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Abstract

When using biometric technology in forensic applications,

it is necessary to compute a Log-likelihood Ratio (LLR) for a

given piece of evidence (E) under two competing hypotheses,

namely the prosecution and the defence hypotheses. Although

LLR is a quantity expressing uncertainty and intuitively quan-

tifying its uncertainty would not make sense, in practice, it is

computed under a set of assumptions and methods for a given

data set. Therefore, it is essential to ask how well and how

repeatable and/or reproducible it is that we can estimate LLR.

More specifically, it is desirable to understand the behaviour

of the confidence intervals of the estimated LLR for any fea-

sible region since any incorrect estimate may lead to possible

condemnation of innocent people. To this end, we have thus

tackled the estimate of LLR which is fundamentally a Bayesian

concept using a frequentist approach, via bootstraping, using

two LLR estimators, namely Logistic Regression (LR) and Ker-

nel Density Estimator (KDE). The experimental results, which

are based on seven face recognition systems, show that LLR

does have different confidence lengths, thus highlighting that

LLR cannot be estimated with the same certainty everywhere.

Moreover, for the two LLR estimators investigated, we found

that there is a consistent region in which any LLR value can

be estimated confidently. To our best knowledge, these two

findings have never been systematically reported in literature.

They thus advance our understanding of LLR when used in

computing the strength of biometric evidence in forensics.

1. Introduction

In the current law practice, there is an increasing need to

weigh in evidence more objectively using the biometric tech-

nology for the purpose of deciding that a person was present

in a crime scene or has committed a crime. Biometric modal-

ities such as fingerprint, DNA, and speech have been used for

decades, and due to the widely accepted close-circuit television

(CCTV) cameras in public surveillances, face and gait biomet-

rics are also beginning to be used [17, 7, 19].

The strength of evidence required by a court is known as the

likelihood ratio [30]. This ratio compares two competing hy-

potheses, known as the prosecution and defence hypotheses. In

this work, we are concerned with the result of this computation.

Specifically, we want to know how reliable; or at what preci-

sion it is that we can compute likelihood ratio. Since likelihood

ratio is estimated numerically, it is reasonable to question its

repeatability and reproducibility, that is its level of uncertainty.

1.1. Bayesian or frequentist aproaches to Evidence In-
terpretation

In defining a probability, there are two approaches com-

monly practised, namely Bayesian versus frequentist. Accord-

ing to Hochter [18], probability in the frequentist approach is

described by sampling certain processes, while in the Bayesian

approach, probability is commonly used to model uncertainty

or in other word the confidence of a sample.

In theory, likelihood ratio is an estimate of confidence; and

therefore, intuitively, this confidence value does not require its

own confidence intervals. However, in practice, since we are

using data to estimate the confidence value (i.e., the likelihood

ratio), the estimand can be affected by the way the data has

been sampled. A well known method following the frequen-

tist approach to quantify the uncertainty around an estimand is

bootstrap sampling [14]; it relies on a large number of trials

from which the data samples could have been drawn. There-

fore, it is perfectly feasible to estimate the confidence intervals

around the estimand i.e., the likelihood ratio. In other words,

while the concept of confidence (in the sense of likelihood ra-

tio) is derived from the Bayesian approach; to put it into prac-

tice, we estimate it using bootstrap sampling, which is a fre-

quensist approach.

1.2. Motivations

By combining both Bayesian and frequentist approaches,

we seek to answer whether or not likelihood ratio is repro-

ducible and repeatable. According to Bureau International des

Poids et Mesures (BIPM) [1], reproducibility means the repli-



cability of result if a measurement is taken by another per-

son/operator; whereas repeatability refers to the replicability

of result of the same person or examiner in another attempt

(taking place after a certain time lapse with respect to the first

attempt) using the same measurement conditions, i.e., the same

procedure, same operator, same measuring system, same oper-

ating condition, and same location. We would like to find out

the equivalence of these concepts in quantifying likelihood ra-

tio.

Reproducibility. One way to assess the reproducibility of

likelihood ratio is to consider the following scenario. Suppose

that we use two commonly used likelihood ratio estimators

such as Logistic Regression (LR) and Kernel Density Estima-

tor (KDE), we would like to know if they would give consistent

likelihood ratio estimates or not. If two independent estimators

give consistent estimates of likelihood ratio, then the particular

likelihood ratio should be more reliable, because the value is

reproducible using two different algorithms.

Repeatability. The question of repeatability in our con-

text could be answered using bootstrap sampling. Using this

strategy, the same experimental conditions would be used but

with one exception. The actual samples used for estimating

the conditional probability constituting the prosecution or de-

fence hypothesis are allowed to vary, which is achieved via

bootstrap sampling. If a particular likelihood ratio is repeat-

able, we would expect the value to remain the same within ac-

ceptable confidence intervals despite change in the constituent

samples.

Therefore, in order to proceed to answering the above ques-

tions, it is necessary to use two estimators; e.g., LR and KDE

to be use in this study, in conjunction with a bootstrap sampling

procedure.

1.3. Related works

Taroni et al. [31] in their study argue on the way evidential

value is presented in a court of law. The authors believe that

it should be presented in a form of single value derived from

Bayesian Factor (BF) rather than an expression based on a dis-

tribution over a range of values.

In BF, two competing hypothesises are considered in com-

puting the strength of evidence, namely:

• Prosecution hypothesis, H0, supports a claim that the col-

lected evidence belongs to the suspect, and

• Defence hypothesis, H1, supports a claim that the evi-

dence belongs to someone else.

Given a piece of evidence, E, the Bayes rule suggests that

the verdict should be made based on the inference of the poste-

rior probability P (Hk|E) ∝ p(E|Hk)P (Hk) for k ∈ {0, 1}
, which is a consequence of the product rule (the notation

of which is to be further explained in the Methodology sec-

tion). Computing the ratio between P (H0|E) and P (H1|E),

we have:

P (H0|E)

P (H1|E)
︸ ︷︷ ︸

posterior odd

=
p(E|H0)

p(E|H1)
︸ ︷︷ ︸

likelihood ratio or BF

×
P (H0)

P (H1)
︸ ︷︷ ︸

prior odd

(1)

This formulation provides a mathematical representation of

the legal process, namely one updates the belief of a suspect

being guilty or innocent as evidence is presented [12].

In addition, this formulation limits a forensic expert to

weigh in his/her contribution explicitly in the form of the

strength of evidence in terms of likelihood ratio, which is based

on the forensic evaluation on the evidence rather than the prior

odd ratio which is the jury’s remit. In the context of forensic

evidence evaluation, the main focus is to determine the source

of the evidence collected at the crime scene for the purposes in

the court of law.

Unlike the usual application of a biometrics system, when a

biometric sample from a suspect is compared to a piece of bio-

metric evidence collected from the crime scene, the resultant

similarity score is not acceptable to be presented in the court of

law. Whilst an accept or reject decision can be made in a typical

biometric authentication system, such a prescriptive approach

is not suitable for forensic applications because the decision is

made by the judge; and not forensic practitioners [11, 10, 15].

With that reasoning, in this study, we only work on the likeli-

hood ratio and leave the decision making process to the court

of law.

Tauseef et al. [5] compare three algorithms to estimating

likelihood ratio, namely Logistic Regression, Kernel Density

Estimator, and Pull-adjacent Violator algorithms. In each case,

they show that the likelihood ratio estimates can be inconsistent

with each other, i.e., giving different values.

Despite this finding, it is not clear whether or not the esti-

mated likelihood ratio values are inconsistent everywhere in the

biometric score space. Our study differs from Tauseef et al.’s

one in that we are interested to understand the reproducibility

of likelihood ratio despite using two different estimators. Our

conjecture is that likelihood ratio in some regions of the bio-

metric score space may indeed be consistent. Therefore, the

likelihood ratio values in these regions are more credible than

regions where the two estimators depart in their estimates.

1.4. Our Contributions

The main contribution in this paper is to provide a better

understanding about reproducibility and repeatability of like-

lihood ratio. To investigate the reproducibility of likelihood

ratio, we shall use two common likelihood ratio estimators,

namely, Kernel Density Estimator (KDE) and Logistic Regres-

sion (LR). To evaluate the repeatability of likelihood ratio, we

appeal to bootstrap sampling. In terms of methodology, we

advocate the combined use of both Bayesian and frequentist

approaches rather than treating both as separate, competing

methodologies. We have studied the behaviour of likelihood



ratio using seven face biometric score sets in order to stimulate

as close as possible to real forensic conditions.

Although bootstrap sampling has been used by [3, 14] for

estimating the uncertainty of likelihood ratio, our work differs

in two ways. First, these prior works did not consider the ef-

fect of multiple likelihood ratio estimators, and the application

domains are different. Second, we measure the confidence in-

tervals of the likelihood ratio by using bootstrap sampling in

order to evaluate its uncertainty.

In addition, although our work echoes those of existing lit-

erature [27, 13, 3, 21, 4], our study also shows that likelihood

ratio has its own uncertainties, in terms of confidence inter-

vals [32].

More importantly, we observe that the confidence intervals

of likelihood ratio do not have equal length everywhere. In-

deed, the likelihood ratio precision is higher (hence lower vari-

ability) when a piece of evidence (as represented by a biomet-

ric score output) is near its optimal threshold, that is, near the

Equal Error Rate (ERR) operating point. When the evidence

(biometric score output) is further away, moving closer to the

defence or prosecution hypotheses, i.e, toward either end of the

score spectrum, the confidence intervals grow larger.

We have limited our scope of study to the face biometrics

and assessment at the score level rather than the general, fea-

ture level assessment, using information theory as in [2], for

instance. Computing likelihood ratio in the high dimensional

feature space, even with dimensionality reduction such as Prin-

cipal Component Analysis (PCA) or Fisher Discriminant Anal-

ysis (FDA), remains a challenging feat, especially on a indi-

vidual suspect basis where the relevant training samples are

barely adequate. Furthermore, the state-of-the-art face recog-

nition techniques are not based on PCA or FDA but advanced

machine learning algorithms. For this reason, it would seem

reasonable to investigate scores derived from a state-of-the-art

face recognition classifier and then investigate how likelihood

ratio can be derived in this domain.

Last but not least, we do not examine the properties of the

accuracy of different likelihood ratio estimators since compar-

ative works have been investigated in [5].

1.5. Paper Organisation

This paper is organised as follow: Section 2 presents the

methodology; Section 3 show our experimental approach and

results; and finally, the conclusions and future works are found

in Section 4.

2. Methodology

This section presents the likelihood ratio framework, which

is the currently-acceptable practice for presenting evidence in

court. Section 2.1 establishes the commonly-used forensic

terms and this is followed by the framework itself.

2.1. Terminology and notation

This section begins by first defining the terminology used

in forensics, followed by those used by biometrics. This is

necessary because the biometric technology is used to derive

the strength of evidence in solving forensic cases.

2.1.1 Forensic terminology

Same vs. different source. In an automatic biometric recogni-

tion system, two biometric samples are compared to each other

in order to determine whether the two samples belong to the

same source or two different sources. The term “source” here

refers to the subject identity.

Prosecution vs. defence. As discussed in Subparagraph 1.3.

Evidence. In the usual forensic sense, a piece of evidence

refers to an acquired piece of information, generally collected

from a crime scene.

Evidence score. We introduced the term “evidence score” to

refer to the scores derived from a biometric matcher, which is a

result of comparing two samples. An evidence score is denoted

as E ∈ R.

2.1.2 Biometrics terminology

Match vs. nonmatch comparison The equivalence of the

prosecution hypothesis in biometrics is known as the match

comparison, whereas the equivalence of the defence hypothe-

sis is known as the non-match comparison. Indeed, the match

scores, once generated, are used to estimate the distribution of

the evidence when the prosecution hypothesis is true. Simi-

larly, the non-match scores are used to estimate the distribution

of the evidence under the defence hypothesis.

Score sets. Let y ∈ Y be the comparison score from the

score set Y . Since there are two comparison events due to the

same versus different sources, we further distinguish two sets

of scores; namely, Y0 under which the prosecution hypothesis

(H0) is true; and, Y1, where the defence hypothesis (H1) is

true.

2.2. The likelihood ratio framework

Having established the notation in the previous section, we

can now revisit the likelihood framework. Let p(E|Hk) rep-

resent the likelihood of the evidence score, E, given that the

hypothesis Hk is true. The strength of evidence is defined

as a ratio between the prosecution hypothesis and the defence

hypothesis, also known as likelihood ratio or Bayesian Fac-

tor, as shown in (1). However, for computational reason, it is

more convenient to do the calculation in the logarithmic do-

main, leading to the Log-likelihood Ratio, henceforth denoted

as LLR(E):

LLR(E) = log
p(E|H0)

p(E|H1)
. (2)

Hereinafter, the prior odd term is not discussed as this is the

jury’s remit.



A number of score-to-likelihood methods, also known as

calibration methods, can be found in the literature, namely,

Kernel Density Estimation (KDE), Logistic Regression (LR),

Histogram Binning, and Pool Adjacent Violators (PAV). In this

paper we shall include only two methods in order to demon-

strate the reproducibility of likelihood ratio. So, we have cho-

sen the two most commonly used likelihood ratio estimators as

reported in [3, 26, 28, 16, 9]. These methods are KDE and LR.

2.3. Kernel Density Estimator (KDE)

The KDE approach directly estimates the likelihood term

p(E|Hk) using the KDE algorithm, which is a non-parametric

method. This approach is suitable given sufficient a sample

size. KDE places a kernel on each data point so that the like-

lihood evaluated on a given location is a sum of the potentials

of the kernel function defined by all the training samples. For

our purpose in this paper, it suffices to formalise KDE as an

estimator of the form:

p(E|Hk) ≃ f(E|Yk)

which is dependent on the training score set Yk. The approxi-

mated LLR(E) by KDE is therefore,

LLRKDE(E) = log
f(E|Y0)

f(E|Y1)
.

Because of the use of KDE, the estimate of likelihood on

locations where data samples are sparse, e.g., at the extreme

tails of the distribution, can be very inaccurate. For this reason,

another approach to modelling LLR(E) is by using Logistic

Regression (LR), which is described next.

2.4. Logistic Regression (LR)

LR is a commonly used pattern recognition technique for

many problems including fusion and calibration [8, 23, 16,

9, 5]. For our purpose here, it is used to directly model the

Log-likelihood Ratio, LLR(E) without estimating p(E|Hk)
for both hypotheses. LR gives the posterior probability of H0

given E, i.e., P (H0|E), which as the following form:

P (H0|E) =
1

1 + exp(−g(E))
(3)

It is a sigmoid function taking the argument g(E) which, in

turn, is a linear function of E:

g(E) = w1E + w0

In order to turn the output of LR into the form that is compat-

ible with LLR(E), we can apply the logit function, which is

defined as log P
1−P

when P is a probability. Applying logit to

P (H0|E) gives:

LLRLR(E) = log
P (H0|E)

1− P (H0|E)
(4)

1

Input : Number of bootstraps, B

Score sets, (Y0,Y1)
Output : {(Y0

b ,Y
1
b )|∀b∈B}

2 for b = 1 . . .B do

3 Y0
b = bootstrap(Y0)

4 Y1
b = bootstrap(Y1)

5 end

Algorithm 1: Bootstrap sampling

If we plug (3) into (4) and rearrange the term, we obtain:

LLRLR(E) = g(E) = w1E + w0. (5)

This implies that LLR(E) can be approximated by taking the

raw output of LR, g(E), that is, without applying the sigmoid

function. As a result, the LLR(E) as given by LR is simply

a linear function of E, that is scaled by w1 and shifted by w0.

Such an interpretation means that LR is a linear function of

the raw biometric matcher output. In comparison, KDE can

be viewed as a non-linear transformation of the raw biometric

matcher output. For the purpose of subsequent discussion, we

shall abstract the LLR estimated by LR using the following

equation:

LLRLR(E) = fLR(E|Y0,Y1)

in order to highlight the fact that LR needs the training score

sets Y0 and Y1. After training, we only need to keep w1 and

w0 because these two parameters are all that is required to cal-

culate LLR.

It should be cautioned that LR may inadvertently model the

prior probability of the training data. This situation is particular

acute with unbalanced training samples, i.e., |Y0| ≪ |Y1|. This

can be mitigated during the optimisation process by ensuring

that each sample in Y0 has an associated weight contribution

of 1/|Yk| for both data sets k ∈ {0, 1}.

2.5. Bootstrap sampling

A key ingredient to deriving the confidence intervals of LLR

is to be able to bootstrap samples. If y ∈ Y is a sample drawn

from a set Y , bootstrap sampling with replacement generates

another set of samples of the same size. Let us call this proce-

dure bootstrap, which can be defined as: Y ′ = bootstrap(Y).
Since, we need to create B bootstraps, this procedure has to be

repeated B times:

Yb = bootstrap(Y) (6)

for b = {1 . . . B}.

The bootstrap sampling simply takes each of the score set

pairs (Y0,Y1) and applies the bootstrapping procedure, and

doing so B times, as described in Algorithm 1. This results in

B pairs of bootstrapped score sets.



1

Input : Number of bootstraps, B

Score sets, {(Y0
b ,Y

1
b )|∀b∈B}

Output : {θb|∀b∈B}

2 for b = 1 . . .B do

3 θb = train(Y0
b ,Y

1
b )

4 end

Algorithm 2: Training procedure

2.6. Training and Inference based on the Bootstrapped
Score Pairs

Let us know turn our attention to dealing with the pairs of

score sets {(Y0
b ,Y

1
b )|∀b∈B} which are output of sample-level

bootstrapping as discussed.

We shall introduce two abstract functions, namely,

1. Training procedure, i.e., train : Y0
b ,Y

1
b → θb

2. Inference procedure, i.e., inference : θb, E →
LLR(b)(E)

Training for logistic regression The training procedure

takes a pair of score sets and produce a model parameter θ. The

training procedure for logistic regression is known as “gradient

ascend”, which in our case, produces θ = [ω0, ω1].
Training for KDE For kernel density estimator, the training

involves fitting the KDE model to Yk
b , for each k and each b:

θ0b = KDEtrain(Y
0
b ) (7)

θ1b = KDEtrain(Y
1
b ) (8)

Inference for logistic regression During inference, for a

given E, we repeat this process B times, i.e.,

LLR(b)(E) = LLRLR(E|θb), (9)

for all b ∈ B. Refer to (5) for the actual function.

Inference for KDE The inference of KDE is done by re-

peating the process B times for a given E:

LLRKDE(E) = log
f(E|θ0b )

f(E|θ1b )
(10)

for all b ∈ B, recalling that f is the KDE function (refer to [6],

for instance).

Overall training procedure The overall training procedure

first takes B pairs of score sets and produces B model param-

eters which are stored for inference use later on.

Overall inference procedure The inference procedure de-

rives a set of LLR(E) values from B model parameters. This

results in B LLR values from which the confidence intervals of

LLR(E) can be derived. The confidence intervals of LLR(E),
at the α confidence level, is then given by the values of

{LLR(b)(E)|∀b} at their corresponding Prob(LLR(b)) ≈ α
and Prob(LLR(b)) ≈ 1 − α which respectively delineate the

1

Input : Trained parameters, {θb|∀b∈B}
Evidence score, E

Confidence level, α

Output : Confidence intervals, LLRlower(E), LLRupper(E)

2 for b = 1 . . .B do

3 LLR(b)(E) = inference(E|θb)
4 end

5 LLRlower(E)) = argminLLR(b) |Prob(LLR(b))− α|

LLRupper(E)) = argminLLR(b) |Prob(LLR(b))− (1− α)|

Algorithm 3: Inference procedure

lower and uppper confidence intervals, where Prob(·) is a cu-

mulative density function of ·. The inference procedure is sum-

marised in Algorithm 3.

In short, using each of the two LLR estimators – LR and

KDE – in turn, we can invoke Algorithms 2 and 3 in order to

study the reproducibility and repeatability properties of likeli-

hood ratio, the experiments of which will be presented next.

3. Experiments and Results

3.1. Database

In order to compare the two variants of methods to estimat-

ing confidence intervals of Log-Likelihood Ratio (LLR), ide-

ally, one should use a real forensic database. Unfortunately,

due to information governance and privacy issues, real foren-

sic databases are either scant or contain few cases that enable

any meaningful evaluation of the proposed model. As a result,

following previous studies on LLR computation, e.g., [5, 15]

and many authors, we shall use the output of biometric ex-

periments. To this end, we have chosen to use a database of

scores taken from experiments carried out on the XM2VTS

database [20]. The database contains genuine and impostor

scores of seven face systems, across two experimental proto-

cols, known as Lausanne Protocols 1 and 2. The two protocols

differ mainly in the way the development (training) data is par-

titioned to build the baseline systems. The evaluation (test)

data in both protocols remain the same.

The face system considered in this study is based on the

Discrete Cosine Transform (DCT) coefficients [29]. The DCT

procedure operates with two image block dimensions, i.e.,

small (s) or big (b), and is denoted by DCTs or DCTb, respec-

tively. Hence, the matching process is local as opposed to a

holistic matching approach such as the Principal Component

Analysis.

Table 1 presents a list of baseline experimental scores used

in this study. The score data set is publicly available at http:

//goo.gl/CdXw9Z and was reported in [24]. Note that each

system can be characterized by a feature representation scheme

and a classifier. Two types of classifiers were used, i.e., GMMs

and multi-layer Perceptrons (MLPs).

For Lausanne Protocol 1 (LP1), there are 3 genuine scores

per subject and there are 200 subjects. Therefore, there are



Table 1. The 13 baseline experiments taken from the XM2VTS bench-

mark fusion database were considered for studying the user-specific

statistics as well as the proposed OR-switcher fusion operator.

Label Modality Feature Classifier

P1:1 face DCTs GMM

P1:2 face DCTb GMM

P1:6 face DCTs MLP

P1:7 face DCTs MLPi

P1:8 face DCTb MLP

P1:9 face DCTb MLPi

P2:1 face DCTb GMM

Pm : n denotes the n-th system in the m-th protocol. MLPi

denotes the output of MLP converted to LLR using inverse hy-

perbolic tangent function. P1:6 and P1:7 (resp. P1:8 and P1:9)

are the same systems except that the scores of the latter have

been transformed.

3× 200 = 600 match scores. The nonmatch score set consists

of 40,000 samples which is the result of comparing 8 samples

of 25 held-out impostor subjects to the templates of 200 le-

gitimate subjects (8 × 25 × 200). For LP2, there are 400 (

2 × 200) match scores; and exactly the same number of non-

match scores for training. Both protocols share the same test

set, i.e., 2 × 200 = 400 genuine scores and 70 × 8 × 200 =
112,000 nonmatch scores. However, for the purpose of esti-

mating the length of ‘confidence intervals’ in LLR, we shall

not use the test scores. This is because we are only interested in

measuring the confidence intervals around a given LLR value

in the score space. So, the test scores serve no purpose as far as

the experiment is concerned. More details can be found in [24].

3.2. Experimental hypotheses

From the analyses we have so far, we know that logistic

regression, as an LLR estimator, is linear in the score space, as

shown by (5). On the contrary, for KDE, the function form as

shown by (2) does not provide any guarantee of this. There are,

however, two questions that have not yet been answered, which

must be evaluated experimentally using real biometric matcher

output:

1. Are the estimates of LR and KDE inconsistent every-

where?

2. How does the length of confidence intervals behave across

the different E values?

3.3. Results

To answer the first question, we first compare the LLR pro-

duced by LR and KDE across the seven face biometric score

data sets in XM2VTS database. The curve is produced by set-

ting E ∈ Y to a particular value, and then evaluating its con-

fidence intervals using the inference procedure described by

Algorithm 3. Throughout the experiments reported here, we

shall use 100 bootstrap samples, thus, setting B = 100.
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Figure 1. Comparison of LLR estimated using logistic regression (LR,

plotted in blue continuous line) and Kernel Density Estimation (KDE,

red dashed line) for 7 face biometric systems.

In order to highlight that the two LLR estimators are often

consistent with each other, we plot their estimated LLR values

as a function of E, for a particular instance of bootstrap, in Fig-

ure 1. We can observe that the estimated LLR values are often

in agreement with each other, especially around the matching

score E near the optimal decision threshold (which happens

to be around zero). However, toward the extreme positive or

negative ends of E, the estimated LLR for KDE almost always

deviates from that of logistic regression.

We can define the reproducible LLR values to be those

falling in the biometric score space (E) where the two like-

lihood ratio estimators are consistent. This reproducible region

can be formally characterised by the following equation for a

small ǫ value:

Yreproducible ≡ {|LLRKDE(E)− LLRLR(E)| < ǫ,E ∈ Y}

Figure 2 shows the absolute difference of LLR in the two LLR

estimators, across all bootstrapped samples for each face sys-

tem. Based on this experiment, we suggest that the error tol-

erance threshold, ǫ, with a value of about 10, to be somewhat

reasonable since it can clearly distinguish a consistent LLR re-

gion that is continuous from both the extreme ends of the LLR

values where inconsistency exist, across all experiments.

To answer the second question, we shall make use of the

bootstrap sampling procedure. The estimated confidence inter-

vals for LR and KDE are shown in Figures 3 and 4, respec-

tively. In both figures, The X-axis shows the index of the

biometric score space sampled equally from the negative and

positive extreme values of the matcher output. Only the index

of these ten sampled values are shown instead of the original

matching output, which is not important here in the context

of this study here. The index around 5 or 6 is the location

where false acceptance or false rejection rates are similar. This
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Figure 2. The absolute difference in LLR between LR and KDE for

7 face biometric systems. Each curve in a subplot corresponds to an

instance of the bootstrap-sampled absolute LLR difference curve.
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Figure 3. The confidence intervals of Logistic Regression (LR) on

seven face biometric systems.
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Figure 4. The confidence intervals of Kernel Density Estimation

(KDE) on seven face biometric systems.

is where optimal threshold would have been placed if the bio-

metric system is used for authentication.

It is interesting to note that for both KDE and LR, the length

of confidence intervals, as shown in the form of boxplot, are not

of equal length everywhere. They are smaller when LLR = 0
(with index around 5 or 6). This is significant because when the

likelihood ratio indicates that there is an equal probability be-

tween the prosecution and the defence hypothesis, the certainty

to which we can estimate is value is very high, as indicated by

the narrow confidence intervals of the LLR around zero values.

On the other hand, when the LLR (strength of evidence) leans

toward one hypothesis or another – LLR ≫ 0 (index closer to

10) or LLR ≪ 0 (index closer to 1) – the procedure tells us

that the certainty at which we can compute this LLR is, in fact,

relatively low (compared to when LLR is close to zero).

Last but not least, when comparing LR and KDE, we see

that the LLR estimated by logistic regression is linear in the

score space. It is also more stable and reliable compared to

that estimated by KDE. This observation is consistent with [5].

4. Conclusions

In this study, we have advanced our understanding on the

reproducibility and repeatability of likelihood ratio. Firstly,

our finding suggests that there are regions in the biometric

matcher space where the estimated likelihood ratio of logis-

tic regression and Kernel Density Estimator can be consistent

with each other. This shows that despite the use of two differ-

ent algorithms to estimating likelihood ratio, there are regions

in which estimated LLR values are reproducible. It is there-

fore recommended that the reproducible region of LLR be used

when computing the strength of evidence. Conversely, when

the LLR values of intervals is outside this reproducible region,

one should interpret this value with care.

Secondly, the length of confidence intervals of LLR is not

equal everywhere. The intervals are smaller when LLR is near

the operating point where EER = 0. This is significant be-

cause when the likelihood ratio indicates that there is an equal

probability between the prosecution and the defence hypothe-

sis, the certainty to which we can estimate is value is very high.

On the other hand, when the LLR (strength of evidence) leans

toward one hypothesis or another – LLR ≫ 0 or LLR ≪ 0
– there is much discrepancy between the two LLR estimators.

This is mainly due the KDE, being sensitive to small sample

size, is unable to estimate the density, hence adversely impact-

ing on its ability to accurately estimate LLR at both extreme

ends of the spectrum.

Possible future research directions include: (1) using alter-

native framework of evidence evaluation such as Non-match

Probability (NMP) [22]; and (2) investigating other bootstrap

procedures such as the bootstrap subset technique which is

known to provide more realistic intervals length than bootstrap

sampling [25]; and (3) extending this study to other biometrics.
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