectively. These highlighted proportions are illustrated vi-

sually in Figures 6 and 7, which plot the maximum impostor

score against the maximum genuine score for each biomet-

ric sample,4 for both reassigned and original face and gait

scores. Visualization in this way illustrates how changing

the proportion of “Sheep”, “Goats”, and “Lambs” can alter

Rank-1 matching statistics. In addition, Figure 8 illustrates

the actual ROC and CMC curves generated from the origi-

nal and reassigned match score data for both face and gait

scores.

4. Discussion and Future Work

In our experiment (Section 3.2), the score reassignment

model is used to generate virtual identities with differing

4For a biometric sample, when its maximum impostor score exceeds its

maximum genuine score, then a Rank-1 identification error will occur
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Figure 7. Comparing Weighted Rank-M accuracies before (above)

and after (below) the score reassignment process for the gait

dataset. Note that here, it is possible to generate a different realiza-

tion of ranked match scores with a significantly different Weighted

Rank-M accuracy (0.978 and 0.8). This suggests that multiple

CMC curves can accompany the same ROC curve.
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Figure 8. ROC and CMC curves for the original and reassigned

face (left) and gait (right) match scores. Note that for both sets of

match scores, the ROC data is the same, while the CMC data is

different for the original and reassigned scores.

proportions of “Sheep”, “Goats”, and “Lambs” than the

baseline values found in Table 1. In Figure 6 (involving face

scores), when varying the proportion of “Sheep”, “Goats”,

and “Lambs”, while a difference in ranked statistics can be

observed, the resulting Weighted Rank-M accuracy was not

significantly different than that of the original data nor the

predicted values (Table 1). However, in Figure 7 (involv-

ing gait scores), while varying the proportion of “Sheep”,

“Goats”, and “Lambs”, a realization with a significantly

lower Weighted Rank-M accuracy (Weighted Rank-M =
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0.8) was discovered. These observations are also evident in

the CMC curves from Figure 8. Why then was this phenom-

ena observed with the gait scores and not the face scores?

The answer has to do with the extent of overlap between

fG(s) and fI(s) (i.e., the range of s for which both fG(s)
and fI(s) are non-zero). If fG(s) and fI(s) have less over-

lap, although match scores can be arranged differently be-

tween identities, this is unlikely to change the ordered rank-

ing of match scores in the CMC curve. However, if fG(s)
and fI(s) are reasonably overlapped, then it cannot be

guaranteed that aggregate-based statistics will correlate

with rank-based statistics. This property becomes partic-

ularly important when biometric systems increase in scale,

as fG(s) and fI(s) may not conform to any specific distri-

bution [16], and also in unconstrained biometric systems,

which may yield larger inter- and intra-class variances as

a consequence of uncontrolled biometric acquisition. This

clearly suggests that CMC curve should not be presented

without the associated ROC curve in closed-set evaluation

scenarios.

5. Summary

The goal of this work was to study the impact of the Bio-

metric Menagerie on the relationship between a ROC curve

and the associated CMC curve generated from a set of gen-

uine and impostor match scores (in a closed-set identifica-

tion mode). In this regard, we designed a sampling scheme

that reassigns the match scores generated by a matcher

to virtual identities whose intra-class and inter-class rela-

tionships are defined based on the “Doddington Zoo” phe-

nomenon. Experiments using fingerprint and gait scores

suggest that multiple CMC curves can indeed be associ-

ated with a single ROC curve. This means, it is important

that researchers report both ROC and CMC curves when

comparing and/or analyzing the performance of biometric

matchers.

References

[1] R. Bolle, J. Connell, S. Pankanti, N. Ratha, and A. Senior.

The Relation Between the ROC Curve and the CMC. Fourth

IEEE Workshop on Automatic Identification Advanced Tech-

nologies, pages 15–20, 2005.

[2] S. Crihalmeanu, A. Ross, S. Schuckers, and L. Hornak. A

Protocol for Multibiometric Data Acquisition, Storage and

Dissemination. Technical report, West Virginia University,

2007.

[3] B. DeCann and A. Ross. Gait Curves for Human Identi-

fication, Backpack Detection, and Silhouette Correction in

a Nighttime Enviornment. SPIE Conference on Biometric

Technology for Human Identification VII, April 2010.

[4] B. DeCann and A. Ross. Can a “Poor” Verification Sys-

tem be a “Good” Identification System? A Preliminary

Study. IEEE Workshop on Information Forensics and Se-

curity (WIFS), 1:31–36, 2012.

[5] G. Doddington, W. Liggett, A. Martin, M. Przybocki, and

D. Reynolds. Sheep, Goats, Lambs and Wolves: A Statistical

Analysis of Speaker Performance. IEEE International Con-

ference on Language and Speech Processing, pages 1351–

1354, November 1998. Sydney, Australia.

[6] D. Gorodnichy. Multi-order Analysis Framework for Com-

prehensive Biometric Performance Evaluation. SPIE Con-

ference on Defense, Security and Sensing. DS108: Biometric

Technology for Human Identification, April 2010.

[7] D. Gorodnichy. Multi-Order Biometric Score Analysis

Framework and Its Application to Designing and Evaluating

Biometric Systems for Access and Border Control. IEEE

Workshop on Computational Intelligence in Biometrics and

Identity Management (CIBIM), pages 44–53, 2011.

[8] P. Grother, G. Quinn, and P. Phillips. Report on the evalu-

ation of 2D still-image face recognition algorithms. Intera-

gency/Internal Report (NISTIR) 7709, National Institute of

Standards and Technology (NIST), 2010.

[9] J. Hube. Using Biometric Verification to Estimate Identi-

fication Performance. Biometrics Symposium, pages 1–6,

September 2006.

[10] A. Jain and J. Feng. Latent Fingerprint Matching. IEEE

Transactions on Patt, 33(1):88–100, 2011.

[11] A. Jain, P. Flynn, and A. Ross. Handbook of Biometrics.

Springer, 2008.

[12] A. Jain, A. Ross, and S. Prabhakar. An Introduction to Bio-

metric Recognition. IEEE Transactions on Circuits and Sys-

tems for Video Technology, 14(1):4–20, January 2004.

[13] P. Phillips, P. Grother, R. Michaels, D. Blackburn, T. Elham,

and J. Bone. FRVT 2002: Facial Recognition Vendor Test.

Technical report, DoD, April 2003.

[14] P. Phillips, H. Moon, S. Rizvi, and P. Rauss. The FERET

Evaluation Methodology for Face-recognition Algorithms.

IEEE Transactions on Pattern Analysis and Machine Intel-

ligence, 22(10):1090–1104, 2000.

[15] A. Ross, A. Rattani, and M. Tistarelli. Exploiting the Dod-

dington Zoo Effect in Biometric Fusion. 3rd IEEE Interna-

tional Conference on Biometrics: Theory, Applications and

Systems (BTAS), pages 1–7, September 2009. Washington

DC, USA.

[16] J. Wu and C. Wilson. Nonparametric Analysis of Fingerprint

Data on Large Data Sets. Pattern Recognition, 40(9):2574–

2584, 2007.

[17] T. C. Y. Huang, D. Xu. Face and Human Gait Recogni-

tion Using Image-to-Class Distance. IEEE Transactions on

Circuits and Systems for Video Technology, 20(3):431–438,

2010.

[18] N. Yager and T. Dunstone. The Biometric Menagerie. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

32(2):220–230, 2010.

[19] S. Yu, D. Tan, and T. Tan. A Framework for Evaluating

the Effect of View Angle, Clothing and Carrying Condition

on Gait Recognition. Proc. 18th International Conference

on Pattern Recognition (ICPR06), pages 441–444, August

2006.

Appeared in Proc. of 6th IEEE International Conference on Biometrics: Theory, Applications and Systems (BTAS), (Washington DC, USA), September 2013




