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Abstract

Occluded face detection is a challenging detection task
due to the large appearance variations incurred by various
real-world occlusions. This paper introduces an Adversar-
ial Occlusion-aware Face Detector (AOFD) by simultane-
ously detecting occluded faces and segmenting occluded ar-
eas. Specifically, we employ an adversarial training strat-
egy to generate occlusion-like face features that are diffi-
cult for a face detector to recognize. Occlusion is predicted
simultaneously while detecting occluded faces and the oc-
cluded area is utilized as an auxiliary instead of being re-
garded as a hindrance. Moreover, the supervisory signals
from the segmentation branch will reversely affect the fea-
tures, helping extract more informative features. Conse-
quently, AOFD is able to find the faces with few exposed
facial landmarks with very high confidences and keeps high
detection accuracy even for masked faces. Extensive experi-
ments demonstrate that AOFD not only significantly outper-
forms state-of-the-art methods on the MAFA occluded face
detection dataset, but also achieves competitive detection
accuracy on benchmark dataset for general face detection
such as FDDB.

1. Introduction

Face detection has been well studied in recent years.
From the pioneering work of Viola-Jones face detector [27]
to recent state-of-the-art CNN-based methods, the perfor-
mance of face detectors has been improved remarkably. For
example, the average precision has been boosted to over
98% [9, 211 [33]] in the unconstrained FDDB dataset.

Although face detection algorithms have obtained quite
good results under general scenarios, detecting faces in spe-
cific scenarios is still worth studying. For instance, one of
the remaining challenges is partially occluded face detec-
tion. Facial occlusions occur frequently, e.g. facial acces-
sories including sunglasses, masks and scarfs. Occluded
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Figure 1. The proposed AOFD is able to detect various heavily-
occluded faces, while the occlusion-aware segmentation branch
predicts masks of the occluded area.

faces are only partially visible, and occluded regions have
arbitrary appearances that may diverse from normal face
regions. Hence occluded faces have significant intra-class
variation, leading to difficulties in learning discriminative
features for detection. A standard paradigm to address this
problem is to enlarge the training dataset of occluded faces,
but it can’t solve this problem in essence. Moreover, the
lack of large-scale occluded face datasets makes it harder to
handle this obstacle.

In this paper, we propose a framework for occluded face
detection, aiming at formulating a new strategy to tackle the
problem of limited occluded face training data, and exploit-
ing the power of CNN representations for the faces with
occlusions as far as possible. Firstly, motivated by the re-
markable success achieved by adversarial learning in recent
years, a deep adversarial network is proposed in our ap-
proach to generate face samples with occlusions from the
mask generator. A compact constraint is adopted to rein-
force the realness of generated masks. Secondly, we intro-
duce an occlusion-aware model by predicting the occlusion
segments at the same time with detecting faces.

In all, the generator aims to make the model focus more
on the exposed areas, while the segmentation branch is to



extract more informative features of the occluded area. In-
tuitively, jointly solving these two tasks can be reciprocal.

To sum up, we make contributions in the following as-
pects:

e A novel adversarial framework is proposed to alleviate
the lack of occluded training face images by generat-
ing occluded or masked face features. We employ a
compact constraint to get more realistic occlusions.

e Mask prediction is conducted simultaneously while
detecting occluded faces. The occluded area will NOT
be regarded as a hindrance but an auxiliary of face de-
tection.

e Experimental evaluations on the MAFA dataset
demonstrate that the proposed AOFD can significantly
improve the face detection accuracy under heavily oc-
clusions. Besides, AOFD can also achieve competi-
tive performance on the unconstrained face detection
benchmark.

2. Related Work

We first briefly survey face detection algorithms, fol-
lowed by a review of the state-of-the-art occluded face de-
tection researches.

Face detection can be considered as a special task of ob-
ject detection. Successful general face detection algorithms
often show great performance on face recognition. The
Viola-Jones [27] detector can be recognized as a milestone
in the field of face detection. They innovatively adopted
AdaBoost to train cascade classifier with Haar-like features,
which first makes it possible to apply face detection in real-
time applications. Following their work, lots of boosting-
based models were proposed [15} 12} 20, 36], focusing on
designing more sophisticated hand-crafted features or im-
proving the boosting strategy. More Recently, CNN fea-
tures [30] were utilized in this boosting framework. An-
other famous category of face detectors is DPM-based. De-
formable part models [4] were proposed for object detec-
tion at first, which acquired impressive accuracy in com-
plex environment. Inspired by this model, many extensions
of DPM were developed to face detection [6] by modeling
potential deformations among facial parts. However, DPM
models suffered from the high computational complexity,
making it difficult to be applied in real-world applications
such as digital cameras, phones or other mobile devices.

Generally speaking, boosting-based methods and DPM-
based methods design features and optimize classifiers sep-
arately. The pipeline of these methods is divided into two
stages, which is not an end-to-end architecture. Recently,
benefitting from the prosperity of social network and big
data, numerous deep learning based object detection algo-
rithms have been proposed [7, 23} 112} [17, [1]]. CNN-based

detectors therefore have become the mainstream in face de-
tection gradually [13,/13]]. CNN-based face detectors directly
learn robust face representations from data and optimize
classifiers in an end-to-end style. For example, [34] de-
veloped a deep cascaded multi-task framework that predict
face and landmark location in a coarse-to-fine manner, and
[33] further improved the performance of cascade models
by optimizing feature selection algorithms.

Although many efforts have been made in face detec-
tion, the performance of occluded face detection is still far
from satisfactory, and there are few works on occluded face
detection as far as we know. [31]] explicitly inferred face-
ness score through local part responses via an attribute-
aware model. But additional face-specific attribute anno-
tations needed in this method were very difficult to collect.
[22] introduced a specific grid loss layer into CNNs that
minimized the error rates on each sub-block of the feature
map independently, thus every sub-part is discriminative on
its own. [19] introduced a partial face detection approach
based on detection of facial segments. They mainly fo-
cused on detecting incomplete faces that captured by the
front camera of smart phones. Recently, [S] combined pre-
trained CNN features with local linear embedding (LLE-
CNN) to get similarity-based descriptors for partially vis-
ible faces. They built a dataset for masked face detection
specifically, named the MAFA that contains 35K occluded
faces. [28] applied anchor-level attention on Feature Pyra-
mid Networks [16]].

As mentioned above, our work is also related to adver-
sarial learning. Generative Adversarial Network (GAN) [8]
has shown great performance in numerous computer vision
applications including image style transfer [37, [L1], image
generation [25,/10] and so on. Adversarial learning provides
a simple yet efficient way to train powerful models via the
min-max two-player game between the generator and the
discriminator. Most of the previous work focused on pro-
moting generators. Recently, researchers began to pay at-
tention to increase the capacity of discriminator by adver-
sarial learning. [29] used adversarial learning in generating
hard examples for object detection. [14] employed Percep-
tual GAN to enhance the representations for small objects.
Inspired by these applications, we develop an adversarial
occlusion-aware model, which can synthesize occlusion-
like face features for boosting occluded face detectors.

3. Methods

In this section, we propose an AOFD method to tackle
one of the most common and vicious problems in face
detection-occlusion problem. We first analyze the occluded
face detection problem (Sec. 3.1) and summarizes the over-
all architecture of AOFD (Sec. 3.2), and then introduce the
mask generation and segmentation method in AOFD in Sec.
3.3 and Sec. 3.4, respectively.
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Figure 2. The overall architecture of the proposed method. Mask generator are operated directly on Rols where one type of masks are

selected for each proposal.

3.1. Problem Analysis

In real-world situations, we can generally classify face
occlusion problems into three categories: facial landmark
occlusion, occluded by faces and occluded by objects. Fa-
cial landmark occlusion includes conditions like wearing
glasses and gauze masks. Occluded by faces is a compli-
cated situation because a detector easily mis-recognize sev-
eral faces into one or only detect a part of the faces. The
segmentation method is proposed in order to mitigate this
problem. When occluded by an object, usually more than
half of a face will be directly masked. An original masking
strategy is used to mimic these in-the-wild situations.

We also visualized features of occluded faces in Figure
[3| (a), finding that occluded areas rarely respond. For some
heavily occluded faces, useful information in feature maps
is too scarce for a detector to identify. To tackle this prob-
lem, we may need to enhance representation ability of ex-
posed area. Meanwhile, recognition of occluded area can
also bespeak that “there is a face” on the condition that suffi-
cient context information is provided. For the most complex
problem where a face is occluded by another face, the con-
text area should cover at least the nearby faces and a larger
receptive field is required so that the integrity of the back-
ground information can be ensured. This idea is enlightened
by human vision, that is, human need a large context to de-
fine a small or incomplete object. Besides, as the quality
of features directly determines the results, segmentation is
better conducted on image features than on Rols in order to
extract more informative feature maps.

3.2. Overall Architecture

In order to detect faces with heavy occlusion, Adver-
sarial Occlusion-aware Face Detector (AOFD) is designed
with the view of (1) effectively utilizing the exposed facial
areas, and (2) transferring the interference of the occlusions
into beneficial information. For the first problem, we find
that undetected faces are typically those with their charac-
teristic part of face occluded, such as eyes and mouth. One
feasible way is to mask the distinctive part of face in train-

ing set, forcing the detector to learn what possibly a face
looks like even if there is less exposed area. To this end, a
mask generator is designed in an adversarial way to gener-
ate a mask for each positive sample. It will generate differ-
ent masks with faces of different poses. A masking strategy
is applied for a better utilization of the mask generator as
well. More details are illustrated in Sec. 3.3.

For the latter problem, We believe that finding com-
mon occlusions is helpful to detect incomplete faces behind
them. Thus, an occlusion segmentation branch is introduced
to segment occluded areas including hair, glasses, scarves,
hands and other objects. This is not an easy task due to few
training samples. Therefore, we labeled 374 training sam-
ples downloaded from internet for occlusion segmentation
and came up with an original training strategy. This dataset
is denoted as SFS (small dataset for segmentation). More
details are listed in Sec. 4.

As is demonstrated in Figure 2] a mask generator is
added after a region of interest (Rol) pooling layer, fol-
lowed by a classification branch and a bounding box regres-
sion branch. Finally, a segmentation branch is in responsi-
ble to segment the occluded area inside each bounding box.
The final result combining classification, bounding box re-
gression and occlusion segmentation will be output in the
end. The overall loss of our architecture takes the following
multi-task form:

L=aL.+ BLy + pL, ()

where L. denotes a binary softmax loss for classification,
Ly, denotes a smooth L1 loss for bounding box regression.
We apply a binary softmax loss for segmentation branch,
which is Ls. During training, the coefficients o, 8 and
areset 1, 1, and le™® respectively.

3.3. Mask Generator

Mask generator: Since human face is very structural,
facial features tend to appear in similar locations. How-
ever, with different poses, expressions and occlusions, dis-
tinguished facial area varies significantly. Our aim is to find
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Figure 3. (a) Heat map of the features from conv5_3 extracted from Faster RCNN. Occluded areas have less information in the features (the
black areas). (b) The compact constraint has made the generated masks more accurate and efficient. A quarter of the minimum values is
selected as the mask and is marked black. The masks are operated directly on the 7 by 7 Rols. We map these masks to their corresponding

receptive fields in the original image space for a better visualization.

this distinguished area and to generate a customized mask.
We visualize some mask examples in Figure 3] (b). As we
have observed, occluded area in features rarely respond in
real images. To simulate this characteristic, masks are di-
rectly operated on Rols. Therefore, the generator, which
contains four convolutional layers with a straight mapping,
is designed simply as it can be regarded as a binary pre-
diction problem. Besides, the peculiarity of our mask gen-
erator, to distinguish from [29], is the original generating
procedure and the mask forms. Since face structures are
inherently different from those of objects, they need to be
learned in a more subtle and flexible way, or no plausible
mask can be obtained.

Masking strategy: The generated mask is a one-channel
heat map where O represents masked area and 1 otherwise.
During training, each pixel value will be squeezed to zero or
one. We select a quarter of the minimum values as the mask
when training the generator and one-third of the minimum
values when training the overall model.

Heavily occluded samples after masking will become an
extremely hard source for training, making the model diffi-
cult to converge. To this end, three types of masks are pro-
posed and jointly training with the original features. The
first type is to use mask generator, which corresponds to fa-
cial landmark occlusion. The second type is to mask half of
the features, whether left, right, top or bottom, and the third
type is randomly dropping half of the pixels. This masking
strategy embodies in-the-wild occlusion types analyzed in
Sec. 3.1.

Loss function: When training the mask generator, we
employ an adversarial training method. We aim to increase
classification loss as much as possible. Since a masked
area is limited and a distinguished facial area is compar-
atively salient in feature maps, the model can easily con-

verge. However, we find it not enough because the occluded
area is sometimes strip-like or sporadic, while it is supposed
to be more compact in real situations. Recall that the ar-
eas with longer or irregular edges will have a larger value
for each pixel using a kernel of an edge detector. A kernel
to make the occluded area sleeker and more circular is de-
signed as a compact constraint for generated masks. The
loss function is:

Lg = 7Lcom - nLc (2)

where L, denotes the loss for generator, L., denotes a
compact loss, and v and 1 are coefficients. ~ is set 1le =6
and 7 is set 1 in order to balance the derivatives. The com-
pact loss is computed with a convolutional layer in a way as
follows:

Leom = Z((l — mask) * kernel) 3)

where * denotes a convolutional operation, mask is the first
type of mask generated by the mask generator and the last
item is the designed kernel, which is
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In this way, strip-like or sporadic areas will get very high
penalty and more reasonable masks can be obtained.

3.4. Segmentation

Design: Previous works on segmentation have proved
that CNNs is capable of comprehending the semantic in-
formation of a picture and elaborately conduct a pixel-wise



classification. When combining detection with segmenta-
tion, it is usually designed in Rol level to achieve higher
accuracy.

Considering segmenting each Rol, one problem in oc-
cluded face situation is that the overlap of two bounding
boxes will have different meanings. For example, if one
face is occluded by another face, part of the front face
should be regarded as an occlusion for the back face, while
there shouldn’t be any occluded area for the front face.
Since our destination is to utilize the effective information
contained in the occluded area to confirm if there is a back
face and then make the exposed area more distinguished,
ample context information is required. Moreover, it is the
features that really matter in the bounding box classification
and regression branch. With reasons above, segmentation is
conducted in image level to directly affect the image feature
maps. Therefore, the detector is able to find faces with more
informative features embodying image-level signals like the
appearance of an occlusion or a person. We call this method
as an occlusion-aware method.

The segmentation branch is designed in a fully convo-
lutional way (Figure [d). In order to obviate noise, it fol-
lows a bounding box regression branch and only areas in-
side bounding boxes are maintained. Bounding boxes are
enlarged in scale with a factor of 1.3 before dropping the
noise. Because it is only an auxiliary task for face detection,
we didn’t compare it with other segmentation methods. The
results (Figure [I} Sec.4) should have shown the effective-
ness. Although the final results have proved the feasibility
of this method, the edges of segmentation seem to be a bit
rough. This is caused by the limited size of the SFS training
set. Nevertheless, we have verified the possibility to train
the model with very limited training samples.

Loss function: We choose softmax loss instead of L1
or L2 loss used in some segmentation and image generation
tasks [[10, [14] because it helps stabilize the training process.

4. Experiments

In this section, we qualitatively evaluate the proposed
method with state-of-the-art methods. We first introduce
detailed information during training (Sec. 4.1), and then
test AOFD on several comparative benchmarks (Sec. 4.2).
A series of ablative studies are conducted to verify the ef-
fectiveness of our method (Sec. 4.3).

4.1. Training Details

There are two stages in the training procedure. Firstly,
based on Faster RCNN [23], we train the mask generator
with the loss in equation (2). Secondly, the detector and the
segmentation branch are trained jointly with the parameters
in the mask generator fixed.

In the second stage, due to the limitation of training data
for segmentation, an unordinary training strategy is needed.
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Figure 4. The image segmentation branch in AOFD. Only areas
inside bounding boxes are maintained so as to reduce noise.

We first train on SFS for 10k iterations, causing overfitting
in segmentation. Then the model is trained on the combi-
nation of WIDER FACE training set and SFS for 50k iter-
ations with loss weights for segmentation set 1e~7 and fi-
nally the model is tuned only on SFS for 3 epochs. Deriva-
tives from WIDER FACE training set will be zero for the
segmentation branch during training. Because there are far
more training images from the WIDER FACE training set
than SFS, the segmentation branch can only be trained ev-
ery several iterations while the features are changing all the
time when training on the combined dataset. In this way, the
overall loss can get rid of local minima and the overfitting
problem can be solved. The basic learning rate is 0.001.
AOFD runs 5 FPS on a TITAN X GPU, which is similar to
the original Faster RCNN.

Experiment settings: AOFD is based on a Faster RCNN
with a VGG16 backbone [26]. For anchors of PRN, we
use three aspect ratios (1.7, 1 and 1.3) and four scales (642,
1282, 2562 and 5122). Batch size is set 1. An Rol is treated
as foreground if its intersection over union (IoU) with any
ground truth bounding box is higher than 0.5. To balance
the number of foreground and background training samples,
the ratio of foreground Rols to background Rols is set 1:3.
During training, the short side of an input image is resized
to either 512 or 1024 on condition that long side is no longer
than 1024.

Small dataset for segmentation (SFS): SFS contains
376 images with 1138 labeled faces downloading from the
Internet. There is at least one occluded face in each image
and over 80% of the faces are occluded.

4.2. Evaluation on benchmarks

Our model is trained on the WIDER FACE [32]] training
set and evaluated on the FDDB and MAFA [5] databases.
Although the MAFA database dose not release its training
set, we still obtain state-of-the-art results on the MAFA test-
ing set without fine tuning the model to adjust the variance
between different annotation protocols.

FDDB (Face Detection Data Set and Benchmark) is
an unconstrained dataset for face detection. It has 2, 845
images with 5, 171 faces. The detection results of dif-
ferent methods are shown in Figure @ [18] and several
other methods obtain higher continuous score because they
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Figure 6. Results on FDDB ((a)(b)) and MAFA testing set ((c)).

have transformed the rectangle bounding boxes into ellipse
ones. The fact that we didn’t carry out extra training in
the FDDB training set may lead to the increase of localiza-
tion errors because of the difference of annotation criterion.
However, in the comparison with state-of-the-art methods,
we observe that AOFD outperforms all the other methods
in terms of discrete score, demonstrating its strong ability
to detect nearly all large faces even if faces with short side
less than around 15 pixels are mostly neglected due to the
anchor setting.

Furthermore, our AOFD also obtains a higher recall rate
at 1000 FPs on FDDB than other Faster RCNN methods
with similar settings by a large margin (Figure [5 and Fig-
ure [6). The superior performance also reveals that applying
masking strategy and training with a segmentation task are
valuable attempts to enhance the model’s capacity.

MAFA is designed for the evaluation of masked face de-
tection, which contains 35806 face annotations with a min-
imum size of 32x32. Since the MAFA testing set uses
squares to label faces, the rectangle bounding boxes in our
results are transformed into squares to match the annotation.

There are three types of annotations in the MAFA
dataset: masked, unmasked and ignored. Blurry or de-
formed faces or those with side length less than 32 pixels

Methods All ‘masked’ only | w/o ‘Ignored’
AOFD 81.3% 83.5% 91.9%
FAN - 76.5% 88.3%
LLE-CNNs - - 76.4%
MTCNN - - 60.8%

Table 1. Average precision on the MAFA testing set.

are labeled as ‘Ignored’. But we find that many ‘ignored’
faces are also acceptable. Since the other methods ( [28] [5]]
[34]) didn’t count those annotations labeled as ‘Ignored’,
we report our results on both MAFA subsets and the whole
testing set for comparison (Table [I]).

As shown in Table [I] the average precision achieves
the highest 91.9% (threshold 0.5) if we only evaluate on
the faces with ‘masked’ and ‘unmasked’ labels. The re-
sult outperforms LLE-CNNs [5] by a large margin and is
also better than the state-of-the-art Face Attention Network
(FAN) [28]]. Since AOFD is proposed to address occlusion
problem, we also evaluate our model on faces labeled as
‘masked’ only. AOFD achieves 83.5% and has 7% im-



Figure 8. Not only is AOFD able to detect occluded faces with
higher confidences, but also capable of increasing the average
precision. The purple bounding boxes are false detections by
Faster RCNN and the blue ones are new true positives detected
by AOFD.

provement over the state-of-the-art result obtained by FAN.

Figure |§kc) further shows the PR (Precision-Recall)
curves of the three experimental settings. If we only count
the faces annotated as ‘masked’ (the orange curve in Fig-
ure[6fc)), precision witnesses a sharp drop at the beginning.
This is caused by unmasked and unlabeled face detections
which are regarded as FPs when evaluating masked faces.
More results on MAFA are presented in Figure([7}

Furthermore, we have studied the main obstacle of our
model to achieve a higher AP. The minimum IoU thresh-
old for a true positive proposal is modified from 0.5 to 0.45,
from which we observe that a slight decrease of IoU thresh-
old can boost AP from 91.9% to 93.8%. This explains
that the precision of bounding boxes can still be further im-
proved

4.3. Model Analysis

To better understand the function of each part of our
model, we ablate each component to observe AOFD’s per-
formance. In this way, the mask generator and segmentation
branch are removed one after the another. We delve into the
optimal area of the mask as well and find that the mask area
is crucial for the functioning of mask generator. Besides,
the efficiency of the compact constraint and the comparison
with online hard example mining (OHEM) are also dis-

Settings Recall rate at 1000 FPs

AOFD 97.88%
w/o segmentation 97.13%
w/o generator 96.85%

Table 2. Results of the ablative studies on FDDB.

cussed in this section.

Mask facilitates detecting: State-of-the-art detectors
are able to detect some of occluded faces, but with lower
confidence. As shown in Figure[§] AOFD can increase the
confidence of occluded faces by a large margin. Without
the mask generator, AOFD pays less attention to exposed
area or face structure, and the recall rate at 1000 false pos-
itives on FDDB drops by 1.3%(Table 2). The sharp de-
cline (3.2%) of average precision on the MAFA testing set
in Figure [5[a) reveals the value of the mask generator as
well. It is also observed that AOFD’s results would drop by
around 1% with only random and square-like occlusions.
Since faces have unique structure characteristics such as fa-
cial symmetry, generating adaptive occlusions is essential
in order to fool the detector.

Segmentation increases recall: With the segmentation
branch, the result in Table[2]witnesses an increase of 0.75%.
This improvement is relatively slight because there are not
many heavily occluded faces in the FDDB testing set. The
drop of average precision from 79.9% to 77.4% (Figure
Ekb)) will be more convincing to confirm the effectiveness
of the segmentation branch.

Mask area is crucial: We find that the mask would viti-
ate the detector if a mask area is too large. Nevertheless, it
would be of no use if it is too small. Figure[5]gives a brief
overview of our experiments, from which we find occluding
one-third of features is an ideal area for a mask.

Compact constraint matters: We propose a compact



Methods AP on MAFA | Recall on FDDB
single OHEM 75.9% 96.54%
single AOFD 79.9% 97.12%
AOFD with OHEM 81.3% 97.88%

Table 3. Comparing AOFD with OHEM on the whole MAFA and
FDDB testing set.

constraint L. to help generate more practical masks. As is
mentioned in Sec. 3.3, the generated masks are discrete or
sporadic and are not plausible, e.g., two pixels occlusion
on the mouth, three pixels occlusion on the eyes and others
on the corners (Figure [3| (b)). In our initial experiments,
the average precision is 0.785 when masking 1/3 of Rols
without the compact constraint, which is similar to having
1/6 masking area in Figure [5(c). However, masks become
harder and more reasonable with L., which can account for
the increase of performance.

Comparing with OHEM: We compare online hard ex-
ample mining [24] with our methods in Table 3] We can
see that the performance of training a Faster RCNN with
OHEM is generally worse than a single AOFD without
OHEM. But the combination of these two methods leads to
a better performance. Although a harder training procedure
means a more robust detector under this condition, the mea-
surement of hard level needs to be carefully handled. For
example, the decrease incurred by too large masking area
demonstrated in Figure [5c).

5. Conclusion

This paper has proposed a face detection model named
AOFD to address the long-standing issue of face occlusions.
A novel masking strategy has been integrated into AOFD to
increase training complexity, and can plastically mimic dif-
ferent situations of face occlusions. The multitask training
method with a segmentation branch provides a feasible so-
lution and verifies the possibility to train an auxiliary task
with very limited training data. The superior performance
on both general face detection and masked face detection
benchmarks demonstrates the effectiveness of AOFD.
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