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Abstract

Many biometric template protection algorithms have been proposed mainly in two ap-
proaches: biometric feature transformation and biometric cryptosystem. Security evaluation
of the proposed algorithms are often conducted in various inconsistent manner. Thus, it is
strongly demanded to establish the common evaluation metrics for easier comparison among
many algorithms. Simoens et al.[11] and Nagar et al.[1] proposed good metrics covering nearly
all aspect of requirements expected for biometric template protection algorithms. One drawback
of the two papers is that they are biased to experimental evaluation of security of biometric tem-
plate protection algorithms. Therefore, it was still difficult mainly for algorithms in biometric
cryptosystem to prove their security according to the proposed metrics. This paper will give a
formal definitions for security metrics proposed by Simoens et al.[11] and Nagar et al.[1] so that
it can be used for the evaluation of both of the two approaches. Further, this paper will discuss
the relations among several notions of security metrics.

1 Introduction

One of the main issues in biometric authentication systems is to protect a biometric template
database from compromise. Biometric information is so unique to each user and unchangeable
during his or her lifetime. Once biometric template is leaked together with his or her identity, the
person will face a severe risk of identity theft. Widely-used template protection systems for bio-
metric authentication systems are tamper-proof hardware-based systems, where biometric template
is stored in an ordinary storage as an encrypted form and decrypted only within a tamper-proof
hardware when matching is required. In these systems, even if the database is compromised, bio-
metric information never made public. However, the drawback of this conventional approach was
the requirement of tamper-proof hardware, as it increases the deployment cost especially in high
volume matching is required. To overcome this drawback, software-based template protection tech-
niques are proposed recently in many literature[]. Software-based template protection schemes are
categorized into 2 approaches[12], feature transformation approach and biometric cryptosystems.
Both of them introduces a user-specific key to transform a biometric template into a protected
template.
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1.1 Feature Transformation approach

Feature transformation approach is first proposed in a paper written by Ratha, Connel and Bolle[14]
as Cancelable biometrics. In feature transformation approach, a randomness or key is introduced
as a transformation parameter, and each original biometric feature is transformed into a deformed
biometric feature. Main advantage of this approach is that it can take benefits from utilizing
well-studied high performance algorithms. Thus, the challenge in this approach is to design a
transformation function satisfies both (1) that closeness in original biometric feature space should
preserve in the transformed feature space and (2) that it is hard to recover the original biometric
feature from the transformed feature. On the contrary that feature transformation approach can
enjoy the benefit of high-performance algorithms, schemes in this approach tends to have difficulties
in theoretical analysis of protection performance such as irreversibility and unlinkability discussed
later. Thus, many papers give experimental evidence for security analysis.

Ratha et al. [14] introduced the notion of Cancelable biometrics and proposed several schemes
for fingerprint template protection[13]. Their approach is to displace fingerprint minutiae at differ-
ent locations according to a irreversible locally smooth transformation. That is, a small change in a
minutiae position before transformation leads to a small change in the minutiae position after trans-
formation, but small correlation in minutia positions before and after transformation. Ratha et
al.[13] evaluated Accuracy (Section 3.1) for the recognition performance and Irreversibility(Section
4.1) for their schemes. They roughly estimated the complexity of irreversibility by the length of its
binary representation.

Teoh et al.’s BioHash[8] and its subsequent papers[4, 16, 17] proposed distance-preserving trans-
formations for biometric feature vectors multiplied with an randomized orthogonal transformation
matrix. The randomized orthogonal matrix woks as a user-specific key, it introduces a low false
accept rate. Irreversiblity of BioHash is analyzed in [8] and [18]. In [8], irreversibility is discussed
based on evidences from recognition performance (Section 3) metrics such as accuracy (Section 3.1),
biometric performance (Section 3.2) and diversity (Section 3.3). As argued later, for example, in
the real world, a fingerprint left on a glass may be abused by a malicious user, then Diveristy
seems to give the complexity of an adversary to find the correct key. However, this discussion only
covers a weak adversary whose attacking strategy is specific. A stronger adversary may take other
strategies such as finding the correct key by directly inverting the transformation function utilizing
the stolen fingerprint, etc. Likewise, those recognition performance metrics are not suitable for the
evaluation of protection performance. In [18], irreversibility is discussed theoretically and experi-
mentally. Their experimental analysis is similar to [8]. In their theoretical analysis, irreversibility is
defined as the complexity of finding an exact original biometric feature vector from a transformed
template and its corresponding key. BioHash is a lossy function, hence it satisfies their notion of
irreversibility with some security parameter. However, in the real situation, the adversary usually
does not have to find an exact original biometric feature, but enough to find an biometric fea-
ture which can be accepted by the biometric authentication system. The latter is trivially easy,
given a transformed template and its corresponding key, randomly chosen biometric features will
be accepted with probability FAR. Thus, more realistic notion of irreversibility is required.

1.2 Biometric cryptosystem

Biometric cryptosysm refers to a series of research motivated by fuzzy commitment and fuzzy vault
proposed by Juels and Watenburg[10] and Juels and Sudan[9] respectively. Instead of applying
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sophisticated feature extraction and matching algorithms, they abstracted the metric space of
biometrics matching as a hamming distance or a set difference respectively, and make use of error-
correcting codes to check if the distance of two biometric features are within a correctable range.
Dodis, Reyzin and Smith[5] generalized them to secure sketch covering any transitive metric space,
that is, a metric spaceM has a family of permutations π ∈ Π such that Π is distance preserving:
d(a, b) = d(π(a), π(b)) and for any two elements a, b ∈ M there exists πi ∈ Π: πi(a) = b.

None of them conducted experimental analysis both on recognition performance (Section 3) and
protection performance (Section 4). Rather, irreversibility (Section 4.1) for their un-keyed schemes
are theoretically analyzed. They demonstrated that fuzzy schemes have strong irreversibility in a
practical parameter setting, but introduced impractical assumptions. As shown in this paper, any
un-keyed schemes cannot satisfy irreversibility in a practical setting for a biometrics application (see
Theorem 2 in this paper). Those impractical assumptions are considered essential in the analysis.
Namely, Juels and Watenburg[10] assumes uniform distribution on biometric features, and Juels
and Sudan[9] does not assume uniform distribution on elements in a set whereas assumes elements
in a set are chosen independently. Dodis, Reyzin and Smith[5] evaluated irreversibility of secure
sketch and fuzzy extractor with a general distribution on biometric feature, hence falls to insecure
with a practical parameter setting for biometrics applications.

Sutcu, Li and Memon[15] applied a secure sketch[5] to a face recognition system, and measured
biometric performance and estimated a lower-bound of irreversibility. They reported degradation
of recognition performance introduced by secure sketch was negligible, but the lower-bound of
complexity to break irreversibility was barely 20 bits. Arakala, Jeffers and Horadam[2] and Chang
and Roy[3] applied to fingerprint recognition system and reported similar results.

1.3 Related Security Metrics

As we have seen until now, there are two separate line of research, and there exits a gap in the way of
evaluation of recognition performance and protection performance between feature transformation
approach and biometric cryptosystem. Thus, relations of security statements were ambiguous, and
it was not easy to compare the security of proposed schemes. Recently, there are attempts to try
to unify the evaluation methods and give metrics applicable to all biometric template protection
schemes.

Nagar, Nandakumar and Jain[12] proposed such security metrics. Their security metrics con-
sists of six items: FARUK, FARKK, IRIS, IRID, CMRT and CMRO. The first two items exactly correspond
to our proposal, accuracy and biometric performance. IRIS, the Intrusion Rate due to Inversion
for the Same biometric system, and IRID, the Intrusion Rate due to Inversion for a Different bio-
metric system, are related to our metric of ǫ-{PI,AD}-pseudo-authorized leakage irreversibility in
Definition 4. Our metric gives the upper-bound of the intrusion probability for all probabilistic
polynomial-time inverters, whereas IRIS and IRID give the intrusion probability for the best possi-
ble inverter. IRIS and IRID can be evaluated experimentally, hence suitable metrics for algorithms
in the feature transformation approach. However, IRIS and IRID should be considered that it gives
the lower assurance in irreversibility, as far as there is no evidence that the best possible inverter
used in the evaluation is the best of all probabilistic polynomial-time inverters. Similarly, CMRT, the
Cross Match Rates in the Transformed feature domain, and CMRO, the Cross Match Rates in the
Original feature domain, are related to our diversity and ǫ-{PI,AD}-unlinkability, respectively in
Definition 5.
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Simoens, Yang, Zhou, Beato, Busch, Newton and Preneel[11] proposed nearly all aspect of
requirements normally expected to template protection algorithms, namely from technical perfor-
mance such as recognition accuracy, throughput and storage requirement, protection performance
through operational performance. Based on their proposal, this paper focuses on the formal def-
initions of the recognition performance and the protection performance for precise discussions.
For recognition performance, their accuracy[11] and diversity[11] exactly corresponds to our bio-
metric performance and diversity. Further, we introduced another accuracy which corresponds to
FARUK in Nagar et al.[12] to demonstrate the performance advantage of two-factor template protec-
tion algorithms. For protection performance, their irreversibility[11] and unlinkability[11] exactly
corresponds to ours. Irreversibility[11] is further divided into full-leakage irreversibility, authorized-
leakage irreversibility and pseudo-aurhorized-leakage irreversibility depending on the differences of
goals for adversary. These three notions of irreversibility is formally defined and discussed their
relations in Section 4.1. Unlinkability[11] is defined as the false cross match rate (FCMR) and
the false non-cross match rate (FNCMR). These rate is measured as the performance of a cross-
comparator. Similarly, if one could give an upper-bound of FCMR and FNCMR for all probabilistic
polynomial-time cross-comparator, then unlinkability can be theoretically evaluated with the high
assurance level. On the other hand, if these rates are given experimentally for the best possible
cross-comparator, unlinkability is evaluated with lower assurance level. These are discussed in more
detail in Section 4.2.

2 Preliminaries

In this section, we will explicitly formulate biometric template protection (BTP) algorithms. In this
paper, we discuss BTP algorithms utilizing a common modality and a common feature extraction
algorithm. Namely we do not discuss BTP algorithms using multi-biometrics.

Let U be a finite set consisting of all users who have biometric characteristics utilized in BTP
algorithms. Assume that each user u ∈ U has his/her own biometric characteristic bu and therefore,
in the following, we identify u with bu and use the notation u instead of bu, namely, the set U can
be regarded as a set consisting of all individuals’ biometric characteristics. A biometric recognition
system captures biometric samples from biometric characteristics presented to the sensor of the
system, extracts biometric features from biometric samples, and verifies or identifies users by using
their biometric features. We assume that each user’s biometric features are represented as a digital
element x ∈ M of a finite set M. We call x a feature element of u. Since two feature elements
generated from u are rarely identical, we let Xu denote a random variable on M representing
noisy variations of feature elements of u, namely P (Xu = x) is the probability that a biometric
sample of captured from u will be represented as x. Let R be the set of all real numbers and let
d :M×M → R be a semimetric function onM, namely the real-valued function d satisfies the
following three conditions:

(ı) d(x, y) ≥ 0

(ii) d(x, y) = 0 if and only if x = y

(iii) d(x, y) = d(y, x)

for all x, y ∈ M. Then M is called a semimetric space associated with d. For any x ∈ M,
Mτ (x) = {x′ | d(x, x′) ≤ τ} is called the τ -neighborhood of x. Let f be an algorithm (or a
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function) onM whose input x ∈M is chosen according to a random variable X. Let f(X) denote

a random variable induced on the image of f . For any set T , the notation t
$← T denotes that t is

chosen from the set T uniformly at random. For any random variable X on a setM, the notation
x ← X denotes that x is chosen according to X. For any function f on the set M, the notation
E

x←X
f(x) denotes the expected value of f under the condition that x is chosen according to the

random variable X, namely

E
x←X

f(x) =
∑

x∈M

Pr[X = x]f(x) .

In particular,

E
x←X

Pr[an event of x] =
∑

x∈M

Pr[X = x] Pr[an event of x | X = x]

=
∑

x∈M

Pr[X = x, an event of x] .

Traditional biometric comparison algorithms are assumed to utilize an ordinary comparison method
which, for an enrolled feature element and a freshly extracted feature element x′ during verification,
decides match if d(x, x′) ≤ τ , and otherwise non-match by using a decision threshold τ . Then, the
false non-match rate FNMRd≤τ and the false match rate FMRd≤τ are formulated as follows:

FNMRd≤τ = E
u

$
← U

x, x′
$
← Xu

Pr
[

d(x, x′) > τ
]

(1)

FMRd≤τ = E
(u, v)

$
← (U × U)diff

x
$
← Xu, y

$
← Xv

Pr [d(x, y) ≤ τ ] .

where (U × U)diff = {(u, v) ∈ U × U | u 6= v} and #U denotes the number of elements of U .

Biometric template protection algorithms We will give a explicit formulation of biometric
template protection (BTP) algorithms as follows.

Definition 1 (BTP algorithms). A biometric template protection (BTP) algorithm Π is a tuple of
polynomial-time algorithms Gen, PIE, PIR, PIC, namely Π = (Gen,PIE,PIR,PIC). Let Gen is
an algorithm which on input 1k returns a finite set U of biometric characteristics, the associated
random variables Xu, u ∈ U , over a semimetric space M, and the public parameters p, where k

is a security parameter. Let PIE be a randomized algorithm which on input x ∈ M returns a pair
(π, α) of two data π ∈ MPI and α ∈ MAD, where MAD are finite sets. The algorithm PIE is
called a pseudonymous identifier encoder. The first output π (resp. the second output α of PIE is
called a pseudonymous identifier (PI) for enrollment (resp. auxiliary data (AD)) and is denoted by
π = PIE1(x) (resp. α = PIE2(x)). The algorithm PIE can be regarded as a pair of two randomized
algorithms PIE1 and PIE2.

In the enrollment phase, a biometric characteristic u ∈ U is submitted to the system, a feature
element x ∈ M is generated according to the distribution Xu, PIE outputs (π, α) on input x, and
π and α are stored in storages. Note that π and α are not necessarily stored together in the same
storage.
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Let PIR be a deterministic algorithm which, on input α ∈ MAD and x′ ∈ M, returns a data π′ ∈
M′PI for verification, whereM′PI is a finite set. The data π′ = PIR(α, x′) is called a pseudonymous
identifier for verification. Let PIC be a deterministic algorithm which, on input π ∈ MPI and π′ ∈
M′PI, returns either match or non-match. The algorithms PIR and PIC are called a pseudonymous
identifier recorder and a pseudonymous identifier comparator, respectively.

In the verification phase, a biometric characteristic u ∈ U is freshly presented to the system, a
new feature element x′ ∈ M is generated according to Xu. The verification entity receives a PI π,
an AD α and x′, computes π′ = PIR(α, x′), and outputs PIC(π, π′) ∈ {match, non-match}.

Note that the terms, pseudonymous identifier (PI), auxiliary data (AD), are defined in ISO/IEC
24745 [6] (cf. [11]). A pseudonymous identifier (PI) is defined to be a set of data that represents
an individual or data subject within a certain domain by means of a protected identity and is used
as a reference for verification by means of a captured biometric sample and auxiliary data. It is
desirable that the PI does not allow the retrieval of the enrolled biometric feature element and
multiple “unlinkable” PI’s can be derived from the same biometric characteristic. Auxiliary data
(AD) is defined to be a set of data that can be required to reconstruct pseudonymous identifiers
during verification. In some scheme, AD depends on the enrolled biometric feature element.

A pair (π, α) of PI and AD is called a protected template (PT) in [11] or a renewable biometric
reference in [6]. In [11], in general, PTs are assumed to be public. However, most existing BTP
algorithms require secrecy of PT. Because, in the real world, for some modalities (e.g. fingerprint,
iris, face and so on) there are many public large databases, and therefore, the adversary can find a
matching sample by entirely running such a database against a stolen PT. Therefore, in this paper,
both PIs and ADs are assumed to be secret information. Each user’s PI and AD are separately
stored in different storages, for example, in application to 2-factor authentication systems, every
PI is stored together with each user’s ID in the database and each user’s AD is stored in the user’s
smart card. We will discuss the recognition performance and the security performance when one of
(or both) PI and AD is leaked. Simoens et al. [11] regard such a data separation as an additional
property of BTP.

Definition 2 (2-factor BTP). We will define a 2-factor BTP authentication algorithms in which
a biometric characteristic is the first authentication factor. There are two possibilities from the
viewpoint of data separation. A scheme which utilizes ADs as second factors and stores PIs for
verification in the database is called a AD-2-factor BTP. Reversely, a scheme which utilizes PIs for
verification as second factors and stores ADs in the database is called a PI-2-factor BTP.

3 Recognition performance for BTP algorithms

In this section, we especially focus on recognition performance as technical performance of BTP
algorithms Π. For the simplicity, we will fix a security parameter k. Therefore, a set U of biometric
characteristics, the associated random variables Xu, u ∈ U , and the public parameters p are fixed.

3.1 Accuracy

For any biometric template protection (BTP) algorithm Π = (PIE,PIR,PIC), the false non-match
rate of Π, FNMRΠ, is the probability that a mated pair of PT and biometric sample are falsely
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declared to be non-match , namely,

FNMRΠ = E
u

$
← U

x← Xu

(π, α)← PIE(Xu)

Pr
[

PIC
(

π,PIR(α, x)
)

= non-match
]

Here, we will define recognition accuracy metrics for 2-factor BTPs, which are called total perfor-
mance and naturally introduced from the notion, data separation, discussed by Simoens et al. [11,
Section 4.4]. The false match rate for total performance of AD-2-factor BTP (resp. PI-2-factor
BTP) Π, FMRTP

Π, AD (resp. FMRTP
Π, PI), is the probability that a zero-effort impostor’s presentation

of his own biometric characteristic u ∈ U along with a 2nd factor α ∈ MAD (resp. π ∈ MPI) gen-
erated from u is falsely declared to match a non-mated reference data π ∈ MPI (resp. α ∈ MAD)
generated from a biometric characteristic v ∈ U\{u}. The metrics FMRTP

Π, AD and FMRTP
Π, PI are

respectively formulated by

FMRTP
Π, AD = E

(u, v)
$
← (U × U)diff

x← Xu

(π, α)← PIE(Xu)
(π′, α′)← PIE(Xv)

Pr
[

PIC
(

π′,PIR(α, x)
)

= match
]

FMRTP
Π, PI = E

(u, v)
$
← (U × U)diff

x← Xu

(π, α)← PIE(Xu)
(π′, α′)← PIE(Xv)

Pr
[

PIC
(

π,PIR(α′, x)
)

= match
]

.

Nagar et al. [1] propose these metrics as the false accept rate with unknown transformation pa-
rameters, FARUK .

By measuring the above metrics, FNMRΠ, FMRTP
Π, AD, and FMRTP

Π, PI, we can totally evaluate the
recognition performance of 2-factor BTPs. However, a 2-factor BTP can achieve a high recognition
performance when the recognition accuracy contributed by one factor is high, even if the recognition
accuracy contributed by the other factor is poor. Therefore, we need to evaluate the recognition
accuracy achieved only by using one factor. In the following sections, Section 3.2 and 3.3, we will
define metrics for such recognition accuracy.

3.2 Biometric Performance

In this section, we will define a metric for the recognition accuracy achieved only by the 1st factor,
biometrics. The false match rate for biometric performance of Π, FMRBP

Π , is the probability that
a zero-effort impostor’s presentation of his own biometric characteristic u ∈ U along with a correct
2nd factor is falsely declared to match a genuine reference data. Then the metric FMRBP

Π is
formulated by

FMRBP
Π = E

(u, v)
$
← (U × U)diff

x← Xu

(π, α)← PIE(Xv)

Pr [PIC(π,PIR(α, x)) = match] .

Simoens et al. [11] discussed this metric as an ordinary recognition accuracy metric, the false
match rate, because they mainly consider biometric-based single factor authentication systems
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which stores PIs and ADs in the database. Moreover, Nagar et al. [1] propose this metric as the
false accept rate with known transformation parameters, FARKK.

This metric can be regarded as a metric for security against impersonation when a user’s 2nd
factor is leaked. In the above notion, biometric performance, the adversary assumed to be very
weak, namely he presents his own biometric characteristic along with obtained genuine user’s 2nd
factor. However, in order to strictly evaluate security against impersonation, we need to define a
stronger attack model. We would discuss such a rigorous security in another paper in preparation.

3.3 Diversity

Diversity is the notion which ensures renewability for 2-factor BTPs. Namely, after a PT generated
from u ∈ U is renewed, a presentation of u along with the old 2nd factor should not be declared
to match the new reference data. Diversity is also the property that PTs should not allow cross-
matching across databases in different authentication systems. (cf. [7, III], [1, Sect. 3.3], [11, Sect.
3.5]). We will define a metric for diversity as follows. The false match rate for diversity of BTP
algorithm Π, FMRDiv

Π , is the probability that a presentation of a biometric characteristic u ∈ U
along with a 2nd factor generated from u is falsely declared to match a new reference data freshly
generated from the same u. The metrics FMRDiv

Π is formulated by

FMRDiv
Π = E

u
$
← U

x← Xu

(π, α)← PIE(Xu)
(π′, α′)← PIE(Xu)

Pr
[

PIC
(

π,PIR(α′, x)
)

= match
]

.

Nagar et al. [1] proposes this metric as the cross match rate, CMR. Here we consider the corre-
sponding entropy H = − logFMRDiv

Π . Then, it indicates that the distribution of PTs generated
form a biometric characteristic are almost the same as the uniform distribution on H-bit binary
strings, namely 2H independent PTs can be generated from a biometric characteristic. Simoens et
al. [11] propose the number of such “independent” PTs as a metric for diversity.

Diversity can be regarded as a metric for security against impersonation when a user’s biometric
characteristic is leaked. For example, in the real world, a fingerprint left on a glass is abused by
a malicious user. However, in the above diversity notion, the adversary assumed to be very weak,
namely he submits a 2nd factor randomly generated from the obtained biometric characteristic.
By using the obtained biometric characteristic, a stronger adversary might be able to find a 2nd
factor which makes PIC return match with extremely higher probability. We would discuss such a
strict security notion in another paper in preparation.

4 Protection peformance for BTP algorithms

4.1 Irreversibility

Suppose that the adversary obtains (a part of) a PT leaked from the database or from the user’s
storage devices. The adversary might be able to recover a feature element close to the original
feature element from which the PT is generated. Form the recovered feature element, he might
create a physical spoof of the user’s biometric characteristic and impersonate the user by presenting
the fake biometric characteristic to the system. Irreversibility is a requirement that it should be
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hard to recover an original feature element (or a neighborhood of it) from (a part of) a PT, which
ensures the security in the case of leakage of PTs.

For each nonempty subset Λ 6= φ of the terms {PI,AD} and any PT (π, α), let (π, α)Λ denote
a subset of {π, α} defined by (π, α){PI,AD} = (π, α), (π, α){PI} = π, and (π, α){AD} = α. We call
(π, α)Λ a Λ-subset of (π, α)

We will define a irreversibility game (IRR Game) between the challenger Ch and the adversary
A = (A1,A2), where A1 is a probabilistic polynomial-time (ppt) adversary which is given the
algorithms and the parameters of Π and sends a state to A2, and A2 is a ppt adversary who is
given a Λ-subset of a PT generated from an feature element x ∈ M extracted from a randomly
chosen biometric characteristic and attempts to guess (a neighborhood of) the original feature
element x.

Recently, for most major modalities, there are many databases available to the public. There-
fore, it is natural to assume that the adversary easily obtains a huge database of biometric samples.
In this case, the adversary can performs an offline attack and successfully find a target feature
element. In order to formulate such a practical situation, we will define an oracle from which
the adversary can obtain feature elements corresponding to biometric characteristics submitted as
queries. More precisely, let Samp be an oracle which, on input u ∈ U , chooses x ∈ M accord-
ing to Xu and returns x. We assume that the challenger and the adversary are allowed to make
polynomial-time queries to Samp before he returns his guess.

For any subset φ 6= Λ ⊂ {PI,AD} and any real number τ ≥ 0, we define Λ-τ -authorized leakage
game (Λ-ALτ IRR Game) (resp. Λ-pseudo authorized leakage game (Λ-PAL IRR Game)) as follows.

Λ-ALτ IRR Game (resp. Λ-PAL IRR Game)

Step 1. The challenger Ch inputs 1k into Gen and Gen returns U , Xu, u ∈ U , and the parameters
p. The challenger Ch sends (p,Λ, τ) (resp. (p,Λ)) to the adversary A1.

Step 2. The adversary A1 receives (p,Λ, τ) (resp. (p,Λ)) and sends a state s to A2. The adversary
A1 is allowed to make polynomial-time queries to Samp before he sends s to A2.

Step 3. The challenger Ch chooses a biometric characteristic u ∈ U uniformly at random, submits
u to the sampling oracle Samp, and gets a feature element x ∈ M as an answer from Samp.
The challenger Ch inputs the feature element x into PIE, gets the output (π, α), and sends
(π, α)Λ to the adversary A2.

Step 4. The adversary A2 receives the state s and (π, α)Λ from A1 and Ch, respectively, and
returns x′ ∈ M. The adversary A2 is allowed to make polynomial-time queries to Samp
before he returns his guess.

If d(x, x′) ≤ τ (resp. PIC(π,PIR(α, x′)) = match), then the adversary A = (A1,A2) wins.
Traditional biometric recognition algorithms, which do not use BTP algorithms, determines

decision thresholds τ to minimize the false non-match rate FNMRd≤τ or the false match rate
FMRd≤τ (cf. (1)). If the adversary obtains a Λ-subset of a PT and successfully recovers a feature
element close to the original feature element, then he can impersonate the user in traditional
authentication systems. Since some BTP algorithms might accept feature elements outside the
τ -neighborhood of the original feature element, the adversary in Λ-PAL IRR Game might find a
feature element x′ such that PIC(π,PIR(α, x′)) = match but d(x, x′) > τ .
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For any feature element x ∈ M, the match rate of the feature element x with respect to d ≤ τ

(resp. the reverse match rate of the feature element x)MRd≤τ (x) (resp. rMRΠ(x) ) is the probability
that a feature element x′ ∈ M (resp. a PT (π, α)) generated from a randomly chosen biometric
characteristic u ∈ U satisfies d(x, x′) ≤ τ (resp. PIC(π,PIR(α, x)) = match), which is formulated
by

MRd≤τ (x) = E
x′ ← X(U)

Pr
[

d(x, x′) ≤ τ
]

(2)

rMRΠ(x) = E
(π, α)← PIE(X(U))

Pr
[

PIC(π,PIR(α, x)) = match
]

. (3)

Put md≤τ = max
x

MRd≤τ (x) and mΠ = max
x

rMRΠ(x). In Λ-ALτ IRR Game (resp. Λ-PAL IRR

Game), the optimal strategy of an adversary A′ who is not given (π, α)Λ is to return a feature
element x satisfying MRd≤τ (x) = md≤τ (resp. rMRΠ(x) = mΠ) and then the success probability
of the adversary A′ is equals to md≤τ (resp. mΠ). Therefore, the advantage AdvΛ-ALτ IRR

Π,A (resp.

AdvΛ-PAL IRR
Π,A ) of the adversary A is defined by

AdvΛ-ALτ IRR
Π,A = Pr[A in Λ-ALτ IRR Game wins]−md≤τ

AdvΛ-PAL IRR
Π,A = Pr[A in Λ-PAL IRR Game wins]−mΠ

Definition 3 (Authorized-leakage irreversibility (cf. [11])). We say that a BTP algorithm Π is
ε-Λ-τ -authorized-leakage irreversible (ε-Λ-ALτ IRR) if AdvΛ-ALτ IRR

Π,A < ε for any ppt adversary A.
In particular, we say that Π is ε-Λ-full-leakage irreversible (ε-Λ-FL IRR) if AdvΛ-AL0 IRR

Π,A < ε for
any ppt adversary A.
Definition 4 (Pseudo-authorized-leakage irreversibility (cf. [11])). We say that a BTP algorithm
Π is ε-Λ-pseudo-authorized-leakage irreversible (ε-Λ-PAL IRR) if AdvΛ-PAL IRR

Π,A < ε for any ppt
adversary A.

The above definitions immediately implies the following theorem. We omit the proof.

Theorem 1. Fix any nonempty subset Λ ⊂ {PI,AD} and any real numbers ε > 0 and τ ≥ 0. If
a BTP algorithm Π is ε-Λ-ALτ IRR, then Π is (ε+md≤τ −md≤0)-Λ-FL IRR.

Moreover, assume that τ satisfies the condition that, for any x ∈ M and any PT (π, α) generated
from x, PIC(π,PIR(α, x′)) = match if d(x, x′) ≤ τ . If a BTP algorithm Π is ε-Λ-PAL IRR, then
Π is (ε+mPi −md≤τ )-Λ-ALτ IRR.

Simoens et al. [11] also introduce the above metrics, FL IRR, AL IRR, and PAL IRR, as the
difficulty of determining (a neighborhood of) the original feature element. Note that, in the attack
model in [11] the adversary is given the whole PT. Here, we discuss unachievability of PAL IRR
in the case when the adversary is given a whole PT, namely Λ = {PI,AD}. Actually, when the
adversary obtains both the PI and the AD, he can find a target feature element with extremely
high probability by making a certain amount of queries to Samp. We will more precisely discuss
as follows.

For any PT (π, α) ∈ MPI×MAD, the match rate of the PT (π, α), MRΠ(π, α), is the probability
that a feature element x′ ∈ M generated from a randomly chosen biometric characteristic u ∈ U
satisfies PIC(π,PIR(α, x′)) = match, which is formulated by

MRΠ(π, α) = E
x′ ← X(U)

Pr
[

PIC(π,PIR(α, x′)) = match
]

.
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The MRΠ(π, α) can be regarded as a random variable over the distribution of (π, α). Let MRΠ

denote the average of MRΠ(π, α), namely

MRΠ = E
(π, α)← PIE(X(U))

MRΠ(π, α) .

Let σ is the standard deviation of the MRΠ(π, α). Then, from Chebyshev’s inequality, we have

Pr

[

MRΠ(π, α) > MRΠ−
σ√
δ

]

≥ 1− δ (4)

for any δ > 0. For the simplicity, we assume that MRΠ and σ are constants independent of the

security parameter k. Let C be the variation coefficient of MRΠ(π, α), namely C =
σ

MRΠ
. Assume

that C < 1.

Theorem 2. For all ε < 1− C2 −mΠ, there exists no ε-{PI,AD}-PAL IRR BTP algorithm.

In general, more accurate BTP algorithms Π have smaller C. Therefore, Theorem 2 states that
accurate BTP algorithms are unlikely to achieve sufficient irreversibility when both PI and AD are
compromised.

We will prove Theorem 2 in Appendix A. We can also similarly prove unachievability of AL
IRR when the adversary is given the whole PT under the assumptions slightly different from the
case of PAL IRR. However, we omit a precise description of the statement and the proof in this
e-print and will describe them in the full paper.

4.2 Unlinkability

For any nonempty subset Λ ⊂ {PI,AD}, we will define Λ-UNLINK Game between the challenger
Ch and the adversary A = (A1,A2), where A is given Λ-subsets of two PTs and attempts to guess
whether the PTs are generated from the same biometric characteristics or not. In this game, Ch
and A are allowed to make polynomial-time queries to the sampling oracle Samp.

Λ-UNLINK Game

Step 1. The challenger Ch inputs 1k into Gen and Gen returns U , Xu, u ∈ U , and the parameters
p. Ch sends (p,Λ) to the adversary A1.

Step 2. The adversary A1 receives (p,Λ), outputs three feature elements x, x0, x1 depending on
a distribution selected by A1, sends (x, x0, x1) to Ch, and sends a state s to A2, where s

contains (x, x0, x1). The adversary A1 is allowed to make polynomial-time queries to Samp
before he sends s to A2.

Step 3. The challenger Ch flips the random coin b ∈ {0, 1}, inputs x, xb into PIE, gets PT =
PIE(x) and PT ′ = PIE(xb), and sends (PT )Λ and (PT ′)Λ to the adversary A2.

Step 4. The adversary A2 receives the state s and (PT )Λ and (PT ′)Λ from A1 and Ch, and returns
b′ ∈ {0, 1} as a guess of b. The adversary A2 is allowed to make polynomial-time queries to
Samp before he returns his guess.

11



If b′ = b, then the adversary A = (A1,A2) wins. The advantage AdvΛ-UNLINK
Π,A of the adversary A

over the random guess is formulated by

AdvΛ-UNLINK
Π,A =

∣

∣2Pr [A wins]− 1
∣

∣ (5)

Definition 5 (Unlinkability). We say that a BTP algorithm Π is ε-Λ-unlinkable (ε-Λ-UNLINK),
if AdvΛ-UNLINK

Π,A < ε for any ppt adversary A.

Here, we will show unachievability of unlinkability when both PI and AD are compromised.

Theorem 3. Assume that, for any x ∈ M and any PT (π, α) generated from x, PIC(π,PIR(α, x)) =
match. For any ε ≤ 1−MRΠ, there exists no ε-{PI,AD}-UNLINK BTP algorithm.

In general, more accurate BTP algorithms Π have smaller MRΠ. Therefore, Theorem 3 states
that accurate BTP algorithms are unlikely to achieve sufficient unlinkability when both PI and AD
are compromised.

We will prove Theorem 3 in Appendix A.
Simoens et al. [11] define a metric for unlinkability by using the false cross match rate (FCMR)

and the false non-cross-match rate (FNCMR). They define an adversary Acc = (Acc
1 ,Acc

2 ), who
is called the cross-comparator. In Λ-UNLINK Game, the adversary Acc

1 chooses a pair (u, v) ∈
(U × U)diff of two different biometric characteristics, submits u to Samp independently twice, and
receives x and x0 respectively as the answers of two queries, moreover submits v to Samp, and
receives x1 as the answer, sends (x, x0, x1) to Ch, and sends a state s containing (x, x0, x1) to Acc

2 .
The adversary Acc

2 receives the state containing (x, x0, x1) and (PT1)Λ and (PT2)Λ from Acc
1 and

Ch, respectively, and returns b′ ∈ {0, 1} as a guess of b.
The false cross match rate (FCMR) (resp. the false non-cross-match rate (FNCMR)) is the

probability that, when b = 1 (resp. b = 0), the cross comparator Acc falsely guesses that b′ = 0
(resp. b′ = 1), which is formulated as follows:

FCMRΛ-UNLINK
Π,Acc = E

(u, v)
$
← (U × U)diff

(PT )Λ ← PIE(Xu)
(PT ′)Λ ← PIE(Xv)

Pr[Acc returns 0 in Λ-UNLINK Game]

(

resp. FNCMRΛ-UNLINK
Π,Acc = E

u
$
← U

(PT )Λ ← PIE(Xu)
(PT ′)Λ ← PIE(Xu)

Pr[Acc returns 1 in Λ-UNLINK Game]

)

.

The advantage AdvΛ-UNLINK
Π,Acc of the cross comparator can be interpreted as follows:

AdvΛ-UNLINK
Π,Acc =

∣

∣1−
(

FCMRΛ-UNLINK
Π,Acc +FNCMRΛ-UNLINK

Π,Acc

)∣

∣ .

5 Relations among security notions

In this section, we will clarify relations among security notions, irreversibility and unlinkabil-
ity, defined in the previous sections. We will prove that unlinkability is a stronger notion than
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authorized-leakage irreversibility. Therefore, unlinkability gives more rigorous assurance on privacy
than irreversibility. Before describing the precise statement, we will prepare some notations.

Let Pτ (x) be the probability that the τ -neighborhood of x′ chosen according to the distribution
X(U) has non-empty intersection withMτ (x), namely

Pτ (x) = E
x
′
← X(U)

Pr[Mτ (x) ∩Mτ (x
′) 6= φ] .

Note that, for any τ < τ ′, Pτ (x) ≤ Pτ ′(x). Put pτ = max
x

Pτ (x) and qτ = min
x

Pτ (x). Note that, for

any τ < τ ′, pτ ≤ pτ ′ and qτ ≤ qτ ′ , and q0 ≤
1

#M ≤ p0 and the equality is attained if and only if

X(U) is a uniform distribution.

Theorem 4. For any nonempty subset Λ ⊂ {PI,AD}, if a BTP algorithm Π is ε-Λ-UNLINK, then

Π is
ε+ (pτ − qτ )md≤τ

1− pτ
-Λ-ALτ IRR for any τ ≥ 0.

We will prove Theorem 4 in Appendix C.
From Theorem 1 and Theorem 4, we have the following figures, Figure 1 and Figure 2, which

indicate relations among irreversibility and unlinkability when Λ = PI and Λ = AD, respectively.
The notation A −→ B means that the notion A is stronger than the notion B. We avoide to show
the figure in the case of Λ = {PI,AD}, because, as mentioned after Theorem 2 and Theorem 3,
accurate BTP algorithms are unlikely to achieve sufficient irreversibility or unlinkability when both
PI and AD are compromised.

PI-FL IRR
x





PI-AL IRR ←−−−− PI-UNLINK
x





PI-PAL IRR

Figure 1: Relations among security notions
when only PI is compromised.

AD-FL IRR
x





AD-AL IRR ←−−−− AD-UNLINK
x





AD-PAL IRR

Figure 2: Relations among security notions
when only AD is compromised.
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A Proof of Theorem 2

In this appendix, we will explicitly prove Theorem 2.

Proof of Theorem 2. Put Λ = {PI,AD}. We need to prove that, for any constant γ satisfying
C2 < γ < 1, there exists an adversary A satisfying Pr[A in Λ-PAL IRR Game wins] > 1 − γ. We
will define an adversary A2 who obtains a PT (π, α) from the challenger Ch, makes polynomial-time
queries to the sampling oracle Samp, and returns a guess x′ ∈M.

Fix a constant δ satisfying C2 < δ < γ. Put µ = MRΠ−
σ√
δ
. Since 0 < µ < 1 and µ is a

constant, there exists a constant number Nδ such that (1 − µ)N <
γ − δ

1− δ
for all N ≥ Nδ. The

adversary A repeats the following processes from Step 1 to Step 3 at most Nδ times.

Step 1. The adversary A2 chooses a biometric characteristic v ∈ U uniformly at random.

Step 2. The adversary A2 sends to the sampling oracle Samp and gets a feature element x′ from
Samp.

Step 3. The adversary A2 checks whether PIC(π,PIR(α, x′)) = match or non-match .

If PIC(π,PIR(α, x′)) = match in the Step 3 during the repetition of the above processes, then A2

finishes the processes and returns x′.
We say that a PT (π, α) is good if MRΠ(π, α) > µ. If the adversary A2 is given a good PT

(π, α), then the probability that A2 gets a feature element x′ satisfying PIC(π,PIR(α, x′)) = match

during the Nδ-time repetition of the above steps is greater than or equal to 1− (1− µ)Nδ >
1− γ

1− δ
.

From (4), the probability that A2 is given a good PT (π, α) is greater than or equals to 1 − δ.
Therefore, we have

Pr[A in Λ-PAL IRR Game wins] > (1− δ)× 1− γ

1− δ
= 1− γ .

Therefore, the result follows.

B Proof of Theorem 3

In this appendix, we will explicitly prove Theorem 3.

Proof of Theorem 3. It is sufficient to show that there exists an adversary A in {PI,AD}-UNLINK
Game whose advantage is equal to 1−MRΠ. We define such an adversary A = (A1,A2) as follows.

The adversary A1.

The adversary A1 receives (p, {PI,AD}) from the challenger Ch, independently chooses three
biometric characteristics u, u0, u1 ∈ U uniformly at random, makes queries u, u0, u1 to Samp,
gets three feature elements x, x0, x1 from Samp, respectively, sends (x, x0, x1) to Ch, and
sends a state s′ = ((x, x0, x1), p, {PI,AD}) to A2.

The adversary A2.

The adversary A2 receives the state s
′ = ((x, x0, x1), p, {PI,AD}) and PT = (π, α) and PT ′ =
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(π′, α′) from A1 and Ch, respectively. When PIC(π′,PIR(α′, x1)) = non-match , A2 puts b′ =
0. When PIC(π′,PIR(α′, x0)) = non-match , A2 puts b′ = 1. When PIC(π′,PIR(α′, x0)) =
match and PIC(π′,PIR(α′, x1)) = match, A2 chooses b′ from {0, 1} uniformly at random.
Finally A2 returns b′.

From the assumption in the statement of Theorem 3, if (π′, α′) = PIE(x0) (resp. (π
′, α′) = PIE(x1)),

then PIC(π′,PIR(α′, x0)) = match (resp. PIC(π′,PIR(α′, x1)) = match). Therefore, when b = 0,
there are the following two cases in which A correctly returns b′ = 0.

Case 1. PIC(π′,PIR(α′, x1)) = non-match

Case 2. PIC(π′,PIR(α′, x1)) = match and b′ = 0 is chosen from {0, 1} with probability
1

2
.

Therefore, the probability that, when b = 0, the adversary A correctly returns b′ = 0 is estimated
as follows:

Pr[A returns b′ = 0 b = 0] = E
(x0, x1)← X(U)×X(U)
(π′, α′)← PIE(x0)

Pr
[

PIC(π′,PIR(α′, x1)) = non-match
]

+ E
(x0, x1)← X(U)×X(U)
(π′, α′)← PIE(x0)

Pr

[

PIC(π′,PIR(α′, x1)) = match

b′ = 0
$← {0, 1}

]

=(1−MRΠ) +
1

2
MRΠ = 1− 1

2
MRΠ .

The success probability of A when b = 1 is similarly estimated as follows:

Pr[A returns b′ = 1 | b = 1] = 1− 1

2
MRΠ .

Hence, we have

AdvΛ-UNLINK
Π,A =

∣

∣2Pr[A in Λ-UNLINK Game wins]− 1
∣

∣ =
∣

∣2(1− 1

2
MRΠ)− 1

∣

∣ = 1−MRΠ

Therefore the result follows.

C Proof of Theorem 4

In this appendix, we will explicitly prove Theorem 4.

Proof of Theorem 4. Put ε′ =
ε+ (pτ − qτ )md≤τ

1− pτ
. It is sufficient to show that if there exists an

adversary A in Λ-ALτ IRR Game whose advantage is greater than or equal to ε′, then there exists
an adversary B in Λ-UNLINK Game whose advantage is greater than or equal to ε. Suppose that
there exists an adversary A = (A1,A2) satisfying AdvΛ-ALτ IRR

Π,A ≥ ε′ in Λ-ALτ IRR Game. We
define an adversary B = (B1,B2) in Λ-UNLINK Game as follows.
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The adversary B1.
The adversary B1 receives (p,Λ) from the challenger Ch, inputs (p,Λ) into the adversary
A1, and obtains a state s as an output of A1(p,Λ). Then, B1 independently chooses three
biometric characteristics u, u0, u1 ∈ U uniformly at random, makes queries u, u0, u1 to Samp,
gets three feature elements x, x0, x1 from Samp, respectively, sends (x, x0, x1) to Ch, and
sends a state s′ = ((x, x0, x1), s) to B2.

The adversary B2.
The adversary B2 receives the state s′ = ((x, x0, x1), s) and (PT )Λ and (PT ′)Λ from B1
and Ch, respectively. When Mτ (x0) ∩Mτ (x1) = φ, B2 inputs s and (PT ′)Λ into A2 and
obtains a feature element x′ as an output of A2(s, (PT ′)Λ). If d(x0, x

′) ≤ τ , then b′ = 0, if
d(x1, x

′) ≤ τ , then b′ = 1, otherwise b′ is chosen from {0, 1} uniformly at random. When
Mτ (x0)∩Mτ (x1) 6= φ, b′ is also chosen from {0, 1} uniformly at random. Finally B2 returns
b′.

When b = 0, there are the following three cases in which the adversary B correctly returns b′ = 0.

Case 1. Mτ (x0) ∩Mτ (x1) = φ and A2 guesses a feature element x′ satisfying d(x0, x
′) ≤ τ .

Case 2. Mτ (x0) ∩ Mτ (x1) = φ, A2 guesses a feature element x′ satisfying d(x0, x
′) > τ and

d(x1, x
′) > τ , and b′ = 0 is chosen from {0, 1} with probability

1

2
.

Case 3. Mτ (x0) ∩Mτ (x1) 6= φ and b′ = 0 is chosen from {0, 1} with probability
1

2
.

Therefore, the probability that, when b = 0, the adversary B correctly returns b′ = 0 is expanded
as follows:

Pr[B returns b′ = 0 b = 0]

= E
(x0, x1)← X(U) ×X(U)
PT ′

← PIE(x0)

Pr

[

Mτ (x0) ∩Mτ (x1) = φ

A2((PT ′)Λ) = x′, d(x0, x
′) ≤ τ

]

+ E
(x0, x1)← X(U)×X(U)
PT ′

← PIE(x0)

Pr







Mτ (x0) ∩Mτ (x1) = φ

A2((PT ′)Λ) = x′, d(x0, x
′) > τ, d(x1, x

′) > τ

b′ = 0
$← {0, 1}







+ E
(x0, x1)← X(U)×X(U)
PT ′

← PIE(x0)

Pr

[

Mτ (x0) ∩Mτ (x1) 6= φ

b′ = 0
$← {0, 1}

]

.

Since Pr[E1 ∩ (¬E2 ∩¬E3)] ≥ Pr[E1]− (Pr[E1 ∩E2] + Pr[E1 ∩E3]) for any events E1, E2, and E3,
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the second term is estimated as follows:

Pr







Mτ (x0) ∩Mτ (x1) = φ

A2((PT ′)Λ) = x′, d(x0, x
′) > τ, d(x1, x

′) > τ

b′ = 0
$← {0, 1}







≥1

2

(

Pr[Mτ (x0) ∩Mτ (x1) = φ]− Pr

[

Mτ (x0) ∩Mτ (x1) = φ

A2((PT ′)Λ) = x′, d(x0, x
′) ≤ τ

]

−Pr

[

Mτ (x0) ∩Mτ (x1) = φ

A2((PT ′)Λ) = x′, d(x1, x
′) ≤ τ

])

.

Therefore, we have

Pr[B returns b′ = 0 b = 0]

≥1

2









E
(x0, x1)← X(U) ×X(U)
PT ′

← PIE(x0)

Pr

[

Mτ (x0) ∩Mτ (x1) = φ

A2((PT ′)Λ) = x′, d(x0, x
′) ≤ τ

]

− E
(x0, x1)← X(U) ×X(U)
PT ′

← PIE(x0)

Pr

[

Mτ (x0) ∩Mτ (x1) = φ

A2((PT ′)Λ) = x′, d(x1, x
′) ≤ τ

]

+ 1









.

By the definitions of pτ and qτ , we have

Pr[B returns b′ = 0 b = 0]

≥1

2









(1− pτ ) E
x0 ← X(U)
PT ′

← PIE(x0)

Pr[A2((PT ′)Λ) = x′, d(x0, x
′) ≤ τ ]

−(1− qτ ) E
x1 ← X(U)
PT ′

← PIE(x0)

Pr[A2((PT ′)Λ) = x′, d(x1, x
′) ≤ τ ] + 1









.

Since A2 is only given independent information from x1 ∈ M, the probability that A2 guess a
feature element x′ contained in the τ -neighborhood to x1 is at most md≤τ . Consequently, we have

Pr[B returns b′ = 0 | b = 0] ≥ 1

2

(

(1− pτ ) Pr[A in Λ-ALτ IRR Game wins]− (1− qτ )md≤τ + 1
)

.

We can similarly estimate the success probability of B when b = 1 as follows:

Pr[B returns b′ = 1 | b = 1] ≥ 1

2

(

(1− pτ ) Pr[A in Λ-ALτ IRR Game wins]− (1− qτ )md≤τ + 1
)

.

18



Finally, the advantage of the adversary B is calculated as follows:

AdvΛ-UNLINK
Π,B =

∣

∣2Pr[B in Λ-UNLINK Game wins]− 1
∣

∣

≥
∣

∣(1− pτ ) Pr[A in Λ-ALτ IRR Game wins]− (1− qτ )md≤τ

∣

∣

=
∣

∣(1− pτ )Adv
Λ-ALτ IRR
Π,A −(pτ − qτ )md≤τ

∣

∣

≥
∣

∣(1− pτ )ε
′ − (pτ − qτ )md≤τ

∣

∣ = ε .

Therefore the result follows.
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