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Abstract—Energy-aware commodity-based distributed file sys-
tems for efficient Big Data processing are increasingly mov-
ing towards power-proportional designs. However, current data
placement methods for such systems have not given careful
consideration to the effect of gear-shifting during operations. If
the system wants to shift to a higher gear, it must reallocate the
updated datasets that were modified in a lower gear when a subset
of the nodes was powered off, but without disrupting the servicing
of requests from clients. Inefficient gear-shifting that requires a
large amount of data reallocation greatly degrades the system
performance. This paper proposes a data placement method
known as Accordion, which uses data replication to arrange
the data layout comprehensively and provide efficient gear-
shifting. Compared with current approaches, Accordion reduces
the amount of data transferred, which significantly shortens the
period required to reallocate the updated data during gear-
shifting. The effect of this reduction is larger with higher gears
so Accordion is suitable for smooth gear-shifting in multigear
systems. Moreover, the times when the active nodes serve the
requests are well distributed so Accordion is capable of higher
scalability than existing methods based on the I/O throughput
performance. Accordion does not require any strict constraint
on the number of nodes in the system therefore our proposed
method is expected to work well in practical environments.
Extensive empirical experiments using actual machines with
an Accordion prototype based on the Hadoop Distributed File
System demonstrated that our proposed method significantly
reduced the period required to transfer updated data, i.e., by
66% compared with an existing method.

Keywords—energy-aware; power-proportionality; data-
placement; HDFS

I. INTRODUCTION

Energy-aware distributed file systems for efficient Big
Data processing are increasingly moving towards power-
proportional designs [1]. In such systems, the power propor-
tionality can be achieved using data placement methods to
control the total number of active nodes used to store data
in the system. Based on this concept, several data placement
policies have been proposed that position data on organized
nodes, which aim to provide power proportionality [2]–[4].
These methods share an approach where data are replaced
with replicas on organized nodes. First, the system divides
all of the nodes into a set of small separated groups. These
groups are then configured to operate in multiple gears where
each gear contains a different number of groups. A high gear
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has a large number of groups of active nodes. Thus, the
system consumes more power in a high gear, although it can
deliver higher performance with suitable processing. Using this
mechanism, the system can manage its power consumption and
performance so it can deliver power proportionality.

However, the power-proportional data placement methods
used by current approaches do not consider the effects of gear-
shifting on the performance of the system. Initially, the system
may have to update the datasets modified in a low gear when a
subset of the nodes was powered off. When the system moves
to a higher gear, it needs to guarantee power proportionality
to serve the requests of clients. Therefore, the system has to
replicate the updated data internally on the reactivated nodes
in the background to share the load equally among all of the
active nodes. Inefficient gear-shifting degrades the performance
of power-proportional distributed file systems greatly.

In this paper, we propose a flexible power-proportional
data placement method known as Accordion, which aims to
improve the efficiency of gear-shifting by reducing the amount
of re-transferred data. Accordion shares the node organization
of other methods because it supports a multigear operational
mode where each gear is combined from different numbers
of different groups of nodes. However, the locations of the
primary data in the dataset are different with Accordion. At
first, the primary data in the dataset are located equally among
all of the nodes in the system. Next, the data are replicated
so each of its replicas is located on nodes that belong to
different groups. Thus, when the modified dataset is updated
(or appended) in low gear, part of the primary data in the
updated dataset is already stored on the active nodes so, only
the remainder of the updated dataset, which can be assumed
to be written to the deactivated nodes, needs to be written
temporally. Therefore, only this temporal part of the updated
dataset needs to be re-transferred when the system shifts to
a higher gear. In other existing methods, the overall updated
dataset needs to be reallocated during gear-shifting. As a result,
Accordion is expected to reduce the cost of updating during
gear-shifting because it reduces the period of data movement.

Moreover, the efficiency of this reduction is increased when
gear-shifting is performed in a high gear. The amount of data
reallocated is reduced with a lower number of deactivated
nodes, which reduces the gear-shifting period further. Thus,
the degradation of the system performance is prevented when
Accordion-based systems shift to a higher gear. Consequently,
Accordion is capable of providing smooth gear-shifting for



multigear power-proportional distributed file systems.

Furthermore, Accordion also benefits from a load balancer
that aims to share the workload among all of the active nodes.
One of the main goals of the load balancer is to allow all of the
active nodes to serve the same amount of data when responding
to requests. However, another important factor that affects the
performance of the file system greatly is the timing distribution
when active nodes serve requests. It should be well balanced
in order to provide a higher I/O throughput performance. For
example, if two nodes serve 100MB of data, generally it would
be more efficient if two nodes served 50 MB simultaneously
rather than sequentially. The different locations of the primary
data mean that Accordion can balance the amount of data
requested and the service timing on the active nodes.

Additionally, the flexibility to determine the configuration
is important in practical applications, such as the number of
active nodes in each gear in power-proportional file systems.
Rabbit, the first method to achieve power proportionality in
a Hadoop Distributed File System (HDFS) [5], has a strict
constraint where the number of nodes in each group is defined
by an exponential function, which provides ideal power pro-
portionality based on an equal work policy [4]. In Accordion,
this constraint is more flexible because the total number of
nodes in the system should be an even number. Therefore, it
is easier to apply Accordion in a practical environment.

The main contributions of this paper are as follows.

• We propose a distributed data placement method
known as Accordion, which utilizes data replication
to deliver efficient gear-shifting in power-proportional
distributed file systems. The different approach of
locating the primary data in Accordion reduces the
amount of data updated during gear-shifting, hence
shortens the time required to reallocate data.

• Accordion is applicable to smooth gear-shifting in
multigear systems because it increases the perfor-
mance efficiency when gear-shifting is performed in a
higher gear.

• Accordion increases the I/O throughput performance
because it improve the parallelism effectively dis-
tributes both the timing of serving requests and the
amount of data requested.

• Accordion is expected to work well in practical envi-
ronments because it does not require a strict constraint
on the number of nodes in file systems.

• We performed extensive empirical experiments using
a maximum of 24 nodes with an Accordion prototype
on HDFS to evaluate the efficiency of gear-shifting
and the performance scalability of power proportion-
ality. The empirical experimental results showed that
Accordion significantly improved the performance by
66% compared with red Rabbit.

The remainder of this paper is organized as follows.
Related studies are discussed in Sect. II and the design of
Accordion is described in Sect. III. Section IV presents a per-
formance evaluation of our proposed method. Our conclusions
and future work are discussed in Sect. V.

II. RELATED WORK

Rabbit [4] was the first method to provide power propor-
tionality to an HDFS by focusing on the read performance.
Rabbit uses an equal work–data-layout policy based on data
replication. The primary replicas are stored evenly among the
primary nodes. The remaining replicas are stored on additional
and increasingly large subsets of nodes. Each node in the
subsets has a fixed order and it stores a number of blocks
that is inversely related to its order, which guarantees that
the system can distribute the workload equally among all of
the active nodes. However, Rabbit still does not support the
write workload so it cannot consider the cost of reflecting the
updated data in a low gear.

Sierra [3] was designed as a power-proportional distributed
storage system for general data centers where a replicated ob-
ject store supports the write-and-read workloads during multi-
gear operations. This method guarantees the write availability
in a low gear by exploiting the concept of write off-loading [6],
which was motivated originally by the aim of saving power by
spinning down unnecessary disks. This method allows write
requests on spun-down disks to be redirected to other active
disks in the file system. Thus, this technique increases the spin-
down duration, thereby providing additional power savings.
This method may be considered as a solution for multigear file
systems to deal with updated data in a low gear. Sierra can deal
with write requests in a low gear, but it is still not optimized
to reflect the updated data efficiently when the system moves
to a higher gear.

In previous studies [7], we conducted a simple evalua-
tion of Rabbit and PARAID [2] to identify an appropriate
data placement approach to support efficient gear-shifting in
power-proportional systems. PARAID uses a skewed pattern
to replicate and stripe data blocks to the disks. This facilitates
adaptation to the system load by varying the number of active
disks in the system. PARAID focuses only on the RAID unit
and it is unreliable when adapting to a distributed environment.

We also proposed an architecture known as NDCou-
plingHDFS [8] to facilitate the efficient reflection of updated
data in a power-proportional HDFS. NDCouplingHDFS fo-
cuses on coupled metadata management and data management
on each HDFS node, which localizes the range of data main-
tained by the metadata in an efficient manner. This reduces
the cost of managing the metadata generated during changes in
the system configuration. However, the data placement method
was not considered in this study.

Other studies, rather than power-proportional designs, have
aimed to reduce the total power consumption based on a trade-
off with performance in general storage system [9]–[12].

III. PROPOSED METHOD

In this section, we describe the data placement method used
by Accordion in detail. Next, we explain the load balancer,
which aims to distribute the workload among all of the active
nodes and provide power proportionality. Finally, we present
the processes that reflect updated data, which are written to the
system in a low gear, when the system performs gear-shifting.



Algorithm 1 Algorithm used to assign roles to nodes in the
cluster.
Input: All the nodes of the system which are organized in G groups (Nodeig , g ∈

[1, G], i ∈ [1, Ng ])
Output: Role(Nodeig)
1: for Groupg from Group1 to GroupG do

2: if Ng is even then

3: middle =
Ng

2

4: for i from middle to 1 do

5: order = middle − i + 1
6: Role(Nodeig) = Leftorderg

7: end for

8: for i from middle + 1 to NG do

9: order = i − middle
10: Role(Nodeig) = Rightorderg

11: end for

12: else if Ng is odd then

13: middle =
Ng

2
+ 1

14: for i from middle to 1 do

15: order = middle − i + 1
16: Role(Nodeig) = Leftorderg

17: end for

18: for i from middle to NG do

19: order = i − middle
20: Role(Nodeig) = Rightorderg

21: end for

22: end if

23: end for

A. Accordion design

Accordion was designed to provide power proportionality
and a high data I/O throughput in cluster file systems that
use commodity computer servers such as HDFS, Google File
System [13]. In Accordion, the files are divided into a large
number of blocks and a number of replicas of each data block
are distributed among the nodes of the cluster. The mapping of
the file names to block identifiers is maintained by a separate
metadata service.

Like other approaches, Accordion aims to control the
power consumption of the system by dividing the nodes in
a cluster into several separate groups. A system that uses
the Accordion data placement layout can then operate in a
multigear mode where each gear contains a different number
of groups. The higher gears have more groups of nodes.

Power proportionality is achieved by Accordion’s data
placement policy, which is based on skewed replication, and a
careful consideration of the effects of reflecting the modified
dataset when the system moves from low to high gears. The
data placement policy is described in detail in the following
parts and the symbols used are summarized in Tab. I.

1) Node role assignment: In a system that uses Accordion,
changes in the operational modes of nodes are associated with
changes in the shape of the bellows of an Accordion (musical
instrument) after adjusting for effects on the transitions of a
note or between multiple notes. When the system moves up to
higher gears or down to lower gears, the active node ranges
are expanded or reduced centrally.

In our method, the nodes are arranged geometrically in a
horizontal array because the nodes that belong to lower groups
are bounded by the nodes of higher groups. Groupm is higher
than Groupn if m > n. For example, we assume that a system
is operating in a two-gear mode with two groups of nodes, i.e.,
Group1 and Group2. The nodes from Group1 are activated in
Gear 1 and the nodes from Group1 and Group2 are turned on
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Fig. 1. Example of a two-gear system using Accordion where two groups
of nodes have roles, where G = 2, N1 = 4, N2 = 8, and N = 12.

in Gear 2. In this case, Group2 is higher than Group1. Thus,
the nodes of Group1 are bounded by the nodes of Group2.

To perform data replication among the nodes in the system,
i.e., to identify the destination nodes for storing the backup
data of a specific node, each node is assigned its corresponding
role in the group. The role of each node is determined by the
configuration, which is related to the number of groups and
the total number of nodes in each group. The algorithm used
to assign the roles to nodes is shown in Algorithm 1:

Role(Nodeig) = Partorderg , (1)

where Part is either Left or Right and order ∈ [1, Ng +1].

Definition 1: For a GroupgA that contains an odd number
of nodes (NgA is an odd number), there is a node that has two
roles, i.e., Left1gA and Right1gA.

An image of a multigear system using Accordion with
organized nodes and roles are shown in Fig. 1. Gear 1 requires
the nodes from Group1 (a set of Left1 and Right1) to be
activated while Gear 2 requires the nodes from both Group1
and Group2 to be activated.

2) Skewed data replication in Accordion: The three goals
of Accordion are to provide power proportionality in the read
performance, reduce the cost of reflecting updated data when
the system changes gear, and guaranteeing the data reliability
in all file system operating modes. Thus, we need to apply the
policies shown below to satisfy these goals.

a) Location of primary data: First, we distribute the
primary data in the dataset to all of the nodes in the system.
This means that each node stores the same amount of data.

b) Location of backup data: Starting with the highest
GroupG, we replicate the data stored in this group to the
next lower group GroupG−1. Thus, the node with the role
PartorderG−1 in GroupG−1 is allocated to the backup data for
the data from the nodes in GroupG, which have roles in the
following range, if they exist.

[Part
(middle−order)rateG+1
G , Part

(middle−order+1)rateG
G ],

where Part is Left or Right, rateG = NG

NG−1
, and

middle =

{

NG

2 NG is even
⌊NG

2 ⌋+ 1 NG is odd
(2)

For example, in Fig. 1, the data from the range [Left32,
Left42] are replicated in the node with the role Left21. This



TABLE I. NOTATIONS

Symbol Description

N Number of nodes in the cluster

G Number of groups in the cluster

Groupg A group of nodes with index g (g ∈ [1, G])
Ng Number of nodes in group Gg

Nodeig A node with index i in group Gg (i ∈ [1, Ng ])

Role(Nodeig) The role of a node Nodeig , is Part
orderi
g , where Part is Left or Right

Leftg Leftg = ∀Nodeig ∈ Groupg, Role(Nodeig) = Leftg
order

Rightg Rightg = ∀Nodeig ∈ Groupg, Role(Nodeig) = Rightorderg

B Total number of blocks in a dataset

V (B) Storage requirements to store a dataset with B blocks

V (B)g Storage requirements to store a dataset with B blocks in Groupg
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Fig. 2. An example of a three-gear system based on Accordion data
placement.

means that the data in Node12 and Node22 are replicated in
Node11.

The process is finished when the backup data for the nodes
in Group2 are replicated to the nodes in Group1.

c) Chained declustering at the smallest group: To
guarantee the data reliability in the lowest gear, we apply the
chained declustering policy to the smallest group (Group1).
Each node replicates its data to its neighbor node, which
guarantees that all of the data in the dataset are replicated in
the two neighbor nodes. In Fig. 1, the data (the primary data
and the backup data) in Node11 are replicated in Node21, then
from Node21 to Node31, and so on. In other power-proportional
approaches, the data reliability in the lowest gear is often
omitted because the data are not replicated.

Figure 2 shows an example of a three-gear system based
on Accordion data placement where B = 600, G = 3, and
N = 60 (N1 = N2 = N3 = 20).Groupi contains the nodes of
Lefti and Righti. Gear 1 contains only the nodes in Group1.
To serve a request, Gear 2 requires the nodes in Group1 and
Group2 to be activated, while Gear 3 requires all of the nodes
in Group1, Group2, and Group3 to be activated. The primary
data in 600 blocks are stored equally among all of the nodes
so each group locates 100 blocks initially. Next, the data in

Group3 are replicated in Group2 and the data in Group2 are
replicated in Group1. Finally, the chained declustering method
is used to replicate the data in Group1. Thus, the three groups
contain 1200, 400, and 200 blocks.

3) Storage requirements: This section describes the total
storage requirements for storing a dataset based on the skewed
data replication policy used by Accordion. The total of blocks
in a dataset is B and there are G groups, where each group
contains Ng nodes. The total amount of data blocks V (B)
stored is calculated as:

V (B) =

G
∑

g=1

V (B)g, (3)

where V (B)g is the number of data blocks located on the
nodes of Groupg. Initially, all of the blocks are stored equally

among all of the nodes in the cluster so V (B)G = B × NG

N
,

where N =
∑G

g=1 Ng is the total number of nodes in
the system. In addition to the original data, the nodes in
GroupG−1 are also used to locate the replication data from
the nodes in GroupG. Thus,

V (B)G−1 = B
NG−1

N
+B

NG

N
= B(

NG−1

N
+

NG

N
). (4)

The amount of data in the remaining groups from Group
(G-2) to Group 1 are similarly calculated. Finally, chained
declustering is applied to Group1 so the storage required by
Group1 is as follows:

V (B)1 = 2
B

N
(

G
∑

g=1

Ng) = 2B. (5)

Substituting the values of V (B)g , (g ∈ [1, G]) into (3)
yields the following:

V (B) = B(2 +
NG

N
+ (

NG−1

N
+

NG

N
) + ...+

G−i+1
∑

i=2

Ni

N
)

= B

G
∑

g=1

(g + 1)Ng

N
. (6)

4) The amount of data transferred during gear-shifting:
In this section, we calculate and compare the amount of
data that is transferred internally when the system changes
its configuration using Accordion and other methods such as
Rabbit and Sierra. In such methods, as each group contains one
replica of the dataset, the entire updated dataset is transferred
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Fig. 3. The normalized amount of data transferred when gear-shifting is
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during each gear-shifting. In Accordion, however, shifting
between each gear in the system only leads to variation in the
subpart of the dataset located on the nodes that are reactivated
during transitions.

From the calculations in Section III-A3, the amount of data
moved when the system changes from Gearg to Gearg+1 is,

Vg(D) = D

G
∑

i=g+1

Ni

N
, (7)

where G is the number of groups, Ni is the number of active
nodes in Groupi, N is the total number of nodes, and D
is the number of blocks updated in the dataset in Gearg . A
constraint on Accordion is that the preferred number of nodes
in Groupg is a multiple of the number of nodes in Groupg−1.
To evaluate this further, we consider a simple case where ∀g ∈
[1, G],

Ng+1

Ng
= scale (scale ≥ 1). Substituting into (7), we

obtain the following:

Vg(D) = D

∑G

i=g+1 scale
i

∑G−1
i=0 scalei

. (8)

Figure 3 shows the amount of data moved, which was
normalized against the amount of the dataset that was updated
during each gear shift with Accordion and other methods
(Rabbit and Sierra), where the systems were configured to
operate using five gears. The amount moved was always
smaller in Accordion than Rabbit or Sierra and it became
smaller when the system performed gear-shifting in a higher
gear. The degradation of the system performance was reduced
so Accordion may be applicable to smooth gear-shifting in
multigear power-proportional file systems where the number
of gears is high.

5) Skewed dataset distribution in Accordion: The skewed
data replication in Accordion leads to an imbalance in the
amount of data stored on each node. Like in Rabbit and
Sierra, some nodes (in the smaller groups) store considerably
more data than others (in the higher groups). However, this
imbalance does not lead to considerable problem to the overall

I/O performance as current hard disk drives normally make
use only part of the capacity other than full of the capacity
to provide the I/O requests. Given that the amount of unused
storage is increasing [14] and that the energy problem is a
greater focus, the provision of smooth gear-shifting is more
important when delivering power-proportional systems.

6) Physical data placement on a node using Accordion:
In Accordion, each node stores the primary data (the original
data allocated) and the backup data (replicas of the data from
other nodes) so the physical locations of these two types of
data in the disks should be well designed. Normally, the data
are stored physically in a number of sectors of the disks.
The complexity of writing and replicating the data means
that the orderless arrival timing of writing requests on each
node promotes the discreteness of the physical locations of
the sectors for the primary and backup data on the disks.
However, on current disks, the seek time required to allocate
the responsible sectors still degrades the I/O performance
greatly, especially for discretely located sectors. Therefore, it
is preferable to allocate the responsible sectors to sequential
locations on the physical disks.

In this paper, we also propose an optimized version of Ac-
cordion known as Accordion-with-Disk-Partition (Accordion-
DP) that uses a partitioning technique on each node, which
guarantees that the primary data and backup data will be
located in two separate parts of the disks. Thus, the physical
locations of the sectors from the primary and backup data in
each part are allocated sequentially. For example, in Fig. 2, in
Left1, P3, B1–B2 and B4–B6 are stored in separated partitions
of the disks. Accordion-DP is expected to improve the I/O
throughput performance of file systems because it reduces the
seek time on the disks.

B. Load balancer

When a request for a block is received from a client, the
file system has to select the node that will serve the request
because the block is replicated in multiple nodes in the system.
To provide power proportionality when serving a dataset with
multiple blocks, it is preferable to balance the load among all
of the available nodes. The load balancing mechanism used in
Accordion is basically the same as that employed by Rabbit.
If n nodes are active when serving a B-block dataset, the goal
of the load balancer is to make each node serve B

n
blocks.

Similar to Rabbit, we define an ideal value for each node
where Nodeig equals B

n×containi
g
. When the dataset is being

read, the current hit of the node Nodeig is
servedi

g

1×containi
g
, where

containi
g is the number of blocks stored locally onNodeig , and

servedig is the number of blocks already served by Nodeig .
From the possible nodes that may store a requested block,
the load balancer greedily selects the node where the distance
between the current hit and the ideal value is the largest.

Although this mechanism is similar to Rabbit, the different
policy of locating the primary data makes Accordion preferable
to Rabbit. In Rabbit, each of the replica set of the whole dataset
is stored separately in each group’s node while in Accordion,
there is always part of the dataset that is stored only in the
lowest group’s nodes. Consequently, the lowest group’s nodes
can serve the request from the beginning and hence it leads to
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less skew in distributing the load among nodes in Accordion
than in Rabbit. It is explained in more detail and clearer in
Sect. IV-C2 through utilizing an empirical experiment.

C. Writing data using write off-loading

When a subset of a group of nodes is deactivated in a
low gear, the system can accept write requests from clients
using the write off-loading technique. Next, when the system
moves to a higher gear by reactivating nodes, it transfers the
updated data internally in the background without stopping the
processing of read serves from clients.

1) Writing new data using the write off-loading technique:
When the system is in a low gear and it has to deal with
requests to write new data to a previously stored dataset, the
placement of data is performed according to its original policy.
Because the system operates in low gear, certain parts of the
new data cannot be written to their corresponding deactivated
nodes. Hence, the system selects another node randomly from
the active nodes to serve this request. Information about the
data, the temporary node, and the intended node are saved
in a log file. An example of the write off-loading process is
shown in Fig. 4. In this example, Node22 should serve the write
request for data E according to the original data placement
policy. However, it is powered off in a low gear so the system
decides to use an alternative node, i.e., Node11 is selected in
this case.

2) Reflecting updated data: When the system changes to a
high gear to serve a request for high-performance processing
with the newly updated dataset, it needs to perform two
functions. The first function is to transfer the data written
in temporary nodes to their actual intended nodes. This can
be achieved by reading the information in the log files. In
Fig. 4, Node11 is set to transfer data E to Node22. The second
function is to serve a request by scanning the new dataset in
the storage system. When there is no need to correct the data
layout, compared with a normal service in a high gear, the cost
of allowing the system to operate in multiple modes to save
power will depend greatly on the quantity of data that needs
to be transferred.

IV. EXPERIMENTS

We conducted an empirical experiment using actual ma-
chines to verify the methods proposed in this study. We

TABLE II. SPECIFICATION OF A NODE

CPU TM8600 1.0 GHz

Memory DRAM 4 GB

NIC 1000 Mb/s

OS Linux 3.0 64-bit

Java JDK-1.7.0

TABLE III. EXPERIMENTAL ENVIRONMENT

Number of gears 3

Number of active nodes (Accordion, Accordion-DP) 2, 8, 20

Number of active nodes (Rabbit) 2, 7, 21

Number of files 420

File size 64 MB

HDFS version 0.20.2

Block size 32 MB

chose Rabbit which also shares the idea of achieving power-
proportionality as the comparative method. First, we compared
Accordion with Rabbit with respect to power proportionality
during the performance of reads. Next, we tested the effective-
ness of Accordion for reducing the cost of reflecting updated
data when the system shifted to a higher gear. Finally, we
evaluated the power proportionality of Accordion using several
configurations.

A. Implementation

In this study, we implemented a prototype of the power-
proportional distributed file system Accordion based on a
modified HDFS. We changed the current class used to select
block locations via an interface where different data-layout
policies can be performed. We also added the load balancing
mechanism in to HDFS. The write off-loading policy was im-
plemented in the low-power mode, which selects the temporal
nodes for writing the new data for the currently turned off
nodes. To guarantee the data reliability, block replicas were
written to distinct nodes in all of the operation modes.

B. Framework used for the experiments

Our test-bed for the experiments comprised dozens of
commodity nodes, which was based on the HDFS architecture
with one NameNode, and a cluster of nodes for storing data.
We were focused on the energy-aware commodity system
so we used low power consumption ASUS Eeebox EB1007
machines, the specifications for which are provided in Tab. II.
In the experiments, The power consumption of the cluster
of data storage nodes was measured using an AC/DC Power
HiTESTER 3334 [15]. The interconnect was a 1000 Mbps
switching hub and all of the inactive nodes were hibernating.

C. Power proportionality of Accordion and Rabbit

We evaluated the effectiveness of Accordion by determin-
ing the ratio of the throughput when reading a dataset and
the power consumption of the cluster of data-storing nodes.
In addition to Accordion and Rabbit, we also configured
Accordion-DP to test whether it improved the throughput
performance.

1) Experimental environments: We compared Accordion
and Accordion-DP with Rabbit in terms of their power propor-
tionality when performing reads. These systems were operated
using a three-gear configuration based on three groups of
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nodes. The constraint on the number of nodes in the gear
configuration meant that the three gears in Rabbit contained
2, 7, and 21 nodes. To ensure a fair evaluation, the three
gears in Accordion and Accordion-DP had 2, 8, and 20 nodes.
The scanning workload was distributed uniformly from all of
the active nodes. The other information can be referred from
Tab. III.

2) Experimental results: Figure 5 shows the throughput
per watt to compare the read performance using the afore-
mentioned dataset with three power-setting modes: Gear 1,
Gear 2, and Gear 3. The results were the averages of five
runs and the Linux buffer cache was cleared between runs.
Of the three configurations, Accordion-DP yielded the best
results whereas Rabbit had the worst results in Gear 2 and
Gear 3. In Gear 3, Accordion-DP delivered 20% better results
than Rabbit because it gained better throughput as can be seen
in Fig. 6 which shows the average throughputs for the three
configurations. The reason was that the better load balancer in
Accordion-based increased the throughput while consuming
less power (20 nodes vs 21 nodes in Rabbit).
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Fig. 7. Distribution of timing on the nodes when serving the blocks in Gear
2 and Gear 3 using Rabbit and Accordion.

The load balancer was the same in all configurations so
the differences may be explained by the timing distribution
when each node served the requested blocks. Figure 7 shows
the results for Rabbit and Accordion in Gear 2 and Gear 3. In
each graph, the vertical axis is the NodeID while the horizontal
axis shows the BlockID of the dataset. In Rabbit, the nodes in
ranges [1, 2], [3, 7] and [8, 21] consequently belong to Group1,
Group2 and Group3. In Accordion, the corresponding ranges
are [1, 2], [3, 8] and [9, 20]. It is easy to recognize that the
distribution of the access to blocks was far more balanced
with Accordion than Rabbit. In Rabbit and Accordion, the
load balancer tended to transfer the workload to the nodes
in the outbound group, which could be turned off when the
system operated in a lower gear. Rabbit stored the replicas
of the dataset in group units, i.e., Group1 stored the primary
data, Group2 stored the secondary replicas, etc., so certain
groups of nodes were selected centrally by the load balancer
when scanning the dataset. By contrast, the skew of the timing
distribution was lower when selecting nodes to serve the
requests using Accordion. This is because Accordion allocated
the primary data among all of the nodes in the system initially
so some data were only stored in the low group. Thus, the
active nodes in these groups could be selected to serve the
requested files from the start of the scanning process.

In this experiment, the benefit of the partitioning technique
for separating the primary and backup data areas on nodes
was confirmed as Accordion-DP gained better results than
Accordion. From the latter experiments, Accordion-DP was
used to evaluate the effectiveness of Accordion.

D. Effect of reflecting the updated data on the performance

This experiment evaluated the effect of reflecting the
updated data when the system served read requests while
performing updated data reflection in the background.

1) Experimental method: First, part of a similar dataset to
that used in the above experiment was written to the system
while the system operated in Gear 3. The operation mode of
the system was then shifted down to Gear 2 by hibernating
the nodes of Group3. Next, the remaining parts of the dataset
were written to the file system using the data-layout policy
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Fig. 8. Average throughput for scanning the dataset.

with the write off-loading technique. Finally, after finishing
the write requests, the system moved to Gear 3 by reactivating
the nodes of Group3 at the same time as it served the scanning
workload, which was generated in a similar way to that used
in the experiment above. The execution time for serving the
read requests was measured to verify the effect of updated data
reflection on the file system. Here, the total number of files
used in the dataset was 420 and each file contained two blocks,
which was the same as the experiment above. We also changed
the sizes of the parts of the dataset written when the system
operated in Gear 2 to 140, 280, and 420 files (small, medium,
and large update configurations, respectively). In each case, the
number of files written previously when the system operated
in Gear 3 was 700, 560, and 420, respectively, so there was
no need to re-transfer these files.

2) Experimental results: Figure 8 shows the experimental
results as the average throughput while scanning the dataset in
three cases: small, medium, and large amounts of transferred
data. The results were compared with the results when the
system performed the read requests in Gear 3 (without updated
data), which were the same as the previous experiment. It is
seen that configurations based on Accordion-DP and Rabbit
were affected significantly by the updated data reflection. The
throughputs were degraded significantly by more than 60%
(66% and 61% for Rabbit and Accordion-DP). It became worse
with higher amounts of re-transferred data. This confirmed the
need to design the data placement method carefully to ensure
efficient gear-shifting in power-proportional file systems.

The results also indicated that Accordion-DP improved the
performance by 30% compared with Rabbit. The reason is
with Accordion-DP, the amount of data re-transfer required
was less than that with Rabbit. With Accordion-DP, only part
of the dataset written when the system operated in Gear 2
had to be re-transferred when the system moved to Gear 3.
By contrast, the whole dataset had to be re-transferred with
Rabbit as the placement policy located replicas of the dataset
in each group.

Figures 9 and 10 show the amounts of re-transferred data
and the execution times required to finish the re-transfer
process. Figure 9 shows that with Rabbit, the amounts of data
in the small, medium, and large cases were 4480 MB, 8960
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Fig. 10. The execution time for the data-re-transfer process when the system
moved from Gear 2 to Gear 3.

MB, and 13440MB; while with Accordion-DP were 2688MB,
5376 MB, and 8064 MB, respectively. As shown in Figure 10,
Accordion-DP significantly reduced the time required to finish
the updated data-re-transfer process by up to 66% (Small case)
compared with Rabbit.

E. Effects of different configurations of Accordion

We also performed an experiment to evaluate the effects
of different configurations of Accordion on the power pro-
portionality of the system. We used three configurations with
different numbers of active nodes. The system was assumed to
operate in a three-gear mode: Gear 1, Gear 2, and Gear 3. In
the configuration Accordion-DP (x, y, z), x, y, and z indicate
the number of active nodes in Gear 1, Gear 2, and Gear 3,
respectively. The other environments were the same as those
used in the previous experiment in Tab. IV.

Figure 11 shows the performance (throughput per watt) for
the three configurations we evaluated. With a larger scale con-
figuration, the power-proportional factor appeared to converge
on a high result. In all configurations, the factor increased from
Gear 1 to Gear 3 because the number of active nodes increased.



TABLE IV. EXPERIMENTAL ENVIRONMENT

Number of Gears 3

Number of active nodes Accordion-DP (4, 8, 12) 4, 8, 12

Number of active nodes Accordion-DP (4, 12, 20) 4, 12, 20

Number of active nodes Accordion-DP (8, 16, 24) 8, 16, 24

Number of files 420

File size 64 MB
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Fig. 11. The throughput per watt with Accordion-DP in several configura-
tions.

Furthermore, from the results at three gears, Accordion-DP
(4, 12, 20) experienced the worst standard deviation (0.114
compared with 0.04 and 0.08 in Accordion-DP (8, 16, 24) and
Accordion-DP (4, 8, 12), it could be suggested that Accordion
is more suitable with the configuration that the number of
active nodes in each group is equal.

F. Discussion

The data placement strategy used by Accordion ensures
high power-proportionality performance of systems, especially
when systems operate in a high gear mode with a larger amount
of active nodes. In Accordion, the amount of data requested
and the access timing of the active nodes are well distributed
among all the active nodes so the I/O throughput performance
scales well with the system’s size. Furthermore, Accordion was
highly effective at reducing the cost of gear-shifting because
it improved the performance by 66% when transferring the
updated data. The numerical analysis in Sect. III-A4 showed
that the efficiency was even greater when gear-shifting was
performed in a higher gear.

V. CONCLUSION AND FUTURE WORK

Recently, energy-efficient infrastructures for Big Data pro-
cessing are gaining much attention from both industrial and
academia. In this paper, we identified the issue of ineffective
gear-shifting in power-proportional distributed file systems and
we proposed the Accordion data placement method to address
this problem. Furthermore, the Accordion configuration is
highly flexible because the number of nodes in each group
can be determined by a weak constrain. In Accordion, the
data reliability in the lowest configuration which is omitted
in other methods, is ensured through utilizing chained declus-
tering. Extensive experiments using actual machines with the

Accordion prototype verified the effectiveness of Accordion.
Accordion reduced the execution time required for updated
data movement by 66% and improved the power-proportional
performance by 20% compared with Rabbit. Furthermore, the
numerical analysis and the experimental results also indicated
that Accordion is applicable for smooth gear-shifting in multi-
gear systems.

In the future, we would like to confirm the effectiveness of
Accordion in different experimental environments. Moreover,
we want to integrate Accordion with architectures other than
HDFS. We will also consider developing a specific algorithm
to deal with system failures.
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