
PDF issue: 2024-04-23

A Process Migration Approach to Energy-
efficient Computation in a cluster of
Servers

DILAWAER, Duolikun / ディラワリ, ドリクン

(開始ページ / Start Page)
1

(終了ページ / End Page)
9

(発行年 / Year)
2016-03-24

(学位授与年月日 / Date of Granted)
2016-03-24

(学位名 / Degree Name)
修士(工学)

(学位授与機関 / Degree Grantor)
法政大学 (Hosei University)

2015年度修士論文

論文題名 A Process Migration Approach to Energy-efficient

Computation in a Cluster of Servers

指導教員 滝沢 誠

大学院理工研究科

システム工学専攻修士課程

14R6103

 ディラワリ ドリクン

氏名 迪拉瓦尔 多里坤

Abstract—Application processes have to be efficiently per-
formed on servers in a cluster with respect to not only
performance but also energy consumption. In this paper,
we consider a process migration (MG) approach to energy-
efficiently performing application processes on servers in a
cluster. First, a client issues an application process to a server in
a cluster. A process performed on a current server is migrated
to another server if the server is expected to consume smaller
electric energy to perform the process than the current server
and the deadline constraint on the process is satisfied on the
server. In the evaluation, the total energy consumption of
servers is shown to be smaller and the average execution time
of each process to be shorter in the MG algorithm than the
round robin and random algorithms.

Keywords-Energy-aware cluster; Power consumption model;
Computation model; Process migration; Energy-efficient pro-
cess migration;

I. I NTRODUCTION

In a cluster of servers like cloud computing systems [16],
[19], application processes have to be efficiently preformed
on servers in terms of not only performance but also energy
consumption. The power consumption models of a server
to perform types of applications are purposed in papers [8],
[9], [10], [11], [12].

In papers [1], [13], [14], the energy-aware active replica-
tion of a process [2] on multiple servers is discussed. In order
to reduce the electric energy consumption of a server cluster,
the algorithm where the other replicas are forced to terminate
once one replica successfully terminates is discussed [13].
Furthermore, every replica is not simultaneously started as
discussed in the paper [14]. In papers [4], [5], the passive
replication [2] of a process is discussed to reduce the total
energy consumption of a cluster, where only a primary
replica of the process is performed. In papers [21], [22],
a mobile agent approach is discussed where a process
manipulates databases while moving around servers. Here, a
mobile agent is passively replicated, where a primary replica
of the mobile agent is performed while moving around
servers and the other secondary replicas are not performed.

In this paper, a process performed on a server is migrated
to another server to efficiently perform the process in terms
of performance and energy consumption. A client first issues
a request process to a serverst in a server cluster. Than, the
process is performed on the serverst. Even if the serverst is
lightly loaded when the process is started, the serverst might
be later overloaded and consume more electric energy and
longer time to perform the process. Here, suppose another
serversu is expected to consume smaller electric energy to
perform up the process than the current serverst. In addition,
the deadline constraint of the process is satisfied even if the
process is migrated to the serversu. Here, the process is
migrated to the serversu and performed on the serversu.
We discuss how to estimate electric energy to be consumed
by a server to perform all the current processes and how
to estimate when each current process terminates under

an assumption that no additional process starts. By using
the estimation models of electric energy consumption and
termination time, we discuss the energy-efficient migration
(MG) algorithm for each process to decide on whether the
process stays on the current server or is migrated to another
server. If a process can be energy-efficiently performed on
another serversu than the current server, the process is
migrated to the serversu.

We evaluate the MG algorithm in terms of total energy
consumption of a cluster and average execution time of each
process compared with random (RD) and round-robin (RR)
algorithms. We show the total electric energy consumption
of the cluster can be reduced and average execution time of
each process can be shorter in the MG algorithm than the
other algorithms.

In section II, we present how to estimate the power
consumption of servers and the execution time of each
process. In section III, we discuss the MG algorithm to
select a server in a cluster for each process. In section
IV, we evaluate the MG algorithm in terms of total energy
consumption of the cluster and average execution time of a
process.

II. EXPECTED COMPUTATION AND POWER
CONSUMPTION

A. Expected computation

The more number of processes are concurrently performed
on a server, the longer time it takes to perform each of the
processes. We take the simple computation (SC) model [7],
[9], [10] to perform processes on a server. Suppose a cluster
S is composed of serverss1, . . ., sn (n ≥ 1). It takesminT ti

[sec] to exclusively perform a processpi without any other
process on a serverst. Let minT i be the minimum one of
minT 1i, . . ., minTni to perform exclusively a processpi
on servess1, . . ., sn, respectively, in the clusterS.

The normalized maximum computation ratemaxF ti (≤
1) of the processpi is minT i / minT ti on the serverst.
The normalized computation rateFti(τ) (≤ maxF ti) of a
processpi shows how much amount of computation of the
processpi is performed on the serverst at timeτ [9], [10],
[12]. Let pti denote a processpi performed on a serverst.
Suppose a processpti starts at timest and ends at time
et. Here,

∑et
τ = st Fti(τ) dτ = minT i [sec]. LetCP t(τ)

be a set of processes concurrently performed on a server
st at time τ . The computation rateFt(τ) of a serverst at
time τ is

∑
pti∈CPt(τ)

Fti(τ). The computation rateFt(τ)
is assumed to be fairly allocated to each current process
pi, i.e., Fti(τ) = Ft(τ) / | CPt(τ) |. maxF t indicates the
maximum computation rate of a serverst. If only a process
pi is exclusively performed on a serverst at timeτ , Ft(τ) =
Fti(τ) = maxFt. maxFti shows the maximum computation
rate of a processpi on a serverst. Here,maxF ti = minT i

/ minT ti (≤ 1) for every processpi. The more number of

processes are concurrently performed at timeτ , the smaller
computation rateFt(τ).
[Computation rate] Ft(τ) = αt(τ) · maxF t.
Here,αt(τ) (> 0) is the degradation function of a server
st. Here,αt(τ) = 1 if CP t(τ) ≤ maxNt, elseaCPt(τ)−1

t

in this paper. The constantat is a degradation factor (at
≤ 1). That is, the execution timeTit of a processpit is
linearly increases as the number of processes concurrently
performed with the processpi if CP t(τ) ≤ maxNt. For
example,maxNt = 200 andαt = 0.99 in the evaluation of
this paper.

Suppose a processpti starts on a serverst at timesti. The
computation

∑τ
τ=sti

Fti(τ) dτ of the processpti is already
performed before timeτ . The computation laxity lcti(τ)
is minT i −

∑τ
τ=sti

Fti(τ) which of has to be furthermore
performed on the serverst after time τ . At each timeτ ,
lcti(τ + 1) = lcti(τ) − Fti(τ). If τ the computation laxity
lcti(τt) gets 0, the processpti terminates.

B. Expected energy consumption

In this paper, a termprocess stands for a application
process. In the simple power consumption (SPC) model [1],
[8], [9] of a server, the electric power consumptionEt(τ) of
a serverst at time τ is either the minimumminEt or the
maximummaxEt. If at least one process is performed on a
serverst at timeτ [W], Et(τ) = maxEt. Otherwise,Et(τ)
= minEt. The total electric energyTEt(τ1, τ2) consumed
by a serverst from timeτ1 to timeτ2 is

∑τ2
τ=τ1

Et(τ) [Ws].
For each current processpti in the set CPt(τ), the

computation laxitylcti(τ) has to be furthermore performed
on a serverst after timeτ . As discussed in papers [9], [10],
[11], we can estimate termination time by when each current
processpti in CPt(τ) is expected to terminate on a server
st if no additional process is performed on the serverst
after time τ according to the SC model [9], [10]. In this
paper, one unit time is 100 [msec] since we can measure
the power consumption of a server every 100 [msec] [9],
[10]. The expected termination timeETP (st, CPt(τ), pi,
τ) is given as timeτt in the following procedure:

lc = lcti(τ); /* laxity of pti */
τi = τ ; /* current time */
while (lc > 0)
do {
lc = lc − Fti(τt);
τi = τi + 1;

}; /* pti terminates atτi */
CPt(τi + 1) = CPt(τi)− {pti};

Here, the normalized computation rateFti(τ) at time τ is
αt(τ) · maxFt / | CPt(τ) | as discussed in the preceding
subsection. The computation rateFti(τ) monotonically de-
creases as the number of processes concurrently performed
on a serverst increases at each timeτ .

A variable lci shows the computation laxity of a process
pti andCP denotes a setCPt(τ) of current processes on
a serverst. The expected termination timeET (st, CPt(τ),
τ) by when every process in a current process setCPt(τ)
is obtained as timeτt by the following procedure:

CP = CPt(τ);
lci = lcti(τ) for each processpti in CP ;
τt = τ ; /* current time */
while (CP ̸= φ)
do {

for each processpti in CP
do {
lci = lci − Fti(τt); /* pti is performed */

if lci = 0, CP = CP − {pti}; /* pti terminates */
};
τt = τt + 1;

};

Every current process inCPt(τ) is expected to terminate
by time τt under an assumption that no process additionally
starts after timeτ . Here, the serverst is expected to consume
the amountEE(st, CPt(τ), τ) of electric energy to perform
every current process in the current process setCPt(τ) at
time τ . The expected energy consumptionEE(st, CPt(τ),
τ) is (τt − τ) · maxEt to perform all the current processes
of time τ on a serverst.

III. SERVER SELECTION

A. Process migration

Suppose a clusterS is composed of multiple serverss1,
. . ., sn (n ≥ 1) and clients which are interconnected in
an underlying reliable networkN . Each serverst supports
clients with computation service.

A client cs first finds a serverst in the clusterS and issues
the processpi to a serverst. Every processpi is assumed to
do the computation in this paper. The processpi is performed
on the serverst. Then, the processpi is migrated to another
serversu as shown in Figure 1. If the processpi terminates
on the serversu, the reply is sent to the clientcs. Here, the
processpi is referred to asmigrated and the serversst and
su aremigrated servers of the processpi.

A process on a current serverst is migrated to another
serversu in a clusterS so that not only some performance
requirement of the processpi like deadline constraintdli is
satisfied but also the electric energy to be consumed by the
serversu is smaller than the serversu. We discuss migration
conditions that a process on one server is migrated to another
server. Suppose a processpi is performed on a serverst at
time τ . There are two ways to perform the processpi [Figure
2]:

1 The processpi is performed on the serverst without
migrating to another server.

2 The processpi is perform to another serversu.

reply

Figure 1. Migration of a process.

server server

server

1) 2) Migration

Figure 2. Process migration.

First, suppose that the processpi stays on the server
st at time τ . Here, the serverst is expected to consume
electric energyEE(st, CPt(τ), τ) to perform all the current
processesCPt(τ) of time τ . It is expected for every process
in the setCPt(τ) to terminate on the serverst by time
ET (st, CPt(τ), τ) and for each processpi in CPt(τ) to
terminates at timeETP (st, CPt(τ), pi, τ).

Next, suppose the processpi is migrated to the serversu
from the current serverst at timeτ . The energy consumption
of the serverst is expected to decrease toEE(st, CPt(τ) −
{pi}, τ) because one current processpi leaves the serverst.
The processpi has to be transmitted to the serversu. It is
assumed to takeδi time units to migrate the processpi on a
server to another server. Hence, the processpi starts on the
serversu at time τ + δi after the processpi is transmitted
from the other serverst to the serversu at time τ . On the
other hand, the serversu consumes more amount of electric
energy because the processpi is additionally performed after
time τ + δi. The serversu is expected to consume total
energyEE(su, CPu(τ+δi) ∪ {pi}, τ+δi) [Ws] to perform
the processpi and current processesCPu(τ + δi) of time τ
+ δi. The expected termination time of the processpi and

every current process on the serversu at timeτ + δi is also
changed withET (su, CPu(τ + δi) ∪ {pi}, τ + δi).

We have to obtain the current process setCPu(τ + δi)
on a serversu at time τ + δi. Current processes in the set
CPu(τ) are performed on the serversu from timeτ to timeτ
+ δi. The computation laxitylcuj(τ) of each processpuj in
CPu(τ) is decremented by the normalized computation rate
Fuj(τ). If the computation laxitylcuj(τ ′) gets 0 at timeτ ′

(τ ≤ τ ′ ≤ τ + δi), the processpuj is removed in the process
set CPu(τ + δi). The current process setCPu(τ + δi) is
estimated by the following procedure:

for x = τ , · · · , τ + δi
do { F = αt(τ) · maxF t / |CPu(x)|;

for every processpuj in CPu(x)
do {

lcuj(x+ 1) = lcuj(x) − F ;
if lcuj(x+ 1) = 0,

CPu(x+ 1) = CPu(x) - {puj};
};

};

B. Server selection

A processpi on a current serverst can be migrated to
another serversu if the following migration (MG) conditions
are satisfied:

[Migration conditions]
1 [Energy condition]EE(st, CPt(τ) − {pi}, τ) <

EE(su, CPu(τ + δi) ∪ {pi}, τ + δi).
2 [Performance condition 1]ETP (su, CPu(τ + δi) ∪

{pi}, pi, τ + δi) + δi ≤ dli − τ .
3 [Performance condition 2]ETP (su, CPu(τ + δi) ∪

{pi}, pi, τ + δi) + δi ≤ ETP (st, CPt(τ), pi, τ).
The energy condition indicates that a smaller amount of

electric energy is consumed by a serversu than a current
serverst. In addition to the energy condition, a processpi
has to satisfy the following performance conditions.

The first Performance condition shows that a processpi
has to terminate by the deadlinedli. The second Perfor-
mance condition means that it has to take a shorter time to
perform every current process on a serversu than a current
serverst if the processpi on the serverst is migrated to
the serversu. In Figure 3, if a processpi is performed on a
serverst at timeτ , the processpi is expected to terminate at
time τ2 = ETP (st, CPt(τ), pi, τ). If the processpi on the
serverst is migrated to a serversu at timeτ , the processpi
is expected to terminate at timeτ1 = ETP (su, CPu(τ+δi)
∪ {pi}, pi, τ + δi). Here, the computation time to perform
the processpi can be reduced if the processpi is migrated
to the serversu, i.e. (τ2 − τ) > (τ1 − τ).

Suppose the first condition is not satisfied. Suppose the
deadlinedli of a processpi is specified as performance

constraint. IfETP (su, CPu(τ + δi) ∪ {pi}, pi, τ + δi)
+ δi ≤ dli − τ , the processpi can be expected to terminate
on the serversu by the deadlinedli. Hence, the processpi
can be migrated to the serversu. Otherwise, the processpi
might not terminate by the deadlinedli if the processpi is
migrated to the serversu.

time

(1)

(2)

0

0

Figure 3. Expected termination time.

time

(1)

(2)

Figure 4. Expected energy consumption.

In Figure 4,τti shows time by when every current process
in CPt(τ) terminates, i.e.τti = ET (st, CPt(τ), τ) and
τu = ET (su, CPu(τ), τ) where a processpi is performed
on the serverst at time τ . Suppose the processpi on the
serverst is migrated to the serversu. Since the processpi
is not performed on the serverst after timeτ , the expected
termination timeτt of all the processes inCPt(τ) is ET (st,
CPt(τ) − pi, τ). Here, τti < τt since the processpi is
migrated to the serversu. The processpi starts on the server

su at time τ + δi. The expected termination timeτui of
processes inCPu(τ + δi) is ET (su, CPu(τ + δi) ∪ {pi},
τ + δi) + δi. τti < τt since the processpi is additionally
performed. The hatched areas (1) and (2) show the total
energy consumption of the serversst and su, respectively,
where the processpi is migrated to the serversu.

If there are multiple servers which satisfy the migration
conditions, a serversu where the expected energy consump-
tion EE(su, CPu(τ + δi) ∪ {pi}, τ + δi) is minimum is
selected in the clusterS.

A serversu is selected for a processpi with a deadline
constraintdli on a current serverst at timeτ as follows:

E = EE(st, CPt(τ), τ);
T = dli − τ ; /* deadline of a processpi*/

for each serversu in a clusterS
do {

if (EE(su, CPu(τ + δi) ∪ {pi}, τ + δi) < E) {
if (ETP (su, CPu(τ + δi) ∪ {pi}, pi τ + δi) +
δi < T) { /* deadline is satisfied */
E = EE(su, CPu(τ + δi) ∪ {pi}, τ + δi);
T = ET (su, CPu(τ + δi) ∪ {pi}, τ + δi);
s = su;
};

};
};

The MG conditions are checked everyγi time units if a
more number of processes are performed than a processpi
starts on a serverst. Hereγ = maxTi / 4.

IV. EVALUATION

A. Environnent

We evaluate the energy-efficient process migration (MG)
algorithm in terms of total energy consumption and total
execution time. We consider a clusterS composed ofn
servers s1, · · · , sn. Each serverst follows the simple
power consumption model [9], [10] with maximum power
consumptionmaxEt and minimum power consumption
minEt. In this evaluation,maxEt is randomly taken out
of 1,000 to 2,000 [W] andminEt is randomly taken out of
800 to 1,000 [W] for each serverst. In each serverst, the
maximum normalized computation ratemaxF t is randomly
taken out of 0.5 to 1.0. The degradation constantαt =
1 for CPt(τ) ≤ maxNt and maxNt = 200. ForCPt(τ)
> maxNt, αt is randomly taken out of 0.99 to 1.0. The
computation rateFt(τ) of a serverst is givenal−maxNt−1

t ·
maxF t for numberl = | CPt(τ) | of processes concurrently
performed at timeτ as presented in this paper.

Totally l (≥ 1) processes are performed on servers in
the clusterS. For each processpi, the starting timesti
is randomly taken from 0 toxtime. In this evaluation, the
simulation timextime is 10,000 time units. One time unit is
assumed to be 100 [msec]. That is,xtime = 10,000 [msec].

The minimum computation timeminT i of each processpi
is randomly taken out of 10 to 20 time units. The simulation
ends if every process terminates.

In the evaluation, we consider three selection algorithms,
random (RD), round robin (RR), and energy-efficient pro-
cess migration (MG) algorithms to select a server for each
processpi. In the RD algorithm, one server is randomly
selected for each processpi in the clusters ofn servers. In
the RR algorithm, a servers1 is selected for a first process.
A servers2 is selected for a next coming process. Thus, a
serverst is selected for a process after a serverst−1. Here,
t showst modulon + 1. In the evaluation, the servers in
the clusterS are randomly ordered. In the MG algorithm, a
serverst whose expected power consumption is minimum is
selected for each processpi. The processpi is performed on
the serverst. Everyγi = minT t / 4 time units the process
pi checks if a more number of processes are concurrently
performed than the processpi starts on a serverst. If so, the
migration (MG) conditions are checked. If a serversu which
satisfies the MG conditions, i.e.su is expected to consume a
smaller amount of electric energy to perform processes than
the current serverst, the processpi is migrated to the server
su. The delay timeδi to migrate the processpi to another
server is the half of the maximum minimum computation
time, i.e.δi = 20 / 2= 10 time units.

B. Evaluation results

The clusterS is composed ofn (≥ 1) serverss1, · · · , sn.
Figures 5 and 6 show the total energy consumption [Ws]
of the serverss1, · · · , sn to performl processes on servers
of the clusterS in the MG, RR, and RD algorithms for
n = 8 and 24, respectively. As shown in Figures 5 and
6, the total energy consumption of the servers is smaller
in the MG algorithm than the RR and RD algorithms.
The RR and RD algorithms imply almost the same energy
consumption. For example, the total energy consumption
in the MG algorithm is about 70% in the RR and RD
algorithms for l = 1,400 for n = 8 as shown in Figure
5. For n = 8, every server is heavily loaded. Forn = 24,
since servers are less loaded, processes can be migrated to
other servers so that the total energy consumption is reduced.
Hence, the energy consumption of the MG algorithm is less
reduced forn = 8 thann = 24. For example, the total energy
consumption of the MG algorithm is about 60% of the RR
and RD algorithms forn = 24 as shown in Figure 6.

Figure 7 shows the average execution time of each process
pi for n = 8. The average execution time is shorter in the
MG algorithm than the RR and RD algorithms. The average
execution time of the MG algorithm does not change if more
number of processes are performed.

Figure 8 shows the number of processes which are mi-
grated on eight servers (n = 8) in the MG algorithm. There
is no process which migrates to another server forl < 400.
For example, about 20% of the processes are migrated forl

20

100 200 400 600 800 1000 1200 1400

MG

RR

T
o

ta
l

en
er

g
y

 c
o

n
su

m
p

ti
o

n
[W

s]

Number l of processes

RD

1600 1800 2000 2200

40

60

80

100

Figure 5. Total energy consumption (n = 8).

20

40

80

60

100

400 800 1200 1600

MG

RR
T

o
ta

l
en

er
g

y
 c

o
n

su
m

p
ti

o
n

[W
s]

Number l of processes

RD

2000 2200 200 2400

Figure 6. Total energy consumption (n = 24).

= 1,000 while about 75% of the processes are migrated for
l = 1,600.

Figure 9 indicates how many number of servers each
migrated process is migrated to in the sixteen servers (n
= 16) for numberl of processes in the MG algorithm.
The average number of migrated servers is about 2.2 for
each migrated process. This means, each migrated process
is performed on two servers out of sixteen servers. In the
evaluation, each processpi checks the migration conditions
four times, i.e.γi = maxTi / 4.

Figure 10 shows the total energy consumption ofn servers
in the clusterS to perform 1,600 processes (l = 1,600). In
the MG algorithm, the total energy consumption decreases
as the numbern of servers increases. In the MG algorithm
implies smaller electric energy is consumed than the RR and
RD algorithms.

10

20

40

30

50

100 200 400 600 800 1000 1200 1400

MG

RR

 A
v

er
ag

e
ex

ec
u

ti
o

n
 t

im
e

[s
ec

]

Number l of processes

RD

1600 1800 2000

60

2200

70

Figure 7. Average execution time of a process (n = 8).

250

500

1000

750

1250

400 600 800 1000 1200 1400

 N
u
m

b
er

 o
f

m
ig

ra
te

d
 p

ro
ce

ss
es

Number l of processes

1600 1800 2000 2200

1500

1750

2000

Figure 8. Number of migrated processes in the MG protocol (n = 8).

1

2

4

3

800 1200 1600

Number l of processes

2000 2400

N
u

m
b

er
 o

f
m

ig
ra

te
d
 s

er
v

er
s/

p
ro

ce
ss

Figure 9. Number of migrated servers in the MG protocol (n = 16).

Number n of servers

8 24 16

50

100

150

MG

RR
RD

T
o
ta

l
en

er
g
y

 c
o

n
su

m
p

ti
o

n
[W

s]

Figure 10. Total energy consumption (l = 1,600).

Figure 11 shows the average execution time of each
process onn servers where 1,600 processes are performed
(l = 1,600). The average execution time of each process is
shorter in the MG algorithm than the RR and RD algorithms.
For n = 8, each server is more loaded. Here, the average
execution time of the MG algorithm is one fifth and one
tenth of the RR and RD algorithms, respectively. In this
evaluation, the migration timeδi of each processpi is
assumed to beminTi / 2. The shorter migration timeδi,
the shorter average execution time of each processpi.

8

Number n of servers
24 16

100

200

A
v

er
ag

e
ex

ec
u
ti

o
n
 t

im
e[

se
c]

MG
RR
RD

300

Figure 11. Average execution time of a process (l = 1,600).

Figures 12 and 13 show the total energy consumption and
anerage execution time of the MG algorithm for migration
time, respectively, wheren = 8 andl = 800.δi = 10 [sec]
meansδi = maxTi / 2. The total energy consumption and
average execution time are similar for every delay time.

Migration time [sec]

0.2 1.5 1.0

10

20

30

MG

T
o
ta

l
en

er
g
y

 c
o

n
su

m
p

ti
o

n
[W

s]

Figure 12. Total energy consumption (n = 8, l = 800).

20

40

60

MG

A
v
er

ag
e

ex
ec

u
ti

o
n

 t
im

e
[s

ec
]

Migration time [sec]

0.2 1.5 1.0

Figure 13. Average execution time (n = 8, l = 800).

V. CONCLUDING REMARKS

In this paper, we discuss the energy-efficient process
migration (MG) algorithm for realizing energy-efficient exe-
cutions of processes in a cluster of servers. Based on the SC
and SPC models [8], [9], [10], we discussed how to obtain
the expected energy consumption of a server to perform all
the current processes. We also discussed how to estimate
the expected termination time of each current process. We
persented the migration (MG) conditions that a process is
migrated from a current server to another server by estimat-
ing the energy consumption of a server and the termination
time of current processes. If the process is expected to be
more energy-efficiently performed on another server, the
process is migrated to the server. Here, a most energy-
efficient server is selected for a process. In the evaluation, we
showed the total energy consumption of servers to perform

processes can be smaller in the MG algorithm than the
random (RD) and round-robin (RR) algorithms. The average
execution time of each process can be also reduced in the
MG algorithm compared with the RR and RD algorithms.

ACKNOWLEDGMENT

First of all, the author would like to express endless
appreciation to his supervisor, Professor Makoto Takizawa,
for his kindness, support, and instruction. He is the one of the
person who has the most influence in authors life, the author
has study many thing not only about how to do research but
also how to be a good person, and how to do things correctly.
He has always gave the best support and help to the author
when it needed.

REFERENCES

[1] A. Aikebaier, T. Enokido, and M. Takizawa : Energy-Efficient
Computation Models for Distributed Systems,Proc. of the
12th International Conference on Network-Based Information
Systems(NBiS-2009), page: 424-431, 2009.

[2] P. A. Bernstein and N. Goodman : The Failure and Recovery
Problem for Replicated Databases,Proc. of the 2nd ACM
Symposium on Principles of Distributed Computing, page: 114-
122, 1998.

[3] G. Coulouris, J. Dollimore, T. Kindberg, and G. Blair :
Distributed Systems Concepts and Design,4th ed., Addison-
Wesley, 2012.

[4] D. Duolikun, A. Aikebaier, T. Enokido, and M. Takizawa
: Dynamic Clusters of Servers for Reducing Electric Power
in P2P Overlay Networks,Proc. of the 16th International
Conference on Network-Based Information Systems(NBIS-
2013), page: 149-155, 2013.

[5] D. Duolikun, A. Aikebaier, T. Enokido, L. Barolli, and M. Tak-
izawa : Energy-efficient Passive Replication of a Process in
Mobile Environment,Proc. of the 11th International Confer-
ence on Advances in Mobile Computing and Multimedia, page:
416, 2013.

[6] D. Duolikun, H. Hama, A. Aikebaier, T. Enokido, and M.
Takizawa, : Group Communication Protocols for Scalable
Groups of Peers,Proc. of the AINA-2013 Workshop (WAINA-
2013), page: 1027-1032, 2013.

[7] D. Duolikun, A. Aikebaier, T. Enokido, and M. Takizawa
: Power Consumption Models for Migrating Processes in a
Server Cluster,Proc. of the NBiS-2014, CD-ROM, 2014.

[8] T. Enokido, A. Aikebaier, S. M. Deen, and M. Takizawa :
Power Consumption-based Server Selection Algorithms for
Communication-based Systems.Proc. of the 13th International
Conference on Network-based Information Systems(NBiS-
2010), page: 201-208, 2010.

[9] T. Enokido, A. Aikebaier, and M. Takizawa : A Model for
Reducing Power Consumption in Peer-to-Peer Systems,IEEE
Systems Journal, vol.4, issue.2, page: 221-229, May 2010.

[10] T. Enokido, A. Aikebaier, and M. Takizawa : Process Alloca-
tion Algorithms for Saving Power Consumption in Peer-to-Peer
Systems,IEEE Transactions on Industrial Electronics(TIE),
vol.58, no. 6, page: 2097 - 2105, June 2011.

[11] T. Enokido and M. Takizawa : An Extended Power Con-
sumption Model for Distributed Applications,Proc. of IEEE
the 26th International Conference on Advanced Information
Networking and Applications(AINA-2012), page: 912 - 919,
2012.

[12] T. Enokido and M. Takizawa : An Integrated Power Con-
sumption Model for Distributed Systems,IEEE Transactions
on Industrial Electronics(TIE), vol.60, no.2, page: 824-836,
2013.

[13] T. Enokido, A. Aikebaier, and M. Takizawa : An Energy-
Efficient Redundant Execution Algorithm by Terminating
Meaningless Redundant Processes,Proc. of IEEE the 27th In-
ternational Conference on Advanced Information Networking
and Applications (AINA-2013), page: 1-8, 2013.

[14] T. Enokido, A. Aikebaier, and M. Takizawa : The Evaluation
of the Improved Redundant Power Consumption Laxity-Based
(IRPCLB) Algorithm in Homogeneous and Heterogeneous
Clusters,Proc. of the 7th International Conference on Com-
plex, Intelligent and Software Intensive Systems(CISIS-2013),
page: 91-98, 2013.

[15] T. Enokido, K. Suzuki, A. Aikebaier, and M. Takizawa : Pro-
cess Allocation Algorithm for Improving the Energy Efficiency
in Distributed Systems,Proc. of IEEE the 24th International
Conference on Advanced Information Networking and Appli-
cations(AINA-2010), page: 142-149, 2010.

[16] S. Ghemawat, H. Gobioff, and S. T. Leung : The Google File
System,Proc. of ACM 19th Symposium on Operating System
Principle (SOPI 03), page: 29 - 43, 2003.

[17] T. Inoue, M. Ikeda, T. Enokido, A. Aikebaier, and M.
Takizawa : A Power Consumption Model for Storage-based
Applications,Proc. of the Fifth International Conference on
Complex, Intelligent, and Software Intensive Systems(CISIS-
2011), page: 612 - 617, 2011.

[18] T. Inoue, A. Aikebaier, T. Enokido, and M. Takizawa :
Algorithms for Selecting Energy-efficient Storage Servers in
Storage and Computation Oriented Applications,Proc. of IEEE
the 26th International Conference on Advanced Information
Networking and Applications(AINA-2012), page: 217 - 224,
2012.

[19] K. H. Kim : Reward-based Allocation of Cluster and Grid
Resources of Imprecise Computation Model-based applica-
tions, International Journal of Web and Grid Services Systems
(IJWGS), vol.9, no.2 page: 140 - 171, 2013.

[20] D. Lange and M. Oshima : Programming and Deploying Java
Mobile Agents with Aglets, Addison Wesley,1983.

[21] Y. Tanaka, N. Hayashibara, T. Enokido, and M. Takizawa : A
Mobile Agent Model for Fault-Tolerant Manipulation on Dis-
tributed Objects,International Journal of Cluster Computing
(IJCC), vol.10, no.1, page: 81-93, 2007.

[22] Y. Tanaka, T. Enokido, and M. Takizawa : Design and
Implementation of Transactional Agents,International Journal
of Wireless and Mobile Computing (IJWMC), vol.4, no.2, page:
126-135, 2010.

	1
	Graduate Paper

