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Abstract

This paper concerns with facial-based watchlist tech-
nology as a component of automated border control ma-
chines deployed in e-borders. The key task of the watchlist
technology is to mitigate effects of mis-identification and
impersonation. To address this problem, we developed a
novel cost-based model of traveler risk assessment and
proved its efficiency via intensive experiments using large-
scale facial databases. The results of this study are ap-
plicable to any biometric modality to be used in watchlist
technology.

I.. Introduction
The goal of our study is to evaluate the risks of

unwanted outcomes of facial-based watchlist screening in
Automated Border Control (ABC) machines which are
deployed in e-border infrastructure. Varying quality of
facial images on the watchlist can result in unintended
mis-identification and impersonation, the most dangerous
consequence in border crossing.

The two primary functions of the automated border
crossing infrastructure (e-borders) include: 1) authentica-
tion of travelers using their appearance and e-passport
(most often the e-passport includes a facial template), and
2) search against watchlists [9]. Both functions must be
performed under specific time constraints. Contemporary
watchlist screening technology [23] uses only alphanu-
meric data (such as name, date and place of birth) which
are not reliable (can be fabricated). One possible solu-
tion for this problem is to integrate biometric traits in
watchlists. Biometric technologies have been proven to
be effective in Entry-Exit systems for visa visitors [9],
[22]. However, in these applications, only high quality
biometric traits are used. In this paper, we study more
complicated scenarios of traveler screening in e-borders
and risk assessment using watchlist data.

The main obstacle in achieving a fast and reliable
traveler risk assessment is caused by the nature of the

watchlist: it usually contains low-quality facial images,
including those of non-cooperative individuals, obtained
from surveillance [11]. The quality of these images is the
main sources of impersonation and mis-identification.

There are various techniques to mitigate this effect; one
of them is a mandatory quality management. However,
in most cases it is difficult or impossible to control the
quality of images on the watchlist. The use of biometrics
may cause additional unwanted effects compared to non-
biometric watchlist check, as well as affect the perfor-
mance of the ABC machines. The problem is formulated
as follows: given a watchlist and a traveler’s appearance,
assess the risk that an innocent traveler is mis-matched
against the watchlist, or a wanted person avoids being
matched. These risks are caused by mis-identification and
impersonation phenomena.

II.. Related work and contribution
The central statement of our approach is that the risk

assessment in watchlist screening is an inference problem.
We utilize Doddington Risk Categorization (DRC) [7] in
order to create a watchlist risk landscape. Since DRC
has an unstable nature, we developed a technique that
infers risks using the watchlist landscape and the traveler’s
information.

The DRC helps assess the effects of impersonation and
mis-identification [5]; to combat these effects, many stud-
ies suggest the use of multiple biometrics [18]. However,
in the current ABC machines, the persons of interest are
mostly represented by facial traits from both the physical
and digital world, and are less likely to be represented by
fingerprints or irises [3]. The recognition process is char-
acterized by False Rejection (FR) (miss-match, or miss-
identification) and False Acceptance (FA) (false detection,
due to impersonation phenomenon) rates, FRR and FAR
[4].

An analysis of watchlist operational performance and
list size is provided in [16]; cost-based analysis of the
watchlist screening is proposed in [4]. The drawback
of this model is that this model is a simplification of
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the relationship between the cost components, a decision
threshold, FRR and FAR. We consider the use of another
metric for risk assessment. We argue that the watchlist risk
assessment is a decision inference process, and the cost of
mis-identification is only a part of the problem.

In our risk model, a new method of translating recog-
nition scores into risk value is introduced. This method
incorporates the use of four main components: the Dod-
dington Zoo [7], the probability distributions, the simi-
larity/distance concept [6], and the cost as an expected
loss [8]. Previous works for each individual component are
well-known, however, no existing algorithm combines all
four components in the task of modeling risk for watchlist
screening.

III.. Watchlist risk assessment model
Doddington Risk Categorization (DRC) is defined as

a classification of individuals, using their biometric traits,
into four types [7]: I (‘sheep’), who are recognized nor-
mally and have high genuine scores and low impostor
scores; II (‘goats’), who are hard to recognize and have
low genuine scores; III (‘wolves’), who are good at imper-
sonating and have high impostor scores; and IV (‘lambs’),
who are easy to impersonate and have high genuine and
impostor scores.

DRC utilizes the two types of match scores: genuine
and impostor. They are the results of comparing two
biometric samples that belong to the same and different
individual, respectively. A technique for analysis of scores
is explained, in particular, in [21].

In order to translate both the genuine and imposter
scores into DRC, a ranking of the scores is required.
‘Goats’ are selected by finding a certain number (2.5% of
population) of individuals that contain low genuine scores,
as they do not match well against themselves. ‘Wolves’
and ‘lambs’ are an impostor/victim pair that are found
by identifying a certain number (2.5% of population) of
individuals with high impostor scores.‘Sheep’ are indi-
viduals that neither belong to the ’goat’ nor the ’wolf’
categories [19]. The reason for choosing the statistically
significant 2.5% of the population is that it represents two
standard deviations from the averaged recognition scores.
This is normally accepted in the matching techniques [7].
Watchlist landscape is defined as the biometric watchlist
content over the DRC.

Two biometric samples of the same identity are rarely
quite similar due to a number of factors. To tolerate such
variations, a distance or similarity measure between these
samples is needed. The choice of such measure depends
on the representation of samples; in this paper, we use
probability distributions.

In our model, risk R is defined as an expected loss
[8]. Based on this concept, we propose the following

formula to estimate the risk. The total risk of traveler mis-
identification using watchlist screening is defined as:

R = 1−
t∑

j=1

λ(j)D(j) (1)

where t is the number of DRCs, λ(j) is the loss/cost asso-
ciated with the risk category j and D(j) is the dissimilarity
to category j.

We assume that 1) ’Sheep’ have low risk because
they do not cause many mis-identifications or rejections,
λ(‘sheep’) = 0.1; 2) ’Goats’ have medium risk because
they cause false rejects which impacts the throughput of
the system, λ(‘goat′) = 0.3; and 3) ’Wolves’/‘Lambs’
(‘W’/‘L’) have high risk because they impact false ac-
cepts which jeopardizes the security of the system,
λ(‘wolf ′/‘lamb′) = 0.6. Therefore, the risk level is
assigned as follows: Low risk is assigned to travelers who
do not impact the system or their impact is negligible.
Medium risk is assigned to travelers who are rejected
by the system, therefore costing additional resources to
redress (attempts to access multiple times or technician
assistance). High risk is assigned to travelers who have
gained access to system without having the required cre-
dentials.

At each phase of the traveler risk assessment, un-
certainty content should be evaluated. In our study, un-
certainty is represented by probability distributions. For
measurement and comparisons over this data structure
landscape, we used different metrics [6], [14].

Since these similarity measurements only reports the
degree of similarity, a classifier is required to interpret
the degree of likeliness to a specific DRC. It utilizes
the similarity measurements computed from the selected
Doddington categories as the features for finding the
corresponding DRC for each person. In order to find the
best performing metric for our risk assessment model,
we compared the results of two different classifiers: (a)
Support Vector Machines (SVM) [8] and (b) minimum
similarity, or distance, function:

min(Mi,‘goat’,Mi,‘wolf’/‘lamb’,Mi,‘sheep’) (2)

where Mi,‘X’ denotes the similarity between probability
distributions for a Doddington risk category X in metric
i.

The minimum similarity function is chosen as a classi-
fier because it does not require any training. The other type
of classifier, SVM, is a supervised learning model which
uses the training data to find the boundaries separating the
training data into classes. Consider, for example, a case for
Subject A when the Euclidean distance of the subject to the
‘goat’, ‘wolf’/‘lamb’ and ‘sheep’ categories is measured as
0.1, 0.2 and 0.7. When using min() function as a classifier,
0.1 values means that a ‘goat’ category is chosen as the



predicted class for Subject A. If Subject A’s real category
is also a ‘goat’, then the sensitivity is 100%; however, if
Subject A’s real category is not a ‘goat’, then the sensitivity
is 0%.

IV.. Extension of the watchlist technology

For the watchlist technology, there are two kinds of
risks: the watchlist itself (as a data structure that stores
data on multiple persons of interest) and the watchlist
screening process. These different kinds of risks address
two approaches, or levels of their control. Risk level con-
trol is defined by the following scenarios of the watchlist
application.

Level-I (host system): Given the watchlist, its potential
risk for an arbitrary traveler is defined by the distribution
of data structure in an appropriate metric.

Level-II (authentication and risk assessment station):
Given a traveler, the risk of his/her watchlist screening is
defined with respect to the potential risks of this watchlist.
Hence, at least the following phases should be added to
the watchlist technology:

Phase I: DRC detection. Nature of the DRC is unstable
and depends on many uncontrollable factors. There are
several kinds of DRC detectors, as well as various metrics
for measurement of similarities of DRC [15].

Phase II: Watchlist landscape monitoring. Watchlist
is a dynamical structure characterized by the number and
type of identities, costs of various unwanted effects and the
risks that vary over the time. These characteristics should
be periodically updated, and the control parameters must
be adjusted.

Phase III: Cost specification. Generic specification of
the cost of mis-identifying a person of interest and the cost
of mis-matching a regular traveler. These costs will depend
on the national security policy and the current security
indicators.

Phase IV: Automated quality control monitoring
such as [1], should be used after each watchlist update.

V.. Experimental results

In order to confirm the efficiency and rationality of
the proposed risk model based on the multi-metric assess-
ment and cost control screening, an intensive experimental
study was conducted. The experimental study involved
the four main phases described in Section 4, namely, a)
DRC detection, b) Watchlist landscape monitoring, c) Cost
specification, and d) Automated quality control monitoring.

The goal of this experimental study is to prove the
utility of the proposed watchlist technology extension
which includes the four phases (Section IV).

A.. Databases and tools
The FRGC [17] and LFW [13] databases were used for

experiments. Out of the FRGC V2.0 database’s 50 000
recordings with 4007 subject sessions, we used 30 000
images of 487 subjects that represents both the controlled
and uncontrolled illumination settings. Also, we selected
13 000 images from the LFW database consisting of
unconstrained web photos of 5749 different subjects. We
used a commercial face recognition tool Verilook which
is based on neural network approach and is one of the
most accurate tools as per Facial Recognition Vendor Test
2013 NIST competition [10]. It is well known that the
DRC varies when different recognition algorithm is applied
[4], [5], [18], [21]. However, the DRC phenomenon is
independent of the size of database: given a traveler and
a watchlist, a DRC can result in a decision such as false
reject or false accept. The proposed approach can be used
for any biometric-enabled watchlist, regardless of size and
modality.

B.. Watchlist landscape monitoring
The watchlist is a dynamic data structure because data

can be added (e.g., new facial images), replaced (e.g.,
by better quality facial images), or deleted (in a redress
mechanism). These changes can impact the Doddington
landscape. Watchlist landscape monitoring is defined as a
re-calculation of the DRC after any biometric trait data
changes.

In the scenario of DRC, the probability of occurrence
can be predicted based on the scores resulted from facial
recognition. Our method of prediction uses an approach
of comparing probability distributions as a tool to measure
similarity. In this experiment, the database is separated into
disjointed sets based on the quality (high, low, various)
and categories (‘goats’, ‘wolves’/‘lambs’, and ‘sheep’) to
a total of 9 subsets. In addition, when analyzing specific
subjects, their contributions to the DRC distributions are
discarded. Therefore, there is no prior assumption or
relationship between the subjects and the DRC.

Phase II “Watchlist landscape monitoring” is introduced
in Fig. 1 as the score distribution for each Doddington risk
category (‘goats’, ‘sheep’, ‘wolves’/‘lambs’) at different
image qualities (high, low, various). In the FRGC database,
there are two main groups of images: the controlled and
the uncontrolled ones. Both groups contain full frontal
faces; the controlled images were taken in a fixed and well-
lit environment, whereas uncontrolled ones were taken in
complex environments (such as hallways). In our experi-
ments, these uncontrolled images caused low recognition
scores and, thus, were treated as low quality ones. It should
be noted that more details on image quality control can be
found in [2], [12]. We performed three types of image
comparison: high vs high (high or HQ), low vs low (low



or LQ), high vs low and low vs high combined (various
or VQ), respectively. In our experiments, we followed the
generally accepted DRC technique [7], [10], [18], [21]
to represent the likelihood of the face matching score
derived for each DRC with respect to the score bin (Fig.
2). The distributions of the genuine and imposter scores
are calculated by creating a histogram where a Gaussian
function is used to describe the probability distribution.
To create such distribution, all pair of faces are considered
within the specified DRCs. For example, the genuine HQ
Goat includes all image comparisons between faces that are
genuine, HQ, and ‘goats’. Fig. 2 illustrates the genuine and
imposter score distribution for each DRC (goats’, sheep’,
wolves’/lambs’) using all possible comparisons of images
of different quality (HQ, LQ, VQ) for the FRGC database.”

The population percentage for each DRC is shown in
Table I. The distribution of DRC is derived by counting
the subjects with low genuine or high imposter scores. This
approach is similar to the one defined in [19] which locates
the DRC by ranking the order of genuine and imposter
scores.

TABLE I. Probability distributions of DRC for FRGC and LFW
databases

Database’ ‘Goat’ ‘Lamb’ ‘Wolf’ ‘Sheep’
FRGC 0.0264 0.0264 0.9472
LFW 0.0253 0.0253 0.9506

In this paper, 2.5% of the population with the lowest
genuine scores are chosen as ‘goat’, another 2.5% of the
population with the highest imposter scores are selected
as ‘wolf’/‘lamb’, and the remaining population are placed
into ‘sheep’ category. Since the population is 568 for
the selected subset of the FRGC database, the percentile
population can be calculated as dPercentile× Populatione,
2.5% represents 15 (d0.025× 568e) subjects.

We observe that the quality of the images is the main
factor affecting the risks. In Fig. 1, the genuine HQ curves
demonstrate a more even distribution, whereas genuine VQ
curves represent a much more concentrated distribution.

C.. Performance evaluation

Performance of the watchlist screening includes many
parameters, such as the depth of social embedding, types
of identity traits, FAR, FRR, infrastructure features and re-
dress metric [15]. In this paper, the watchlist performance
addresses only the risks assessment of traveler screening.
Watchlist performance is defined as the efficiency of risk
screening over the watchlist landscape given the traveler’s
DRC.

In this Section, we introduce the following mechanism
for the efficiency evaluation: 1) Graphical representation
of risk scenarios, 2) Comparison of risk scenarios in

appropriate metric(s) and 3) Risk assessment and decision-
making.

Given the DRC for each person, we performed a leave-
one-out cross validation to estimate the performance of
each classifier at different levels of image quality as
reported in Table II. The data used to generate Table II is
derived from the results of all image comparisons, there-
fore, Table II reports the overall summarized sensitivity
of using the selected metrics. Since there are genuine and
imposter distributions for each DRC, the results are divided
into genuine and imposter columns.

Each row in Table II signifies the metric used for com-
paring the different probability distributions; the columns
of the table indicate the quality of images used for
comparison (high, low and various). The numbers in the
table denotes the sensitivity given the row (metric) and
column (quality). The highlighted cells indicate the highest
sensitivity for each column.

Table II confirms that each metric generally performs
very well with genuine comparisons regardless of the
classifier. The results of the genuine portion show higher
sensitivity when compared to the imposter. This indicates
that the genuine comparisons can be used as an indicator
of the wolf’/lamb’ category. For example, using Euclidean
distance and SVM, the genuine VQ results in accuracy of
0.8 whereas for imposter VQ generates accuracy of 0.33.

The best performing metric for the high quality compar-
ison and the overall highest sensitivity is the Kulczysnki s
metric. Other metrics causes the performance ranges from
0.60 to 0.84 for various image quality comparisons.

Using the risk estimation (Equation 1) with the results
from a selected metric and the pre-determined loss values,
we are able to determine the risk associated with each
individual. Table III reports the results of risk assessment
for three different subjects, each from a different DRC,
given no classifier (R1), the minimum function (R2), and
the SVM classifier (R3) for the Euclidean metric. Evalua-
tion of each of the three subjects and their corresponding
DRC are performed by comparing each image’s score
distribution and the DRC distribution.

In Table III, each row represents the quality of com-
pared images (H for high, L for low and V for various),
each column indicates the DRC and each cell reports the
distance between the probability distributions. For each
cell, the value is normalized to be between 0 and 1,
where 0 indicates identical images and 1 implies absolutely
different ones. The bold (red), underlined (blue) values in-
dicates the output of the min function and SVM classifiers,
respectively. The bold and underlined (green) indicates
the value which is identical for both classifiers.

Consider the scenario of the watchlist screening in
which the traveler is pre-determined to be in the cat-
egory ‘goat’ (subject 4315 in the database) and only



Fig. 1. Watchlist landscape monitoring: The probability distribution of each DRC with different types of image quality comparisons
(HQ, LQ, VQ). Left plane: Genuine score distribution; Right plane: Imposter score distribution.

TABLE II. DRC classification in various metrics

Support Vector Machine Minimum Similarity/Distance Function
Genuine Imposter Genuine Imposter

High Low Various High Low Various High Low Various High Low Various
Euclidean 0.69 0.60 0.80 0.67 0.33 0.33 0.82 0.64 0.80 0.44 0.40 0.49
City Block 0.69 0.62 0.80 0.69 0.44 0.51 0.84 0.64 0.78 0.51 0.40 0.49
Chebyshev 0.73 0.58 0.76 0.64 0.51 0.33 0.84 0.64 0.69 0.29 0.38 0.49
Sorensen 0.69 0.60 0.80 0.69 0.44 0.51 0.84 0.69 0.78 0.51 0.40 0.49
Canberra 0.60 0.53 0.64 0.67 0.47 0.60 0.58 0.33 0.53 0.51 0.49 0.64
Lorentzian 0.69 0.62 0.80 0.69 0.44 0.51 0.84 0.64 0.78 0.53 0.40 0.49
Wave Hedges 0.62 0.58 0.64 0.67 0.49 0.62 0.29 0.33 0.33 0.33 0.33 0.33
Czekanowski 0.69 0.60 0.80 0.69 0.44 0.51 0.84 0.69 0.78 0.51 0.40 0.49
Kulczynski s 0.87 0.64 0.78 0.58 0.49 0.51 0.02 0.02 0.00 0.31 0.24 0.16
Harmonic means 0.80 0.49 0.69 0.69 0.51 0.62 0.02 0.02 0.00 0.31 0.29 0.20
Kumar-Hassebrook 0.84 0.67 0.78 0.67 0.53 0.60 0.02 0.02 0.00 0.31 0.29 0.18
Jaccard 0.69 0.64 0.76 0.67 0.36 0.51 0.80 0.64 0.80 0.47 0.40 0.49
Hellinger 0.71 0.58 0.73 0.69 0.56 0.58 0.82 0.73 0.76 0.60 0.44 0.58
Matusita 0.71 0.58 0.73 0.69 0.56 0.58 0.82 0.73 0.76 0.60 0.44 0.58
Squared-Chord 0.67 0.64 0.71 0.69 0.53 0.58 0.82 0.73 0.76 0.60 0.44 0.58
Squared Euclidean 0.67 0.62 0.76 0.67 0.36 0.51 0.82 0.64 0.80 0.44 0.40 0.49
Squared 0.67 0.62 0.73 0.67 0.56 0.58 0.82 0.67 0.76 0.60 0.47 0.58
Clark 0.62 0.53 0.62 0.69 0.47 0.58 0.53 0.33 0.53 0.58 0.47 0.62
Kullback-Leibler 0.56 0.33 0.51 0.67 0.51 0.60 0.38 0.38 0.38 0.33 0.62 0.58
K Divergence 0.67 0.58 0.69 0.67 0.58 0.53 0.80 0.69 0.76 0.40 0.53 0.47
Jensen-Shannon 0.67 0.62 0.71 0.67 0.56 0.58 0.82 0.73 0.76 0.60 0.44 0.58

the high quality image comparisons are used. According
to Equation 1, the risk values of watchlist screening of
genuine and imposter score when no classifiers are used
are: R1G = 1−(0.3×0.18+0.6×0.78+0.1×0.61) = 0.42
and R1I = 1−(0.3×0.48+0.6×0.16+0.1×0.86) = 0.67,
respectively. This traveler yields risk values 0.36 to 0.42
and 0.48 to 0.67 for genuine and imposter comparisons,
respectively and the average is 0.485. Repeating the same
procedure using the classifiers produces the following
results: R2G = 0.30, R2I = 0.60, R3G = 0.30, and
R3I = 0.30. In security terms, these risk means that the
traveler has a risk level between medium and high for no
classifier. For the minimum function classifier, it indicates
minimal risk, and for the SVM classifier, the risk level is
determined to be medium.

When no classifiers (R1) are used, the genuine compar-
ison (Table III) indicates that the ‘wolf’/‘lamb’ travelers
yield on average the highest value (0.50) of risk, while
the ‘sheep’ (0.39) and ’goat’ (0.39) provide a much lower
risk value. When incorporating the use of both genuine

TABLE III. Similarity Measurement using the Euclidean metric
Q. Goat W/L Sheep R1 R2 R3

43
15

(‘
G

oa
t’

)

G
en

. H 0.18 0.78 0.61 0.42 0.30 0.30
L 0.65 0.64 0.41 0.38 0.10 0.10
F 0.32 0.83 0.46 0.36 0.30 0.30

Im
p.

H 0.48 0.16 0.86 0.67 0.60 0.30
L 0.59 0.47 0.66 0.48 0.60 0.60
F 0.82 0.16 0.55 0.60 0.60 0.60

42
02

(‘
W

’/
‘L

’)

G
en

. H 0.92 0.14 0.37 0.60 0.60 0.60
L 0.55 0.69 0.47 0.37 0.10 0.30
F 0.93 0.30 0.22 0.52 0.10 0.60

Im
p.

H 0.80 0.19 0.57 0.59 0.60 0.60
L 0.50 0.22 0.84 0.63 0.60 0.60
F 0.74 0.31 0.60 0.53 0.60 0.60

24
63

(‘
Sh

ee
p’

)

G
en

. H 0.77 0.57 0.27 0.40 0.10 0.10
L 0.86 0.47 0.20 0.44 0.10 0.60
F 0.59 0.75 0.30 0.34 0.10 0.10

Im
p.

H 0.05 0.43 0.90 0.64 0.30 0.30
L 0.52 0.76 0.38 0.35 0.10 0.30
F 0.47 0.69 0.55 0.39 0.30 0.30

and imposter comparisons, we can see the level of risk
increasing in the following order: ‘wolf’/‘lamb’, ‘goat’ and
‘sheep’ (0.54, 0.49, 0.43).



Since both classifiers select only one DRC as the final
choice, the resulting risk calculations (R2 and R3) reports
the loss value corresponding to the selected category.
When averaging the results of the minimum function
classifier, ‘sheep’ are easily identified by their low R2
values (0.17) compared to greater values (0.42 and 0.43)
for the ‘goat’ and ‘wolf’/‘lamb’. However, since the ‘goat’
and ‘wolf’/‘lamb’ have similar risk values, it is difficult
to distinguish the two categories. In case of SVM, the
averaged results show three distinct separations, 0.37, 0.55
and 0.28 to their respective ‘goat’, ‘wolf’/‘lamb’ and
‘sheep’ categories; it allows for better classification.

The reported risk values provide better identification of
‘goat’ and ‘wolf’/‘lamb’, due the larger difference in the
categories’ risk values. Specifically, SVM indicates a better
separation between each individual DRC as opposed to the
minimum function which can only separate ‘sheep’ from
either ‘goat’ or ‘wolf’/‘lamb’ categories.

VI.. Conclusions
The reported results lead to the following conclusions.

1) The proposed watchlist risk model is well suited for
analysis of unwanted effects, and the selected classifiers
performed well for the DRC task. 2) The suggested ex-
perimental protocol is well suited for benchmarking and
comparison of various risk inference techniques. 3) Risk
can be predicted using the watchlist landscape monitor-
ing accordingly to the additional design/control phases
proposed for the watchlist screening. Finally, while our
study only highlights the existing problems of biometric-
enabled watchlist technology, we state that the future lies
in developing a powerful inference engine for dealing
with high-conflicting information and uncertainty. We are
currently working on improving the results using the
predictors proposed in [20].

Acknowledgments
This project was partially supported by Natural Sciences and

Engineering Research Council of Canada (NSERC), grant “Bio-
metric intelligent interfaces”; the Government of the Province of
Alberta, ASRIF grant and Queen Elizabeth II Scholarship; and
Defense Research and Development Canada.

References
[1] A. Abaza, M. A. Harrison, T. Boulai, and A. Ross. Design and

evaluation of photometric image quality measures for effective face
recognition. IET Biometrics, 3(4):314–324, 2014.

[2] F. Alonso-Fernandez, J. Fierrez, and J. Ortega-Garcia. Quality
measures in biometric systems. IEEE Security & Privacy, 10(6):52–
62, 2012.

[3] L. Best-Rowden, H. Han, and C. Otto et al. Unconstrained face
recognition: Identifying a person of interest from a media collection.
IEEE Trans. Inf. Forensics and Security, 9(12):2144–2157, 2014.

[4] R. M. Bolle, J. Connell, S. Pankanti, N. K. Ratha, and A. W. Senior.
Guide to biometrics. Springer, 2013.

[5] J. Bustard, J. Carter, and M. Nixon. Targeted impersonation as a tool
for the detection of biometric system vulnerabilities. In Proc. IEEE
6th Int. Conf. on Biometrics: Theory, Applications and Systems,
pages 1–6, 2013.

[6] S.-H. Cha. Comprehensive survey on distance/similarity measures
between probability density functions. Int. J. Math. Models and
Methods in Applied Sci., 1(2):1, 2007.

[7] G. Doddington, W. Liggett, and A. Martin, et al. Sheep, goats,
lambs and wolves: A statistical analysis of speaker performance in
the NIST 1998 speaker recognition evaluation. Technical report,
1998.

[8] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern classification.
John Wiley & Sons, 2012.

[9] EU European Commission B-1049. Technical Study on Smart
Borders, 2014.

[10] P. Grother and M. Ngan. Face recognition vendor test (FRVT)
performance of face identification algorithms. Technical report,
NIST, 2013.

[11] P. Grother, G. Quinn, and M. Ngan. Face In Video Evaluation
(FIVE) Face Recognition of Non-Cooperative Subjects. Technical
Report 8173, NIST, 2017.

[12] P. Grother and E. Tabassi. Performance of biometric quality mea-
sures. IEEE Trans. on pattern analysis and machine intelligence,
29(4):531–543, 2007.

[13] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller. Labeled
faces in the Wild: A database for studying face recognition in
unconstrained environments. Technical Report 07-49, University
of Massachusetts, Amherst, 2007.

[14] A.-L. Jousselme and P. Maupin. Distances in evidence theory:
Comprehensive survey and generalizations. Int. J. Approximate
Reasoning, 53(2):118–145, 2012.

[15] K. Lai, S. N. Yanushkevich, V. P. Shmerko, and S. C. Eastwood.
Bridging the gap between forensics and biometric-enabled watch-
lists for e-borders. IEEE Comput. Intell. Magazine, 12(1):16–28,
2017.

[16] J. N. Pato and L. I. Millett, editors. Biometric Recognition:
Challenges and Opportunities. National Academies Press, 2010.

[17] P. J. Phillips, P. J. Flynn, and T. Scruggs, et al. Overview of the
face recognition grand challenge. In Proc. IEEE Computer Society
Conf. on Computer Vision and Pattern Recognition, pages 947–954,
2005.

[18] N. Poh, J. Kittler, and T. Bourlai. Quality-based score normalization
with device qualitative information for multimodal biometric fusion.
IEEE Trans. Syst., Man, and Cybern. – Part A: Syst. and Humans,
40(3):539–554, 2010.

[19] A. Ross, A. Rattani, and M. Tistarelli. Exploiting the Doddington
zoo effect in biometric fusion. In IEEE 3rd Int. Conf. on Biometrics:
Theory, Applications, and Syst., 2009.

[20] W. J. Scheirer, A. de Rezende Rocha, J. Parris, and T. E. Boult.
Learning for meta-recognition. IEEE Transactions on Information
Forensics and Security, 7(4):1214–1224, 2012.

[21] A. Sgroi, P. J. Flynn, K. Bowyer, and P. J. Phillips. Strong, neutral,
or weak: Exploring the impostor score distribution. IEEE Inf.
Forensic and Security, 10(6):1207–1220, 2015.

[22] U.S. Department of Homeland Security. Biometric Standards
Requirements for US-VISIT, Version 1.0, 2010.

[23] U.S. Department of Justice Office of the Inspector General. Follow-
Up Audit of the Terrorist Screening Center, 2007.


	I . Introduction
	II . Related work and contribution
	III . Watchlist risk assessment model
	IV . Extension of the watchlist technology
	V . Experimental results
	V-A . Databases and tools
	V-B . Watchlist landscape monitoring
	V-C . Performance evaluation

	VI . Conclusions
	References

