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Abstract

Deep neural networks provide state-of-the-art perfor-
mance on various tasks and are, therefore, widely used in
real world applications. DNNs are becoming frequently uti-
lized in biometrics for extracting deep features, which can
be used in recognition systems for enrolling and recognizing
new individuals. It was revealed that deep neural networks
suffer from a fundamental problem, namely, they can unex-
pectedly misclassify examples formed by slightly perturbing
correctly recognized inputs. Various approaches have been
developed for generating these so-called adversarial exam-
ples, but they aim at attacking end-to-end networks. For
biometrics, it is natural to ask whether systems using deep
features are immune to or, at least, more resilient to attacks
than end-to-end networks. In this paper, we introduce a
general technique called the layerwise origin-target synthe-
sis (LOTS) that can be efficiently used to form adversarial
examples that mimic the deep features of the target. We
analyze and compare the adversarial robustness of the end-
to-end VGG Face network with systems that use Euclidean
or cosine distance between gallery templates and extracted
deep features. We demonstrate that iterative LOTS is very
effective and show that systems utilizing deep features are
easier to attack than the end-to-end network.

1. Introduction

In the last few years, the most advanced deep neural
networks (DNNs) have managed to reach or even surpass
human level performance on a wide range of challeng-
ing machine learning tasks [13, 19, 23, 7], including face
recognition. DNNs trained to perform specific tasks are
able to learn representations that generalize well to other
datasets [25, 13], and the extracted generic descriptors can
be utilized to tackle other diverse problems [ 15, 3]. For vi-
sual recognition tasks in biometrics — e.g., facial attribute
classification [11] and face recognition [25, 22, 13] — fea-
tures obtained from DNNs are widely used in the literature.

Although we are capable of designing and training

Figure 1: WHO ARE THEY? Although we might not be able to
recognize the presented celebrities, we can still differentiate them
from one another. In fact, eight of these images are manipulated
in such a way that their VGG Face descriptors mimic Kate McK-
innon’s (bottom-left) and cause systems that apply Euclidean or
cosine distance to classify each image incorrectly as her.

DNNs that perform well, our understanding of these com-
plex networks is still incomplete. This was highlighted by
the intriguing properties of machine learning models dis-
covered by Szegedy et al. [24]. Namely, machine learning
models — including the state-of-the-art DNNs — suffer from
an unexpected instability as they misclassify adversarial ex-
amples formed by adding imperceptibly small perturbations
to otherwise correctly recognized inputs. Due to their excel-
lent generalization capabilities, DNNs are expected to be
robust to such small perturbations to their inputs, therefore
the existence of adversarial examples challenges our under-
standing of DNNs and raises questions about the applica-
tions of such vulnerable learning models.



Considering the revealed adversarial instability of the
end-to-end machine learning models, it is natural to ask
whether systems utilizing extracted features from DNNs are
also vulnerable to such perturbations. In case they are sus-
ceptible to adversarial examples, are they more or less ro-
bust than end-to-end DNNs? To be able to answer these
questions, first we need to design a novel adversarial ex-
ample generation technique that is capable of efficiently at-
tacking those systems.

In this paper, we introduce the layerwise origin-target
synthesis (LOTS) technique designed to perturb samples in
such ways that their deep feature representations mimic any
selected target activations. We experimentally demonstrate
the effectiveness of LOTS in terms of forming high quality
adversarial examples. We analyze and compare the robust-
ness of the end-to-end VGG Face network [13] to adver-
sarial perturbations with other face recognition systems that
utilize deep features extracted from the same network using
Euclidean or cosine distance. Our results show that LOTS
is capable of successfully attacking each system, and that
face recognition systems using the extracted deep features
are less robust than the end-to-end network.

2. Related Work

Automatic face recognition has a long history and many
different approaches have been proposed in the literature
[26, 8, 20, 6]. While these traditional face recognition al-
gorithms perform well on facial images with decent quality
[12], they are not able to handle pose variations [6]. Only
the development of deep neural networks [25, 21, 13] has
overcome this issue, and nowadays these methods are the
quasi standard for face recognition in uncontrolled scenar-
ios. For example, the DNNs used by Chen et al. [1] provide
the current state-of-the-art results on the IJB-A benchmark
[9], which is outperformed by the (unpublished) DNN of
Ranjan et al. [14].

In biometric recognition, training and evaluation can use
different identities not just different images, which means
that identities cannot be directly classified by an end-to-end
network. Instead, the last layer of the network is removed,
and deep features extracted from the penultimate layer of
the DNN are used as a representation of the face [25, 13].
To form a more robust representation of an identity, deep
features of several images are averaged [1]. Finally, the
comparison of deep features is obtained via simple distance
measures in the deep feature space such as Euclidean [13] or
cosine distance [1]. Our experiments use deep features ex-
tracted with the publicly available VGG Face network [13].

Since Szegedy et al. [24] presented the problem posed
by adversarial examples and introduced the first method
capable of reliably finding such perturbations, various ap-
proaches were proposed in the literature. Compared to
the computationally expensive box-constrained optimiza-

tion technique (L-BFGS) that Szegedy et al. [24] used, a
more lightweight, still effective technique was introduced
by Goodfellow et al. [5]. Their fast gradient sign (FGS)
method relies on using the sign of the gradient of loss
with respect to the input, which needs to be calculated
only once per adversarial example generation. The authors
demonstrated that using an enhanced objective function that
implicitly incorporates FGS examples, the overall perfor-
mance and the adversarial robustness of the trained models
can be improved. Later, Rozsa et al. [16] showed that by
not using the sign, the formalized fast gradient value (FGV)
approach forms different adversarial samples than FGS and
those yield a greater improvement when used for training.

The aforementioned two adversarial example generation
techniques — FGS and FGV - rely on simply ascending the
gradient of loss used for training the network. Namely, the
formed perturbation causes misclassification by increasing
the loss until the particular original class does not have the
highest probability. In their recent paper focusing on adver-
sarial training, Kurakin et al. [10] proposed extensions over
the FGS method to be able to target a specific class or by
calculating and applying gradients iteratively compared to
a single one for conducting a line-search via FGS.

A few approaches that do not rely on using the gradient
of training loss were also proposed by researchers. Rozsa
et al. [16] introduced the hot/cold approach producing ad-
versarial examples by both reducing the prediction proba-
bility of the original class of the input as well as increas-
ing the probability of a specified target class. To do so, the
hot/cold approach defines a Euclidean loss with varying tar-
get classes on the pre-Softmax layer and uses its gradients
as directions for forming adversarial perturbations. This ap-
proach is capable of producing multiple adversarial exam-
ples per input, but still targets training classes, so cannot be
directly applied to deep features.

Finally, the approach introduced by Sabour ef al. [17]
produces adversarial examples that not only cause misclas-
sifications but also mimic the internal representations of the
targeted inputs. However, their technique relies on using the
computationally expensive L-BFGS technique, which lim-
its its application.

Since, in general, biometric systems operate on a dataset
different than the end-to-end network was trained on, such
systems cannot be attacked by end-to-end adversarial gen-
eration techniques. Our novel LOTS method can be consid-
ered an extension of the hot/cold approach to deeper layers,
and it also shows similarities to the technique of Sabour et
al. [17] in terms of directly adjusting internal feature repre-
sentations — without relying on the L-BFGS algorithm.

3. Approach

This section describes the targeted face recognition sys-
tems, introduces our approach to form adversarial perturba-
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Figure 2: ROC - EUCLIDEAN AND COSINE DISTANCES.
Receiver operating characteristic (ROC) curves are shown for sys-
tems using Euclidean or cosine distance between gallery templates
and VGG Face descriptors of probe images.

tions on those systems and, finally, presents the metric that
we use for quantifying the quality of adversarial examples.

3.1. Face Recognition Systems

For our systems, we use the publicly available VGG Face
dataset' [13] which contains 2,604,175 images of 2,622
identities. We chose this dataset because of its quality and
size, and due to the fact that there is a publicly available
end-to-end classification network, called the VGG Face net-
work? [13], that was trained on this dataset.

The VGG Face network is intended to be used for ex-
tracting deep features, so-called VGG Face descriptors — the
authors successfully utilized the captured representations of
the FC7 layer as face descriptors on the labeled face in the
wild (LFW) dataset [13] — or for being fine-tuned on other
datasets. The network was trained on the VGG Face dataset,
which was divided into three subsets containing 1,822,894,
520,835, and 260,446 images for training, validation, and
test purposes, respectively. Splitting the dataset happened
proportionately with respect to images per identity: each
identity in the dataset has <1000 images, 70%, 20%, and
10% of those are training, validation, or test images.

To be able to directly compare the robustness of the end-
to-end VGG Face network with systems using the extracted
VGG Face descriptors — which are extracted at the FC7
layer before ReLU — in latter systems we need to have the
same identities as the VGG Face dataset has. Therefore,
we utilize the test set. We form a gallery template for each
identity by calculating the mean VGG Face descriptor of
the first half of the test images (<50 per identity). The
VGG Face descriptors from the other half of the test im-
ages serve as probes, where each probe is compared to each
gallery template, yielding 130,233 positive (same identity)
and 341,340,693 negative (different identity) comparisons.

Using the positive and negative comparisons, we calcu-
late Euclidean or cosine distance among them to compute

Tht tp://www.robots.ox.ac.uk/~vgg/data/vgg_~face/

Znt tp://www.robots.ox.ac.uk/~vgg/software/vgg_face/

ROC curves and, finally, we identify distance thresholds for
attacking deep features in Sec. 4.1. These ROC curves are
displayed in Fig. 2. Since we would like to compare the ad-
versarial robustness of the end-to-end network with systems
having characteristics like real-world applications, we de-
fine them to have a low false accept rate (FAR) of 0.001 — 1
successful zero-effort impostor attack out of 1000 attempts
— which translates into thresholds of 630.46 for Euclidean
and 0.1544 for cosine distance.

3.2. Attacking Deep Features with LOTS

Let us consider a network f with weights w in a layered
structure, i.e., having layers y(!), | = {1,..., L}, with their
respective weights w(). For a given input z, the output of
the network can be formalized as:

F@) =y @ (= (L (10 @) L)) W

while the internal representation (the deep feature) of the
given input z captured at layer [ is:

f(l)(a:) — y(l) (y(l_l) ( .. (y(l)(x)) )) RN (%))

Our layerwise origin-target synthesis (LOTS) approach
adjusts the internal representation of an input x,, the ori-
gin, to get closer to the target internal representation ¢. In
order to do so, we use a Euclidean loss defined on the in-
ternal representation f(*)(z,) of the origin at layer / and the
target ¢, and apply its gradient with respect to the origin to
manipulate the internal features of the origin, formally:

1) = (5 10 )- @

The target ¢ can be chosen without any constraints. We
can manipulate origin’s features at layer [ to get closer to the
feature representation of a specific targeted input x; using
t = f®(x;) or specify any arbitrary feature representation
that the origin should mimic.

We can use the direction defined by the gradient of
the Euclidean loss and form adversarial perturbations us-
ing a line-search — similar to the fast gradient sign (FGS)
method [5] or the hot/cold approach [16]. Compared to
those previous techniques, LOTS has the potential to form
dramatically greater quantities of diverse perturbations for
each input due to the billions of possible targets and the
number of layers it can be applied on. To form higher qual-
ity adversarial examples — with less perceptible perturba-
tions — we can use iterative LOTS as detailed in Alg. 1. This
“step-and-adjust” algorithm perturbs x,, initialized with the
origin x, to get closer to the target ¢ step by step until the
origin mimics the target, i.e., the Euclidean or cosine dis-
tance between f()(z,) and ¢ is smaller than a predefined
threshold value, or x,, is classified by the end-to-end net-
work as desired. The perturbed image x, mimicking the
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Algorithm 1 DEEP FEATURE MIMICKING VIA LOTS. It-
erative LOTS is a generic algorithm that perturbs origin x, in order
to have deep features mimicking the specified target representation
t. The function mimicked depends on the targeted system.

1: procedure MIMIC(x,,t)
2 Tp < To

3 Tp — To

4 while not mimicked(zp,t) do
5: grad < n"(z),t)
6.

7

8

9

> Origin x, mimics target ¢

> Eq. (3)
peak < max(abs(grad))
grads < grad / peak
z, + clip(z, — grads)

: zp < round(z)

10: end while

11: return x,

12: end procedure

> Elementwise division

> Image with features mimicking ¢

target ¢ has discrete pixel values in [0, 255], however, while
taking steps towards the target, the algorithm is designed
to temporarily utilize non-discrete pixel values within x; in
order to obtain better adversarial quality. Finally, note that
we apply a scaled gradient (line 7 in Alg. 1) with L, =1
to move faster towards the specified target.

3.3. Quantifying Adversarial Quality

In order to analyze and compare the various attacks de-
scribed in Sec. 4.1, we need to assess the quality of adver-
sarial images that iterative LOTS can generate. While L,
norms are commonly used to quantify perturbations, some
researchers [17, 16] concluded that those measures are not
matched well to human perception. To address the problem,
Rozsa et al. [16] proposed the psychometric called the per-
ceptual adversarial similarity score (PASS) to better mea-
sure the quality of adversarial images. While L, and Lo,
norms focus strictly on the perturbation — regardless of how
visible it is on the distorted image — PASS is designed to bet-
ter quantify the distinguishability or similarity of the orig-
inal image z,, and the perturbed image z;,, with respect to
human perception.

The calculation of PASS takes two steps: alignment by
maximizing the enhanced correlation coefficient (ECC) [4]
of the image pair with homography transform ¥ (z,, z,),
followed by quantifying the similarity between the aligned
original and perturbed images using the structural similar-
ity (SSIM) index [27]. By design, the alignment via ECC
takes place before SSIM calculation as small translations
or rotations can remain imperceptible to the human eye,
thus, PASS eliminates those before determining the struc-
tural similarity of the image pair. Consequently, PASS can
be formalized as:

PASS (zp,%,) = SSIM (¥ (zp, 2,) , %o) , )

where PASS(z,,x,) = 1 indicates perfect similarity.

As the structural similarity via SSIM can be calculated
only on grayscale images, we align the converted grayscale
images using OpenCV’s ECC with termination criteria of
100 iterations or ¢ = 0.01, then we calculate the structural
similarity of the aligned images using SSIM.?

4. Experiments

The primary goal of this paper is to answer the ques-
tion whether systems relying on extracted deep features of
DNNs are vulnerable to adversarial perturbations, and if
they are, how their adversarial robustness compares to end-
to-end classification networks’. To be able to conduct a fair
comparison, we need to design our experiments carefully.

4.1. Adversaries and Attack Scenarios

For analyzing the capabilities of LOTS and studying the
adversarial robustness of various face recognition systems,
we use a dozen adversaries — 6 identities hand-picked from
the VGG Face dataset, along with 6 manually chosen exter-
nal identities not contained in the VGG Face dataset. We
manually selected them in order to obtain a diverse set of
adversaries as shown in Fig. 3. As each adversary is rep-
resented by a single image, internal adversaries need to
be chosen carefully. Therefore, from the validation set of
the VGG Face dataset we selected an image for each in-
ternal adversary that is correctly classified by the end-to-
end VGG Face network, and by both systems using Eu-
clidean or cosine distance between the gallery templates
and the extracted VGG Face descriptors of probe images,
cf. Sec. 3.1. Images representing the external adversaries
were hand-picked and manually cropped.

With having both internal and external adversaries, our
goal is to analyze whether VGG Face descriptors general-
ize well to novel identities or if they are more specific to
the VGG Face dataset in terms of better representing those
identities present in the dataset. In the latter case, attacks
conducted with external adversaries would outperform at-
tacks by internal adversaries.

We conduct four sets of experiments utilizing the itera-
tive layerwise origin-target synthesis (LOTS) approach, as
detailed by Alg. 1. We perturb images of adversaries such
that they mimic the VGG Face dataset identities yielding
misclassifications on different face recognition systems.

First, on the end-to-end VGG Face network, we use
LOTS on representations extracted from the Softmax layer.
While origins are external and internal adversaries, we spec-
ify the targeted identity by using a particular one-hot vector
on the Softmax layer as target ¢. This can be considered
a traditional or more conventional approach for forming
adversarial perturbations on end-to-end classification net-
works. In fact, this utilization of LOTS can be interpreted as

3Python implementation of SSTM by Antoine Vacavant:
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(a) Daniel Craig

(g) Denzel Washington

(h) Ewan McGregor (i) Halle Berry

(j) Naomi Watts (k) Penelope Cruz (1) Pierce Brosnan

Figure 3: ADVERSARIES - INTERNAL AND EXTERNAL. These are the adversaries that we use throughout our experiments. The
internal adversaries shown in the top row are images from the VGG Face dataset that are correctly classified by each of our systems. The
external adversaries displayed in the bottom are not contained in the VGG Face dataset.

a slightly adjusted, iterative variant of the hot/cold approach
introduced by Rozsa et al. [16]. Second, we aim to generate
adversarial perturbations on the end-to-end network using
iterative LOTS on VGG Face descriptors of adversaries to
mimic gallery templates that we formed by using the mean
face descriptors of VGG identities (cf. Sec. 3.1). This sce-
nario can be viewed as attackers computing mean face de-
scriptors from several images of targeted identities — e.g.,
taken from the Internet — and using them as target t. We
conduct these two experiments to assess the effectiveness
of LOTS on the end-to-end VGG Face network. The results
also allow comparison of the more traditional approach of
manipulating representations of the Softmax layer with the
novel approach of mimicking VGG Face descriptors.

Third and fourth, we conduct experiments to generate
adversarial examples on face recognition systems that use
Euclidean or cosine distance between the gallery templates
and the extracted VGG Face descriptors of probe images.
Using iterative LOTS, our goal is to get face descriptors
of adversaries closer to templates than Euclidean or cosine
distance thresholds of systems having FAR = 0.001, as de-
fined in Sec. 3.1.

Throughout our experiments, we attempt to target ev-
ery possible identity of the VGG Face dataset with each
adversary. For internal adversaries, this yields 2,621 sub-
jects, while external adversaries can aim at impersonating
all 2,622 identities. To limit the computational costs, we
constrain iterative LOTS to 500 steps. In case the algorithm
exceeds the limit, the particular attempt is considered a fail-
ure. As we will see, this constraint has little effect on our
experiments. Furthermore, based on our experience, itera-
tive LOTS taking more than 500 steps produces perturba-

tions that are highly visible, in other words, those examples
are not adversarial at all.

4.2. Results

The results obtained by conducting the four sets of ex-
periments using the selected adversaries are presented in
Tab. 1. Comparing the collected metrics on the two types of
attacks on the end-to-end VGG Face network, we can con-
clude that, in general, iterative LOTS operating on VGG
Face descriptors produces examples with better adversar-
ial quality than the traditional attack working on the Soft-
max layer. Considering all internal and external adversaries,
there is only one exception: for external adversary Denzel
Washington, the formed examples using Softmax features
contain less perceptible perturbations in average, as indi-
cated by the higher PASS. Furthermore, we can note with
respect to the attacks on the end-to-end face recognition
network that there is a small proportion of targeted iden-
tities for each adversary — varying between 41 and 45 —
where iterative LOTS limited to 500 steps failed. By analyz-
ing these unsuccessful attempts, interestingly, we find that
using the diverse set of adversaries our algorithm failed to
form perturbations more or less for the same targeted iden-
tities. We conjecture that those subjects are hard to reach
via iterative LOTS because they are simply more difficult
to be recognized by the end-to-end network — Doddington
et al. [2] dubbed them as “goats.” Consequently, those di-
rections provided by the calculated gradients via iterative
LOTS simply cannot find a way to those identities.

We can see in Tab. 1 that iterative LOTS performs bet-
ter on face recognition systems that use Euclidean or cosine
distance on extracted VGG Face descriptors with FAR =



Table 1: ADVERSARIAL EXAMPLE GENERATION VIA ITERATIVE LOTS. These results are obtained using iterative LOTS with
the listed internal and external adversaries. With each adversary, we attacked every possible subject by mimicking their gallery templates
to cause misclassifications on the end-to-end VGG Face network (End-To-End FD), and on systems using Euclidean or cosine distance
between gallery templates and the extracted VGG Face descriptors. Furthermore, we attacked each identity on the end-to-end network by
manipulating their representations at the Softmax layer (End-To-End SM) targeting the appropriate one-hot vector. We list the mean and
standard-deviation of PASS, followed by the percentage of successful attacks, i.e., when the perturbed images were classified as the target.

ADVERSARY

END-TO-END SM

END-ToO-END FD

EUCLIDEAN DISTANCE

COSINE DISTANCE

Daniel Craig
Hugh Laurie
Idris Elba

Kate Beckinsale
Kristen Bell
Thandie Newton

INTERNAL

0.9833 & 0.0076 (98.44%)
0.9606 & 0.0186 (98.44%)
0.9643 & 0.0206 (98.36%)
0.9804 4 0.0113 (98.44%)
0.9704 + 0.0156 (98.44%)
0.9792 4 0.0099 (98.44%)

0.9846 = 0.0075 (98.32%)
0.9697 £ 0.0123 (98.32%)
0.9686 = 0.0147 (98.32%)
0.9840 = 0.0107 (98.32%)
0.9821 = 0.0115 (98.32%)
0.9849 = 0.0085 (98.28%)

0.9873 £+ 0.0083 (100.00%
0.9805 £+ 0.0116 (100.00%
0.9844 £+ 0.0130 (100.00%
0.9900 £ 0.0066 (100.00%
0.9883 £ 0.0062 (100.00%
0.9881 £ 0.0068 (100.00%

0.9900 = 0.0055 (100.00%)
0.9850 & 0.0081 (100.00%)
0.9894 & 0.0075 (100.00%)
0.9921 + 0.0049 (100.00%)
0.9905 =+ 0.0049 (100.00%)
0.9904 + 0.0055 (100.00%)

Denzel Washington
Ewan McGregor
Halle Berry

Naomi Watts
Penelope Cruz

0.9866 &+ 0.0107 (98.44%)
0.9925 £ 0.0063 (98.44%)
0.9913 4 0.0066 (98.44%)
0.9721 4+ 0.0150 (98.44%)
0.9745 4+ 0.0151 (98.44%)

0.9839 + 0.0093 (98.32%)
0.9936 + 0.0042 (98.32%)
0.9918 + 0.0057 (98.32%)
0.9823 4+ 0.0100 (98.32%)
0.9867 £ 0.0084 (98.32%)

0.9869 £ 0.0095 (100.00%
0.9944 + 0.0041 (100.00%
0.9943 £ 0.0040 (100.00%
0.9869 £ 0.0071 (100.00%

0.9900 =+ 0.0060 (100.00%)
0.9957 £ 0.0027 (100.00%)
0.9955 £ 0.0027 (100.00%)
0.9891 £+ 0.0065 (100.00%)
0.9923 £ 0.0048 (100.00%)

EXTERNAL

Pierce Brosnan

0.9835 4+ 0.0106 (98.44%)

0.9808 + 0.0095 (98.28%)

0.9906 £ 0.0052 (100.00%
0.9877 £+ 0.0085 (100.00%

)
)
)
)
)
)
)
)
)
)
)
)

0.9907 £ 0.0056 (100.00%)

0.001 than it does on the end-to-end system. The better per-
formance is highlighted by both the higher percentage of
successful attacks and the overall adversarial quality shown
by generally higher PASS. Statistical testing — two-sided
heteroscedastic t-tests with Bonferroni correction — show
very significant (p < 0.00001) difference between each pair
of the four attack scenarios. While the differences in PASS
may seem to be small, the large sample size of over 2,600
identities results in the strong rejection of the hypothesis
that the four attacks provide similar results. For the meth-
ods shown in Tab. 1, the quality of the generated adversarial
images statistically significantly increases from left to right,
supporting the conclusion: Systems utilizing deep features
are easier to attack and admit less perceptible perturbations
than the end-to-end network.

While iterative LOTS forms perturbations for adver-
saries to reach nearly all targeted identities, the manipulated
images also maintain high adversarial quality. To demon-
strate the effectiveness of iterative LOTS in terms of reach-
ing the targeted subjects via small distortions, in Fig. 4 we
show examples with VGG Face descriptors that are closer to
gallery templates than Euclidean or cosine thresholds. Most
of these examples are indeed adversarial images as those
perturbations are imperceptible. The displayed examples
are external adversaries targeting identities of the selected
images used as internal adversaries. We show these partic-
ular examples simply because we already introduced those
identities by displaying an image for each internal adversary
in Fig. 3, thus we can associate a face to those subjects.

As indicated by the collected metrics, the formed pertur-
bations that we obtained on the system using cosine distance
yield even slightly better adversarial quality than collected
on the Euclidean system. This means that the system with
the higher recognition accuracy (cf. Fig. 2) is also easier
to attack. To highlight the differences among systems with

respect to adversarial vulnerability, we visualize perturba-
tions for some distorted examples to show what it takes to
cause misclassifications. These can be seen in Fig. 5, where
we display perturbed examples causing misclassifications
on the three systems by manipulating VGG Face descrip-
tors via iterative LOTS. To be able to directly compare the
various distortions, we show PASS as well as Lo and L,
norms of perturbations in sub-captions.

Finally, we can observe that the collected metrics on
the produced examples generated via iterative LOTS vary
among adversaries. While we cannot see a trend differen-
tiating internal and external adversaries, the distorted ex-
amples produced using the various adversaries have signifi-
cantly different adversarial qualities. We believe this is nor-
mal — a face close to the average is naturally closer to oth-
ers, contrarily, a very characteristic face is farther away and,
thus, needs stronger perturbations to be turned to others.
For example, as the internal adversary of Hugh Laurie has
a unique and very characteristic face among adversaries, it
is not surprising that the distorted images of that adversary
have one of the worst overall adversarial qualities. On the
other hand, we have two external adversaries — Halle Berry
and Ewan McGregor — that can be easily turned to other
subjects with smaller, less perceptible perturbations relative
to other adversaries. Doddington et al. [2] referred to such
identities as “wolves.”

5. Conclusion

Since researchers mainly focus on adversarial example
generation techniques and, in general, adversarial robust-
ness on end-en-end classification networks, the primary
goal of this paper was to extend research to systems that
utilize deep features extracted from deep neural networks
(DNNs), which is common in biometrics. In this paper, we
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Figure 4: ITERATIVE LOTS ON VGG FACE DESCRIPTORS WITH EXTERNAL ADVERSARIES. These perturbed images of
external adversaries mimic targeted gallery templates. The VGG Face descriptors of all examples are incorrectly verified to match the
gallery templates with Euclidean or cosine distances below FAR = 0.001 thresholds: from top row to bottom, images match gallery
templates of Daniel Craig, Hugh Laurie, Idris Elba, Kate Beckinsale, Kristen Bell, and Thandie Newton (cf. Fig. 3).

have introduced our novel layerwise origin-target synthesis
(LOTS) algorithm. LOTS is generic and can be efficiently
used iteratively to form adversarial examples both on end-
to-end classification networks and on systems that use ex-
tracted deep features of DNNs.

We have experimentally demonstrated the capabilities of
iterative LOTS by generating high quality adversarial exam-

ples on different systems. We have conducted large-scale
experiments to compare the adversarial robustness of three
face recognition approaches using a dozen adversaries tar-
geting all possible identities. We have generated adversarial
examples on the end-to-end VGG Face network via iterative
LOTS working on the extracted VGG Face descriptors, and,
more traditionally, on features of the Softmax layer. Fur-
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Figure 5: ADVERSARIAL EXAMPLES VIA ITERATIVE LOTS ON VGG FACE DESCRIPTORS TARGETING KRISTEN BELL.
This figure shows adversarial examples paired with their corresponding perturbations that yield incorrect classifications on the end-to-end
VGG Face network, and on systems using Euclidean or cosine distance between the extracted VGG Face descriptors and the gallery
template of Kristen Bell. The sub-captions show the targeted system, the PASS between the origin and the perturbed image, and the Lo

and Lo norms of the perturbation.

thermore, using iterative LOTS, we have formed adversar-
ial perturbations on systems that use VGG Face descriptors
with Euclidean or cosine distance that are closer to the tar-
geted gallery templates than the FAR = 0.001 thresholds.

To assess the robustness of the targeted systems, we have
quantified the quality of the produced adversarial examples
using the perceptual adversarial similarity score (PASS),
and we have measured the percentage of successful attempts
where the perturbed images are classified as the targeted
identities. A less vulnerable system allows adversaries to
impersonate fewer of their targeted identities and/or re-
quires adversaries to form stronger, thus more visible per-
turbations in order to achieve the targeted misclassifica-
tions. Based on the collected metrics, we have concluded
that the end-to-end system is more robust to adversarial per-
turbations formed by iterative LOTS, and the system utiliz-
ing cosine distance is the most vulnerable among all. While
adversaries could not reach all their targeted identities on
the end-to-end VGG Face network, they could achieve that
on the other systems utilizing the extracted face descriptors
— along with better adversarial qualities. Unfortunately, the
system most vulnerable to iterative LOTS is preferred in
biometrics due to the fact that, in general, cosine distance
provides better performing systems than those that utilize
Euclidean distance.

Finally, although we have performed our experiments
only using VGG Face descriptors to form adversarial ex-
amples, we assume that our results will be portable to other

network architectures. We were only targeting “raw” deep
features, while deep features are often processed by triplet-
loss embedding [13, 18] before the applicable distances are
calculated. As these projections are external to the DNN,
and the triplet-loss projection matrix from Parkhi et al. [13]
is not available, we cannot attack deep features after triplet-
loss embedding. We conjecture that iterative LOTS is ca-
pable of forming examples causing incorrect recognition
on systems applying triplet-loss embedding or lower FAR
thresholds, the only question is whether the produced ex-
amples would be adversarial in terms of human perception.
In future work, we will consider attacking such face recog-
nition systems.
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