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Abstract

Despite significant progress made over the past twenty five
years, unconstrained face verification remains a challeng-
ing problem. This paper proposes an approach that cou-
ples a deep CNN-based approach with a low-dimensional
discriminative embedding step, learned using triplet prob-
ability constraints to address the unconstrained face verifi-
cation problem. Aside from yielding performance improve-
ments, this embedding provides significant advantages in
terms of memory and for post-processing operations like
subject specific clustering. Experiments on the challeng-
ing IJB-A dataset show that the proposed algorithm per-
forms close to the state of the art methods in verification
and identification metrics, while requiring much less train-
ing data and training/test time. The superior performance
of the proposed method on the CFP dataset shows that the
representation learned by our deep CNN is robust to large
pose variation. Furthermore, we demonstrate the robust-
ness of deep features to challenges including age, pose, blur
and clutter by performing simple clustering experiments on
both IJB-A and LFW datasets.

1. Introduction
Recently, with the advent of curated face datasets like La-
beled faces in the Wild (LFW) [1] and advances in learning
algorithms like Deep neural nets, there is more hope that
the unconstrained face verification problem can be solved.
A face verification algorithm compares two given templates
that are typically not seen during training. Research in face
verification has progressed well over the past few years, re-
sulting in the saturation of performance on the LFW dataset,
yet the problem of unconstrained face verification remains a
challenge. This is evident by the performance of traditional
algorithms on the publicly available IJB-A dataset ([2], [3])
that was released recently. Moreover, despite the superb
performance of CNN-based approaches compared to tra-
ditional methods, a drawback of such methods is the long
training time needed. In this work, we present a Deep CNN
(DCNN) architecture that ensures faster training, and inves-

tigate how much the performance can be improved if we
are provided domain specific data. Specifically, our contri-
butions are as follows:
• We propose a deep network architecture and a training

scheme that ensures faster training time.
• We formulate a triplet probability embedding learning

method to improve the performance of deep features
for face verification and subject clustering.

During training, we use a publicly available face dataset to
train our deep architecture. Each image is pre-processed
and aligned to a canonical view before passing it to the
deep network whose features are used to represent the im-
age. In the case of IJB-A dataset, the data is divided into
10 splits, each split containing a training set and a test set.
Hence, to further improve performance, we learn the pro-
posed triplet probability embedding using the training set
provided with each split over the features extracted from
our DCNN model. During the deployment phase, given a
face template, we extract the deep features using the raw
CNN model after implementing automatic pre-processing
steps such as face detection and fiducial extraction. The
deep features are projected onto a low-dimensional space
using the embedding matrix learned during training (note
that the projection involves only matrix multiplication). We
use the 128-dimensional feature as the final representation
of the given face template.
This paper is organized as follows: Section 2 places our
work among the recently proposed approaches for face ver-
ification. Section 3 details the network architecture and the
training scheme. The triplet probabilistic embedding learn-
ing method is described in Section 4 followed by results on
IJB-A and CFP datasets and a brief discussion in Section
5. In Section 6, we demonstrate the ability of the proposed
method to cluster a media collection from LFW and IJB-A
datasets.

2. Related Work
In the past few years, there have been numerous works in
using deep features for tasks related to face verification.
The DeepFace [4] approach uses a carefully crafted 3D
alignment procedure to preprocess face images and feeds
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them to a deep network that is trained using a large training
set. More recently, Facenet [5] uses a large private dataset
to train several deep network models using a triplet distance
loss function. The training time for this network is of the
order of few weeks. Since the release of the IJB-A dataset
[2], there have been several works that have published
verification results for this dataset. Previous approaches
presented in [6] and [7] train deep networks using the
CASIA-WebFace dataset [8] and the VGG-Face dataset
respectively, requiring substantial training time. This paper
proposes a network architecture and a training scheme that
needs shorter training time and a small query time.

The idea of learning a compact and discriminative repre-
sentation has been around for decades. Weinberger et al.
[9] used a Semi Definite Programming (SDP)-based formu-
lation to learn a metric satisfying pairwise and triplet dis-
tance constraints in a large margin framework. More re-
cently, this idea has been successfully applied to face veri-
fication by integrating the loss function within the deep net-
work architecture ([5], [7]). Joint Bayesian metric learn-
ing is also another popular metric used for face verification
([10],[11]). These methods either require a large dataset for
convergence or learn a metric directly and therefore are not
amenable to subsequent operations like discriminative clus-
tering or hashing. Classic methods like t-SNE [12], t-STE
[13] and Crowd Kernel Learning (CKL) [14] perform ex-
tremely well when used to visualize or cluster a given data
collection. They either operate on the data matrix directly
or the distance matrix generated from data by generating
a large set of pairwise or triplet constraints. While these
methods perform very well on a given set of data points,
they do not generalize to out-of-sample data. In the current
work, we aim to generalize such formulations, to a more tra-
ditional classification setting, where domain specific train-
ing and testing data is provided. We formulate an optimiza-
tion problem based on triplet probabilities that performs di-
mensionality reduction aside from improving the discrimi-
native ability of the test data. The embedding scheme de-
scribed in this work is a more general framework that can be
applied to any setting where labeled training data is avail-
able.

3. Network Architecture
This section details the architecture and training algorithm
for the deep network used in our work. Our architecture
consists of 7 convolutional layers with varying kernel sizes.
The initial layers have a larger size rapidly subsampling the
image and reducing the parameters while subsequent lay-
ers consist of small filter sizes, which has proved to be very
useful in face recognition tasks ([7],[8]). Furthermore, we
use the Parametric Rectifier Linear units (PReLUs) instead
of ReLUs, since they allow a negative value for the output

based on a learned threshold and have been shown to im-
prove the convergence rate [15].

Layer Kernel Size/Stride #params
conv1 11x11/4 35K
pool1 3x3/2
conv2 5x5/2 614K
pool2 3x3/2
conv3 3x3/1 885K
conv4 3x3/1 1.3M
conv5 3x3/1 2.3M
conv6 3x3/1 2.3M
conv7 3x3/1 2.3M
pool7 3x3/2

fc6 1024 18.8M
fc7 512 524K
fc8 10548 10.8M

Softmax Loss Total: 39.8M

Table 1: Deep Network architecture details

The top three convolutional layers (conv1-conv3) are ini-
tialized with the weights from the AlexNet model [16]
trained on the ImageNet challenge dataset. Several recent
works ([17],[18]) have empirically shown that this transfer
of knowledge across different networks, albeit for a differ-
ent objective, improves performance and more significantly
reduces the need to train over a large number of iterations.
The compared methods either learn their deep models from
scratch ([7],[19]) or finetune only the last layer of fully pre-
trained models. The former results in large training time
and the latter does not generalize well to the task at hand
(face verification) and hence resulting in sub optimal per-
formance. In the current work, even though we use a pre-
trained model (AlexNet) to initialize the proposed deep net-
work, we do so only for the first three convolutional layers,
since they retain more generic information ([17]). Subse-
quent layers learn representations which are more specific
to the task at hand. Thus, to learn more task specific in-
formation, we add 4 convolutional layers each consisting
of 512 kernels of size 3 × 3. The layers conv4-conv7 do
not downsample the input thereby learning more complex
higher dimensional representations. This hybrid architec-
ture proves to be extremely effective as our raw CNN repre-
sentation outperforms some very deep CNN models on the
IJB-A dataset (Table 2 in Results). In addition, we achieve
that performance by training the proposed deep network us-
ing the relatively smaller CASIA-WebFace dataset.
The architecture of our network is shown in Table 1. Layers
conv4-conv7 and the fully connected layers fc6-fc8 are ini-
tialized from scratch using random Gaussian distributions.
PReLU activation functions are added between each layer.
Since the network is used as a feature extractor, the last
layer fc8 is removed during deployment, thus reducing the
number of parameters to 29M. The inputs to the network are
227x227x3 RGB images. When the network is deployed,
the features are extracted from the fc7 layer resulting in a
dimensionality of 512. The network is trained using the



Softmax loss function for multiclass classification using the
Caffe deep learning platform [20].

4. Learning a Discriminative Embedding
In this section, we describe our algorithm for learning a
low-dimensional embedding such that the resulting pro-
jections are more discriminative. Aside from an improved
performance, this embedding provides significant advan-
tages in terms of memory and enables post-processing
operations like visualization and clustering.

Consider a triplet t := (vi,vj ,vk), where vi (anchor)
and vj (positive) are from the same class, but vk (neg-
ative) belongs to a different class. Consider a function
SW : RN × RN 7→ R that is parameterized by the ma-
trix W ∈ Rn×N , that measures the similarity between two
vectors vi,vj ∈ RN . Ideally, for all triplets t that exist in
the training set, we would like the following constraint to
be satisfied:

SW(vi,vj) > SW(vi,vk) (1)

Thus, the probability of a given triplet t satisfying (1) can
be written as:

pijk =
eSW(vi,vj)

eSW(vi,vj) + eSW(vi,vk)
(2)

The specific form of the similarity function is given as:
SW(vi,vj) = (Wvi)

T · (Wvj). In our case, vi and vj
are deep features normalized to unit length. To learn the
embedding W from a given set of triplets T, we solve the
following optimization:

argmin
W

∑
(vi,vj ,vk)∈T

− log(pijk) (3)

(3) can be interpreted as maximizing the likelihood (1)
or minimizing the negative log-likelihood (NLL) over the
triplet set T. In practice, the above problem is solved in
a Large-Margin framework using Stochastic Gradient De-
scent (SGD) and the triplets are sampled online. The gradi-
ent update for W is given as:

Wτ+1 = Wτ − η ∗Wτ ∗ (1− pijk) ∗ (vi(vj − vk)
T

+(vj − vk)v
T
i )

(4)

where Wτ is the estimate at iteration τ , Wτ+1 is the
updated estimate, (vi,vj ,vk) is the triplet sampled at the
current iteration and η is the learning rate.

By choosing the dimension of W as n×N with n < N , we
achieve dimensionality reduction in addition to improved
performance. For our work, we fix n = 128 based on cross
validation and N = 512 is the dimensionality of our deep

Figure 1: Gradient update scenarios for the TDE method
(5). The notation is explained in the text

features. W is initialized with the first n principal com-
ponents of the training data. At each iteration, a random
anchor and a random positive data point are chosen. To
choose the negative, we perform hard negative mining, ie.
we choose the data point that has the least likelihood (2)
among the randomly chosen 2000 negative instances at each
iteration.
Since we compute the embedding matrix W by optimiz-
ing over triplet probabilities, we call this method Triplet
Probability Embedding (TPE). The technique closest to the
one presented in this section, which is used in recent works
([5],[7]) computes the embedding W based on satisfying a
hinge loss constraint:

argmin
W

∑
(vi,vj ,vk)∈T

max{0, α+ (vi − vj)
TWTW(vi − vj)−

(vi − vk)
TWTW(vi − vk)}

(5)

α acts a margin parameter for the loss function. To be
consistent with the terminology used in this paper, we call
it Triplet Distance Embedding (TDE). To appreciate the
difference between the two approaches, Figure 1 shows
the case where the gradient update for the TDE method
(5) occurs. If the value of α is not appropriately chosen, a
triplet is considered good even if the positive and negative
are very close to one another. But under the proposed
formulation, both cases referred to in Figure 1 will update
the gradient but their contribution to the gradient will
be modulated by the probability with which they violate
the constraint in (1). This modulation factor is specified
by the (1 − pijk) term in the gradient update for TPE
in (4) implying that if the likelihood of a sampled triplet
satisfying (1) is high, then the gradient update is given a
lower weight and vice-versa. Thus, in our method, the
margin parameter (α) is automatically set based on the
likelihood.



Figure 2: Performance improvement on IJB-A split 1: FAR
(vs) TAR plot. EER values are specified in brackets.

To compare the relative performances of the raw fea-
tures before projection, with TDE and with TPE (proposed
method), we plot the traditional ROC curve (TAR (vs) FAR)
for split 1 of the IJB-A verify protocol for the three meth-
ods in Figure 2. The Equal Error Rate (EER) metric is
specified for each method. The performance improvement
due to TPE is significant, especially at regions of FAR=
{10−4, 10−3}. We observed a similar behaviour for all the
ten splits of the IJB-A dataset.

5. Experimental setup and Results
In this section we evaluate the proposed method on two
challenging datasets:
1. IARPA Janus Benchmark-A (IJB-A) [2]: This dataset

contains 500 subjects with a total of 25,813 images
(5,399 still images and 20,414 video frames sampled at
a rate of 1 in 60). The faces in the IJB-A dataset contain
extreme poses and illuminations, more challenging than
LFW [1]. Some sample images from the IJB-A dataset
are shown in Figure 3. An additional challenge of the
IJB-A verification protocol is that the template compar-
isons include image to image, image to set and set to set
comparisons. In this work, for a given test template of
the IJB-A data we perform two kinds of pooling to pro-
duce its final representation:
• Average pooling (CNNave): The deep features of the

images and/or frames present in the template are com-
bined by taking a componentwise average to produce
one feature vector. Thus each feature equally con-
tributes to the final representation.

• Media pooling (CNNmedia): The deep features are
combined keeping in mind the media source they
come from. The metadata provided with IJB-A gives
us the media id for each item of the template. Thus to
get the final feature vector, we first take an intra-media
average and then combine these by taking the inter-
media average. Thus each feature’s contribution to the
final representation is weighted based on its source.

2. Celebrities in Frontal-Profile (CFP) [21]: This dataset
contains 7000 images of 500 subjects. The dataset is

Figure 3: Images from the IJB-A dataset

(a) Frontal-Frontal (b) Frontal-Profile

Figure 4: Sample comparison pairs from the CFP dataset

used for evaluating how face verification approaches
handle pose variation. Hence, it consists of 5000 im-
ages in frontal view and 2000 images in extreme pro-
file. The data is organized into 10 splits, each containing
equal number of frontal-frontal and frontal-profile com-
parisons. Sample comparison pairs of the CFP dataset
are shown in Figure 4.

5.1. Pre-processing
In the training phase, given an input image, we use the Hy-
perFace method [22] for face detection and fiducial point
extraction. The HyperFace detector automatically extracts
many faces from a given image. For the IJB-A dataset, since
most images contain more than one face, we use the bound-
ing boxes provided along with the dataset to select the per-
son of interest from the list of automatic detections. We
select the detection that has the maximum area overlap with
the manually provided bounding box. In the IJB-A dataset,
there are few images for which the HyperFace detector can-
not find the relevant face. For the missed cases, we crop
the face using the bounding box information provided with
the dataset and pass it to HyperFace to extract the fiducials.
We use six fiducial points (eyes and mouth corners) to align
the detected image to a canonical view using the similar-
ity transform. For the CFP dataset, since the six keypoints
cannot be computed for profile faces we only use three key-
points on one side of the face for aligning them.

5.2. Parameters and training times
The training of the proposed deep architecture is done using
SGD with momentum, which is set to 0.9 and the learning
rate is set to 1e-3 and decreased uniformly by a factor of 10
every 50K iterations. The weight decay is set to 5e-4 for all
layers. The training batch size is set to 256. The training
time for our deep network is 24 hours on a single NVIDIA
TitanX GPU. For the IJB-A dataset, we use the training
data provided with each split to obtain the triplet embed-
ding which takes 3 mins per split. This is the only additional
splitwise processing that is done by the proposed approach.
During deployment, the average enrollment time per im-
age after pre-processing, including alignment and feature
extraction is 8ms.



Method
IJB-A Verification (FNMR@FMR) IJB-A Identification

0.001 0.01 0.1 FPIR=0.01 FPIR=0.1 Rank=1 Rank=10
GOTS [2] 0.8 (0.008) 0.59 (0.014) 0.37 (0.023) 0.047 (0.02) 0.235 (0.03) 0.443 (0.02) -

VGG-Face [7] 0.396 (0.06) 0.195 (0.03) 0.063(0.01) 0.46 (0.07) 0.67 (0.03) 0.913 (0.01) 0.981 (0.005)
Masi et al. [23] 0.275 0.114 - - - 0.906 0.977

NAN [19] 0.215 (0.03) 0.103 (0.01) 0.041 (0.005) - - - -
Crosswhite et al. [26] 0.135 (0.02) 0.06 (0.01) 0.017 (0.007) 0.774 (0.05) 0.882 (0.016) 0.928 (0.01) 0.986 (0.003)

CNNave (Ours) 0.287 (0.05) 0.146 (0.01) 0.051 (0.006) 0.626 (0.06) 0.795 (0.02) 0.90 (0.01) 0.974 (0.004)
CNNmedia (Ours) 0.234 (0.02) 0.129 (0.01) 0.048 (0.005) 0.67 (0.05) 0.82 (0.013) 0.925 (0.01) 0.978 (0.005)

CNNmedia+TPE (Ours) 0.187 (0.02) 0.10 (0.01) 0.036 (0.005) 0.753 (0.03) 0.863 (0.014) 0.932 (0.01) 0.977 (0.005)

Table 2: Identification and Verification results on the IJB-A dataset. For identification, the scores reported are TPIR values
at the indicated points. The results are averages over 10 splits and the standard deviation is given in the brackets for methods
which have reported them. ′−′ implies that the result is not reported for that method. The best results are given in bold.

Algorithm
Frontal-Frontal Frontal-Profile

Accuracy EER AUC Accuracy EER AUC
Sengupta et al. [21] 96.40 (0.69) 3.48 (0.67) 99.43 (0.31) 84.91 (1.82) 14.97 (1.98) 93.00 (1.55)
Human Accuracy 96.24 (0.67) 5.34 (1.79) 98.19 (1.13) 94.57 (1.10) 5.02 (1.07) 98.92 (0.46)
CNN (Ours) 96.93 (0.61) 2.51 (0.81) 99.68 (0.16) 89.17 (2.35) 8.85 (0.99) 97.00 (0.53)

Table 3: Results on the CFP dataset [21]. The numbers are averaged over ten test splits and the numbers in brackets indicate
standard deviations of those runs. The best results are given in bold.

5.3. Evaluation Pipeline

Given an image, we pre-process it as described in Section
5.1. The deep features are computed as an average of the
image and its flip. Given two deep features to compare,
we compute their cosine similarity score. More specifi-
cally, for the IJB-A dataset, given a template containing
multiple faces, we flatten the template features by average
pooling or media pooling to obtain a vector representation.
For each split, we learn the TPE projection using the pro-
vided training data. Given two templates for comparison,
we compute the cosine similarity score using the projected
128-dimensional representations.
matrix.

5.4. Evaluation Metrics

We report two types of results for the IJB-A dataset: Veri-
fication and Identification. For the verification protocol, we
report the False Non-Match Rate (FNMR) values at several
False Match Rates (FMR). For the identification results, we
report open set and closed set metrics. For the open set
metrics, the True Positive Identification Rate quantifies the
fraction of subjects that are classified correctly among the
ones that exist in probe but not in gallery. For the closed
set metrics, we report the CMC numbers at different values
of False Positive Identification Rates (FPIRs) and Ranks.
More details on the evaluation metrics for the IJB-A proto-
col can be found in [2].
For the CFP dataset, following the protocol set in [21],
we report the Area under the curve (AUC) and Equal Er-

ror Rate (EER) values as averages across splits, in addition
to the classification accuracy. To obtain the accuracy for
each split, we threshold our CNN similarity scores where
the threshold is set to the value that provides the highest
classification accuracy over the training data for each split.

5.5. Discussion

Performance on IJB-A

Table 2 presents the results for the proposed methods com-
pared to existing results for the IJB-A Verification and Iden-
tification protocol. The compared methods are described
below:
• Government-of-the-Shelf (GOTS) [2] is the baseline per-

formance provided along with the IJB-A dataset.
• Parkhi et al. [7] train a very deep network (22 layers)

over the VGG-Face dataset which contains 2.6M images
from 2622 subjects.

• The Neural Aggregation network (NAN) [19] is trained
over large amount of videos from the CELEB-1000
dataset [24] starting from the GoogleNet [25] architec-
ture.

• Masi et al. [23] use a deep CNN based approach that
includes a combination of in-plane aligned images, 3D
rendered images to augment their performance. The 3D
rendered images are also generated during test time per
template comparison. It should be noted that many test
images of the IJB-A dataset contain extreme poses, harsh
illumination conditions and significant blur.

• Crosswhite et al. use template adaptation [27] to tune



the performance of their raw features specifically to the
IJB-A dataset.

Compared to these methods, the proposed method trains a
single CNN model on the CASIA-WebFace dataset which
consists of about 500K images and requires much shorter
training time and has a very fast query time (0.08s after
face detection per image pair). As shown in Table 2, our
raw CNN features after media pooling perform better
than most compared methods across both the verification
and identification protocols of the IJB-A dataset, with the
exception of the template adaptation method by Crosswhite
et al. [26] which is discussed below. The TPE method
provides significant improvement for both identification
and verification tasks as shown in Table 2.

The method by Crosswhite et al. [26] uses the VGG-Face
network [7] descriptors (4096-d) as the raw features. They
use the concept of template adaptation [27] to improve their
performance as follows: when pooling multiple faces of a
given template, they train a linear SVM with the features
of this template as positive and a fixed set of negatives ex-
tracted from the training data of the IJB-A splits. Let’s
denote the pooled template feature and classifier pair as
(t, w). Then, at query time when comparing two templates
(t1, w1) and (t2, w2), the similarity score is computed as:
1
2 (t1 · w2 + t2 · w1). Even when using a carefully engi-
neered fast linear classifier training algorithm, this proce-
dure increases the run time of the pooling procedure. The
query time per template comparison is also higher due to
the high dimensionality of the input features. In contrast,
the proposed approach requires a matrix multiplication and
a vector dot product per comparison. By using a simple neu-
ral network architecture, a relatively smaller training dataset
and a fast embedding method we have realized a faster and
more efficient end-to-end system. To improve our perfor-
mance further, we are currently incorporating the use of
video data into our approach.

Performance on CFP

On the CFP dataset, we achieve a new state-of-art on both
Frontal-Frontal and Frontal-Profile comparisons, the latter
by a large margin. More specifically, for the Frontal-Profile
case, we manage to reduce the error rate by 40.8%. It
should be noted that for a fair comparison we have used
our raw CNN features without performing TPE. This shows
that the raw CNN features we learn are effective even at
extreme pose variations.

6. Clustering Faces
This section illustrates how the proposed TPE method can
be used to cluster a given data collection. We perform two
clustering experiments:

1. We perform clustering on the entire LFW [1] dataset that
consists of 13233 images of 5749 subjects. It should be
noted that about 4169 subjects have only one image.

2. We use the IJB-A dataset and cluster the templates cor-
responding to the query set for each split in the IJB-A
verify protocol.

For evaluating the clustering results, we use the metrics de-
fined in [28]. These are summarized below:
• Pairwise Precision (Ppair): The fraction of pairs of sam-

ples within a cluster among all possible pairs which are
of the same class, over the total number of same cluster
pairs.

• Pairwise Recall (Rpair): The fraction of pairs of samples
within a class among all possible pairs which are placed
in the same cluster, over the total number of same-class
pairs.

Using these metrics, the F1-score is computed as:

F1 =
2 ∗ Ppair ∗Rpair
Rpair + Ppair

(6)

The simplest way we found to demonstrate the effective-
ness of our deep features and the proposed TPE method,
is to use the standard MATLAB implementation of the ag-
glomerative clustering algorithm with the average linkage
metric. We use the cosine similarity as our basic clustering
metric. The simple clustering algorithm that we have used
here has computational complexity ofO(N2). In its current
form, this does not scale to large datasets with millions of
images. We are currently working on a more efficient and
scalable (yet approximate) version of this algorithm.

Clustering LFW:- The images in the LFW dataset are
pre-processed as described in Section 5.1. For each im-
age and its flip, the deep features are extracted using the
proposed architecture, averaged and normalized to unit L2

norm. We run the clustering algorithm over the entire data
in a single shot. The clustering algorithm takes as input a
cut-off parameter which acts as a distance threshold (below
which any two clusters will not be merged). In our exper-
iments, we vary this cut-off parameter over a small range
and evaluate the resulting clustering using the F1-score. We
pick the result that yields the best F1-score. Table 4 shows
the result of our approach and compares it to a recently
released clustering approach based on approximate Rank-
order clustering [28]. It should be noted that, in the case
of [28], the clustering result is chosen by varying the num-
ber of clusters and picking the one with the best F1-score.
In our approach, we vary the cut-off threshold which is the
property of deep features and hence is a more intuitive pa-
rameter to tune. We see from Table 4 that aside from bet-
ter performance, our total cluster estimate is closer to the
ground truth value of 5749 than [28].



(a) (b)

(c) (d)

Figure 5: Sample clusters output from the Clustering approach discussed in Section 6 for the data from the split 1 of the
IJB-A dataset. Top row (a,b) shows robustness to pose and blur; Bottom row (c,d) contains clusters that are robust to age

Method F1-score Clusters
[28] 0.87 6508
CNN (Ours) 0.955 5351

Table 4: F1-score for comparison of the two clustering
schemes on the LFW dataset. The ground truth cluster num-
ber is 5749.

Method F1-score Clusters After Pruning
CNNmedia 0.79 (0.02) 293 (22) 173
CNNmedia+TPE 0.843 (0.03) 258 (17) 167

Table 5: Clustering metrics over the IJB-A 1:1 protocol.
The standard deviation is indicated in brackets. The ground
truth subjects per each split is 167.

Clustering IJB-A:- The IJB-A dataset is processed as de-
scribed in Section 5. In this section, we aim to cluster the
query templates provided with each split for the verify pro-
tocol. We report the results of two experiments: with the
raw CNN features (CNNmedia in Table 2) and with the pro-
jected CNN features, where the projection matrix is learned
through the proposed TPE method (CNNmedia+TPE in Ta-
ble 2). The cut-off threshold required for our clustering al-
gorithm is learned automatically based on the training data,
i.e. we choose the threshold that gives the maximum F1-
score over the training data. The scores reported in Table 5
are average values over ten splits. As expected, the TPE
method improves the clustering performance of raw fea-
tures. The subject estimate is the number of clusters pro-
duced as a direct result of our clustering algorithm. The
pruned estimate is obtained by ignoring clusters that have
fewer than 3 images.
For a more complete evaluation of our performance over
varying threshold values, we plot the Precision-Recall (PR)
curve for the IJB-A clustering experiment in Figure 6. As
can be observed, the PR curve for clustering the IJB-A data
using embedded features exhibits a better performance at
all operating points. This is a more transparent evaluation
than reporting only the F1-score since the latter effectively

Figure 6: Precision-Recall curve plotted over cut-off thresh-
old varied from 0 to 1.

fixes the operating point but the PR curve reveals the per-
formance at all operating points.

7. Conclusion and Future Work

In this paper, we proposed a deep CNN-based approach
coupled with a low-dimensional discriminative embedding
learned using triplet probability constraints in a large mar-
gin fashion. The proposed pipeline enables a faster training
time and improves face verification performance especially
at low FMRs. We demonstrated the effectiveness of the pro-
posed method on two challenging datasets: IJB-A and CFP
and achieved performance close to the state of the art while
using a deep model which is more compact and trained us-
ing a moderately sized dataset. We demonstrated the robust-
ness of our features using a simple clustering algorithm on
the LFW and IJB-A datasets. For future work, we plan to
use videos directly during training and also embed our TPE
approach into training the deep network. We intend to scale
our clustering algorithm to handle large scale scenarios such
as large impostor sets of the order of millions.
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