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Abstract

In this paper, we develop a novel convolutional neural
network based approach to extract and aggregate useful in-
formation from gait silhouette sequence images instead of
simply representing the gait process by averaging silhou-
ette images. The network takes a pair of arbitrary length
sequence images as inputs and extracts features for each sil-
houette independently. Then a feature map pooling strategy
is adopted to aggregate sequence features. Subsequently,
a network which is similar to Siamese network is designed
to perform recognition. The proposed network is simple and
easy to implement and can be trained in an end-to-end man-
ner. Cross-view gait recognition experiments are conducted
on OU-ISIR large population dataset. The results demon-
strate that our network can extract and aggregate features
from silhouette sequence effectively. It also achieves signif-
icant equal error rates and comparable identification rates
when compared with the state of the art.

1. Introduction

Biometrics such as the face, iris, fingerprint and signa-
ture are widely applied for human identity authentication.
One major limitation of these biometrics is that we need
subject cooperation to acquire these biometrics, which is
difficult to be implemented in an uncooperative environ-
ment. Gait, as an important biometric cue, overcome this
limitation since it can be easily captured by a surveillance
camera at long distance in uncontrolled scenarios without
subject cooperation.

Nowadays, a large number of surveillance cameras are
installed in almost every corner of cities, such as shopping
malls, hotel, airports, rail stations, etc. Cameras provide a
large volume of useful data for crimes and forensic iden-
tification. Among the techniques used in surveillance tech-
nology and forensic identification, gait recognition is one of
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the most powerful methods. It has already been applied in a
real case to convict criminals [S]]. However, gait recognition
is still a challenging task due to large variations in walk-
ing speeds, clothing, viewpoints and carrying conditions.
A lot of methods were proposed to solve these problems.
Most of these methods can be grouped into model-based
and appearance-based approaches [31]].

The model-based approaches try to build models to re-
construct underlying structures of the human body from
video sequences. For example, in [4] and [13]], they used
four parameters, including the height of the body, the dis-
tance between head and the pelvis, the distance between the
pelvis and left foot, the distance between pelvis and right
foot and the distance between left and right foot, to repre-
sent the structure of a body. Then gait recognition is com-
pleted based on these four parameters. Ariyanto et al. [1]]
used 3D gait data reconstructed from multiple cameras [25]]
to perform recognition. View variation may not be an is-
sue when multiple cameras are available. 3D data conveys
more information than 2D data, thus can achieve high accu-
racy. However, 3D data acquisition costs a lot and should
be conducted in a controlled environment, which limits its
application.

The appearance-based approaches take surveillance im-
age sequences as input instead of modeling the underlying
structure of the human body. To reduce the impact of cloth-
ing, silhouette based representation is prevalent within the
gait recognition community [[17, [19} [20]. The first step of
silhouette based representation is extracting a binary silhou-
ette sequence from a video sequence. Then several methods
can be used to aggregate gait silhouette sequence into one
image. Gait Energy Image (GEI) [20] is one of the most
popular representation and it is obtained by averaging sil-
houette sequence over a complete gait cycle(s). Although
only one single image is generated, GEI encodes spatial and
temporal information of a gait cycle, thus achieves promis-
ing results. Based on GEI, various approaches have been
proposed to enhance the performance of gait recognition.
Tao et al. [29] proposed Gabor features which are obtained



by convolving the averaged gait image with Gabor filters.
Xu et al. [32]] proposed a patch distribution feature which
representes each GEI as a set of local augmented Gabor fea-
tures. Similarly, Guan and Li [10]] convolved GEI with Ga-
bor filters from five scales and eight orientations to generate
Gabor-GEI feature template.

Other features are also developed to represent motion
or/and appearance information of gait silhouette sequences.
Inspired by the Motion History Image (MHI) 3] which was
developed for human action recognition, Lam and Lee [16]
proposed Motion Silhouettes Image (MSI) to embed spatial
and temporal information of gait silhouettes. Later in [17],
Lam introduced Gait Flow Image (GFI) for gait recogni-
tion. Bashir et al. [2] proposed Gait Entropy Image (GEnl),
which captures most motion information and encodes the
information in a single image.

The most intractable problem in gait biometric is cross
view gait recognition which has been being a hot research
direction for years. Numerous studies have made great ef-
forts to tackle this problem. As mentioned above, model-
based methods especially 3D model based methods are
good solutions to this despite of high cost. Appearance-
based methods either focus on extracting view-invariant gait
features or project extracted features from different view-
point to a subspace which minimizing the variance of view-
change [7, 127,131, 135]. Reviews on gait recognition can be
found in [9]] and [24]].

Deep learning has been successfully applied in many
computer vision tasks, such as image classification [15],
video classification [14]], human pose estimation [6] and
face recognition [28]. In these research areas, deep learn-
ing methods, especially Convolutional Neural Networks
(CNN), accomplish significant progress by learning rich
features from large volumes of training data.

Many CNN-based methods [27} 31} 134] were explored to
perform gait recognition, which also achieves remarkable
improvements. CNN can automatically extract hierarchal
features from given image, which is far more efficient than
hand-crafted features. In addition to feature extraction, deep
learning based similarity measuring methods have also been
proposed. Among which, Siamese network is the most pop-
ular one. The Siamese network architecture is a useful tool
to learn similarity metric between a pair of inputs by learn-
ing sufficient feature representations that make inter-class
distance close while intra-class distance large [} 28]].

A Siamese neural network [8] contains two parallel
branches sharing the same weights. In training stage, pairs
of similar and dissimilar data are fed into the two branches
separately. Then the outputs from two branches are com-
bined by matching layers to compute the contrastive loss.
Back propagation algorithm is used to train the model. In
the testing stage, the Siamese network calculates the dis-
tance between the query input and every gallery data, and
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Figure 1. The network architecture of our method. Each silhouette
image and the difference image between two adjacent silhouettes
are fed into the fCNN to extract features. Feature map pooling is
used to aggregate outputed feature maps from fCNNss into a single
fixed size one. Absolute difference module calculates element-
wise differences between two aggregated feature maps. mCNN
is the second convolutional neural network that project absolute
difference feature maps into task space. Fully connected module
outputs the similarity distribution of given two sequences.

choose the closest gallery as result. In [31] and [34],
Siamese networks are applied on gait recognition. The in-
puts of these neural networks are GEI and CGI [30] respec-
tively. The Siamese neural network achieves two purposes:
the first is extracting features from the input image; the sec-
ond is mapping features to the target space defined by the
specific task. In this work, we argue that we can learn useful
information from raw data, i.e. binary silhouette sequence,
directly, and fuse them in feature level instead of data level.
To achieve this, we propose an improved Siamese neural
network that learns features directly from raw silhouette se-
quence images and fuses them in a layer-wise pooling way.
Subsequently, additional convolutional layers are applied to
map the fused features into task space. The method can be
used to cross-view gait recognition. We test it on OU-ISIR
large population dataset [[11], and obtain promising perfor-
mance which is comparable with the state of art.

2. Proposed method

The brief architecture of our method is shown in Fig-
ure [Tl Each silhouette and the difference of two adjacent
frames are fed to a convolutional neural network to extract
useful features representing gait information at the moment
(we call it f{CNN for short). Inspired by the spatial pool-
ing within a feature layer and the fact that adjacent frames
are highly correlated, we explore using a layer-wise pool-
ing method to fuse outputs of fCNN. Layer-wise pooling
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Figure 2. Details of f{CNN, mCNN and fully connected layers.

can convert arbitrary length gait sequences into fixed size
feature maps which preserving spatial and temporal gait in-
formation. The followed is a classical Siamese network ar-
chitecture. Given a pair of sequences, corresponding feature
maps are obtained through fCNN and layer-wise pooling.
Then, the absolute difference is computed between the two
fixed feature maps. A one-layer CNN is used to map the dif-
ference features into a vector (we call it mCNN for short). It
should be noted that more layers are feasible. A fully con-
nected module will convert this vector into two probabilities
indicating the pair inputs are the same or not.

To predict the identity of a given probe sample, the simi-
larities between probe gait sequences and every gallery gait
sequences are inferred by the whole network. Then the
identity of the most similar gait gallery is chosen as the
probe sample’s identity.

2.1. f{CNN

As shown in Figure [I] the silhouette image and the dif-
ference image between two silhouettes are processed by
fCNN. The detailed parameters of f{CNN are shown in the
left part of Figure[2] fCNN contains two convolutional lay-
ers. The first one includes 16 filters. The second one in-
cludes 64 filters. All filters are of size 7x7 and applied

with one stride. Spatial pooling and local response normal-
ization (LRN) are appended after each convolutional layer.
The spatial pooling operations are applied in 2 x 2 neighbor-
hood. The LRN arguments are set to values recommended
from[15]. After applying the first convolutional layer and
pooling layer, we obtain 16 feature maps sized 60 x 60, and
64 27 x 27 feature maps after the second convolutional and
pooling layer. For notational simplicity, we refer to f{CNN
as a function f = fCNN(xz), which takes a silhouette gray
image and difference image x as input and produces fea-
ture maps f as output. The size of f is 64x27x27. Let
s = s .. .s(T) be the input sequence data of length T,
where one channel of s(*) is the image at time t and an-
other channel is the difference between image at t and im-
age at t-1. The silhouette image at time 0 is ignored because
there is no previous image. It should be noted the layer-wise
pooling introduced in the following subsection can fuse ar-
bitrary frames, so the length T is not fixed. Each silhou-
ette s(*) will go through the f{CNN to produce feature maps,
f® = fCNN(s®),

2.2. Feature map pooling

One straightforward way to tackle temporal sequence
is using recurrent neural networks to encode information



across time [22]]. Another widely used method is 3D CNN,
which is developed by [12] to perform action recognition.
Inspired by the spatial pooling used in CNN and the fact
that adjacent frames in a video are highly redundant, we
proposed to use feature map pooling to aggregate extracted
features from sequence frames.

Feature maps for each frame can be obtained through
fCNN. Similar to spatial pooling, there are two ways to ag-
gregate these features, max pooling and mean pooling.

v(k, hyw) = max fO(k, h,w) (1)

t=1,...,

where v(k, h, w) is the value of kth fused feature map at po-
sition (h,w), and f®) (k, h,w) is value of kth feature map
of frame ¢ at (h, w). Finally, arbitrary number feature maps
are merged into one whose size is 64x27 x27.

mean pooling is also a commonly used aggregation strat-
egy. It is used here to produce a single feature maps aver-
aged over all the extracted feature maps, as follows:

v(k,h,w):% > Ok hw) 2)
t=1 T

In this paper, we test both pooling methods. But we
found that mean pooling performance is around 5% worse
than max pooling when comparing cross-view identification
precision average in experiments, so max pooling was cho-
sen in our experiments.

2.3. Similarity measurement

Given a pair of fused feature maps for two sequences,
the task is to identify whether the two sequences represent
the same person. To this end, a network similar to Siamese
neural network is employed to measure the similarity be-
tween two fused feature maps. Firstly, the absolute differ-
ence between two fused feature maps is obtained. The out-
put difference feature maps have size same to the fused map,
which is 64 x27x27. Then a mapping convolutional layer,
i.e. mCNN, is applied to project the difference feature to a
similarity vector. mCNN is a one layer convolutional net-
work which has 256 filters sized 7x7. The detail of mCNN
module is shown at the middle part of Figure [2] The out-
put size of mCNN is 256x21 x21. Then it is reshaped to
one dimension vector with 112896 elements. The following
fully connected layer take this vector as input and produce
the final result. Detail information of fully connected mod-
ule is shown at the right part of Figure 2]

3. Experiments
3.1. Dataset

We test our method on OU-ISIR large population
dataset [11], as it is the largest gait dataset suitable for train-

ing deep neural networks. There are two versions for OU-
ISIR large population dataset: OULP-C1V1 and OULP-
C1V2 [ﬂ OULP-C1V1 contains 4,007 subjects, while
OULP-C1V2 includes 4,016 subjects. Aside from this dif-
ference, OULP-C1V2 has a more accurate bounding box
for each silhouette and the size of moving-average filter ap-
plied in the size-normalized silhouette creation process. In
this work, the first version of OU-ISIR, OULP-C1V1, was
used to evaluated the performance of our method. Figure
[3|shows the full silhouette images of subject OULP-C1V1-
6218964 with four observation views: 55, 65, 75 and 85
deg.

In this work, we follow protocol used in [21], only a sub-
set of OULP-C1V1 is used to test our method. The subset
contains 1912 subjects. And each subject has probe and
gallery gait sequences with different angle views: 55, 65,
75 and 85 degree. There are 8 sequences for one subject.
The length of sequence ranges from 19 to 43 frames.

3.2. Training

The network inputs are pairs of arbitrary long gait se-
quences. Each silhouette is resized to 126x126. In each
mini batch, half of the input pairs have same identities. For
one probe sequence, we pick its corresponding gallery se-
quence with a random view angle to form a positive training
sample pair. Similarly, another gallery sequence with differ-
ent identity can be selected to form negative training sample
pair.

We use negative In loss and stochastic gradient descent
to train our network.

loss = —(tolnpg +t1 Inpy) 3)

1912 subjects are divided into two groups with the same
size for training and testing without overlappin Images
are resized to 126x126 to input the networks. We ran-
domly select 100 subjects in training set as validation set,
so 856 subjects are left for training. It should be noted that
no data augmentation is used during training. The size of
mini-batches was set to 128, learning rate was set to 0.001,
momentum was set to 0.0. LRN was set to default as sug-
gested in [[15]. The networks were written in Torch 7 and
trained on a NVIDIA GeForce GTX Titan X. We run vali-
dation test every 100 iterations. It will cost several minutes.
The number of iterations is up to 1.8 million and the train-
ing phase lasted 7 days. The model with highest recogni-
tion rate was chosen for evaluation. Figure ] shows the loss
curves and precision increasing with respect to the number
of iterations.

Given a probe gait sequence and a gallery gait set, the
similarity between the probe sequence and each sequence in

Uhttp://www.am.sanken.osaka-u.ac.jp/BiometricDB/GaitLP.html
Zhttp://www.am.sanken.osaka-u.ac.jp/ mansur/files/list_train_test.txt
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Figure 3. Probe silhouette sequences of OULP-C1V1-6218964. Each identity has two sequence subsets: probe subset and gallery subset.
And each subset has four sequences with different view angles: 55 degree, 65 degree, 75 degree and 85 degree.
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Figure 4. The network was trained with about 1.8 million itera-
tions. The validation precision achieves 94.5%.

the gallery set are evaluated by trained network. The iden-
tity of the probe gait sequence will be assigned to the most
similar one in the gallery. For cross-view recognition, 16
recognition tasks need to be done on different probe view
and gallery view setting, {55, 65, 75,85} x {55, 65, 75, 85}.
It is very slow to calculate cross view gait recognition rate
on test set with 956 subjects. There are 956 x 956 = 913936
measurements should be computed between subjects for
each task. To facilitate calculation, we storage the fused
features for each silhouette sequence and similarities only
be calculated between fused features. This will drastically
reduce computing time. 16 cross view recognition tasks can
be done within 5 hours on GPU.

3.3. Impact of sequence length

Our method can take arbitrary length sequence as in-
put. However, a longer sequence may improve the perfor-
mance of recognition. To evaluate this, we conduct exper-
iments on different sequence length ranging from 1 frame

to 43 frames. The results are shown in Figure and Fig-
ure [5(b)] The precision and EERs are averaged across dif-
ferent view angles between probe and gallery sets.

3.4. Results

We follow [21] protocol to test our method. Only a sub-
set of 856 subjects is used for training. Evaluation is con-
ducted on 956 subjects. Table [1| reports the performance
of our method in terms of Rank-1, Rank-2 and Rank-5
recognition rates. Table 2] lists equal error rates (EERs).
From these two tables, we can see that the proposed method
shows promising results on OULP-C1V1 gait dataset. To
the best of our knowledge, there are no previous works re-
porting cross-view EERs and recognition rate fully, only
EERs and recognition rate between 85 degree gallery and
each 55, 65 and 75 degree were reported in this work [21]].

Furthermore, we compare our method with LDA [23]],
DATER [33], MvDA [21]], GMLDA [26], and CCA [18]
to demonstrate its superiority, as shown in Table [3] It can
be seen that our method outperforms these methods signif-
icantly in terms of EERs which is an important verification
indicator. Both GMLDA and MvDA require view informa-
tion as input, thus achieve better identification rate than our
method. However, our method is blind to view angle in-
formation. Even though, it still performs well in terms of
Rank-1 recognition rate.

4. Conclusion

This paper present a novel CNN based gait recognition
method. The proposed network architecture combines the
advantage of convolutional neural network and Siamese
network which evaluate similarity between two given ar-
bitrary length silhouette sequences instead of GEI. Firstly,
CNNs is used to extract features from each frame of se-
quence and the difference between previous frame. Inspired
by the spatial pooling used within feature maps, a feature
map pooling is employed to aggregate extracted features



Gallery
Rank-1 Rank-2 Rank-5
55 65 75 85 Mean 55 65 75 8 Mean 55 65 75 85  Mean

Probe

55 952 936 812 622 831 97.1 963 893 745 893 982 982 955 878 949
65 909 953 955 902 930 948 977 977 946 962 97.6 984 988 976 98.1
75 775 944 960 942 905 872 969 983 974 950 936 987 990 985 975
85 554 87.1 948 947 83.0 689 937 970 979 894 833 968 985 98.6 943

Table 1. Performance of our method on OULP-C1V1 following protocol used in [21] in terms of Rank-1, Rank-2 and Rank-5 recognition
rates.

EERs(%)
55 65 75 85 Mean

55 1.57 157 220 374 227
65 1.59 1.15 144 146 141
75 .78 1.15 1.16 147 139
85 3.14 136 1.15 1.15 1.70

Probe

Table 2. Cross-view EER

Method EER(%) Rank-1

55 65 75 8 55 65 75 85
Ours 374 146 147 115 6223 90.16 9424 94.66

LDA[23] 8 5 4 - 56 91 96 -
DATER[33] 30 22 16 - 10 29 65 -
GMLDA[26] 12 9 5 - 68 82 95 -
MvDARI] 7 5 4 - 88 96 97 -
CCA[I8] 21 13 8 ; 52 81 92 .

Table 3. Comparisons with other five methods in terms of EERs and Rank-1 identification rates.
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Figure 5. Influence of sequence length on recognition rates and EERs.

from different frames. Subsequently, a one layer CNN maps fully connected layers perform recognition. Experiments
the difference of two fused features into task space. Finally, for cross-view gait recognition on OU-ISIR large popula-



tion dataset are conducted. Our method outperforms other
methods significantly when compared with EERs. Specif-
ically, it yielded approximately two times better than other
methods in verification accuracy.
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