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Abstract—The QR factorization and the SVD are
two fundamental matrix decompositions with ap-
plications throughout scientific computing and data
analysis. For matrices with many more rows than
columns, so-called “tall-and-skinny matrices,” there
is a numerically stable, efficient, communication-
avoiding algorithm for computing the QR factoriza-
tion. It has been used in traditional high performance
computing and grid computing environments. For
MapReduce environments, existing methods to com-
pute the QR decomposition use a numerically unsta-
ble approach that relies on indirectly computing the
Q factor. In the best case, these methods require only
two passes over the data. In this paper, we describe
how to compute a stable tall-and-skinny QR factor-
ization on a MapReduce architecture in only slightly
more than 2 passes over the data. We can compute
the SVD with only a small change and no difference in
performance. We present a performance comparison
between our new direct TSQR method, a standard
unstable implementation for MapReduce (Cholesky
QR), and the classic stable algorithm implemented
for MapReduce (Householder QR). We find that our
new stable method has a large performance advantage
over the Householder QR method. This holds both
in a theoretical performance model as well as in an
actual implementation.

Keywords-matrix factorization, QR, SVD, TSQR,
MapReduce, Hadoop

I. Introduction

The QR factorization of an m× n real-valued matrix
A is:

A = QR

where Q is an m × n orthogonal matrix and R is an
n × n upper triangular matrix. We call a matrix tall-
and-skinny if it has many more rows than columns
(m� n). In this paper, we study algorithms to compute
a QR factorization of a tall-and-skinny matrix for nearly-
terabyte sized matrices on MapReduce architectures [6].
Current tall-and-skinny QR methods for MapReduce
provide only a fast way to compute R [5]. (The details
of these are described further in Sec. II.) In order to

compute the matrix Q, they use the indirect formulation:

Q = AR−1.

For R to be invertible, A must be full-rank, and we
assume A is full-rank throughout this paper. The in-
direct formulation is known to be numerically unstable,
although, a step of iterative refinement can sometimes be
used to produce a Q factor with acceptable accuracy [15].
(Iterative refinement is the process of repeating the QR
decomposition on the computed Q factor.) However, if a
matrix is sufficiently ill-conditioned, iterative refinement
will still result in a large error measured by ‖QTQ− I‖2
(see Sec. IV). We shall describe a numerically stable
method (Sec. III) that computes Q and R directly and
faster than performing the refinement of the indirect
computation for some matrices.

Sec. V-A describes a performance model for our al-
gorithms, which allows us to compute lower bounds on
running times. The algorithms are almost always within
a factor of two of the lower bounds (Sec. V-B).

A. MapReduce motivation
The data in a MapReduce computation is defined by

a collection of key-value pairs. When we use MapReduce
to analyze tall-and-skinny matrix data, a key represents
the identity of a row and a value represents the elements
in that row. Thus, the matrix is a collection of key-
value pairs. We assume that each row has a distinct key
for simplicity; although we note that our methods also
handle cases where each key represents a set of rows.

There are a growing number of MapReduce frame-
works that implement the same computational engine:
first, map applies a function to each key-value pair which
outputs a transformed key-value pair; second, shuffle
rearranges the data to ensure that all values with the
same key are together; finally, reduce applies a function
to all values with the same key. The most popular
MapReduce implementation – Hadoop [20] – stores all
data and intermediate computations on disk. Thus, we
do not expect numerical linear algebra algorithms for
MapReduce to be faster than state-of-the-art in-memory
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Table I
The performance improvement of C++ over Python for

our Direct TSQR on a 10-node MapReduce cluster is only
mild.

Rows Cols. Job time Speedup
(secs.)

4,000,000,000 4 2217 2.76
2,500,000,000 10 3137 1.29
600,000,000 25 1482 1.29
500,000,000 50 1477 2.09
150,000,000 100 1503 1.43

MPI implementations running on clusters with high-
performance interconnects. However, the MapReduce
model offers several advantages that make the platform
attractive for large-scale, large-data computations (see
also [21] for information on tradeoffs). First, many large
datasets are already warehoused in MapReduce clus-
ters. With the availability of algorithms, such as QR,
on a MapReduce cluster, these data do not need to
be transferred to another cluster for analysis. Second,
MapReduce systems like Hadoop provide transparent
fault-tolerance, which is a major benefit over standard
MPI systems. Other MapReduce implementations, such
as Twister [9], Phoenix++ [18], LEMOMR [10], and
MRMPI [16], often store data in memory and may be
a great deal faster; although, they usually lack the au-
tomatic fault tolerance. Third, the Hadoop computation
engine handles all details of the distributed input-output
routines, which greatly simplifies the resulting programs.

For the majority of our implementations, we use
Hadoop streaming and the Python-based Dumbo
MapReduce interface [2]. These programs are concise,
straightforward, and easy-to-adapt to new applications.
We have also investigated C++ and Java implementa-
tions, but these programs offered only mild speedups
(around 2-fold), if any. See Table I for a comparison
against C++. The Python implementation uses about
70 lines of code, while the C++ implementation uses
about 600 lines of code.

B. Success metrics
Our two success metrics are speed and stability. The

differences in speed are examined in Sec. V-B. To analyze
the performance, we construct a performance model for
the MapReduce cluster. After fitting two parameters
to the performance of the cluster, it predicts the run-
time to within a factor of two. For stability, we use
the metric ‖A−QR‖2/‖R‖2 to measure the accuracy
of the decomposition and ‖QTQ− I‖2 to measure the
orthogonality of the computed Q factor. Small scale
simulations of the MapReduce algorithms show that,
regardless of the algorithm, ‖A−QR‖2/‖R‖2 is O(ε)
where ε is the machine precision. However, ‖QTQ− I‖2
varies dramatically based on the algorithm, but is always

O(ε) for our new direct TSQR method. We examine
these differences in Sec. IV.

II. Indirect QR factorizations in MapReduce
One of the first papers to explicitly discuss the QR fac-

torization on MapReduce architectures was written by
Constantine and Gleich [5]; however many had studied
methods for linear regression and principal components
analysis in MapReduce [4]. These methods all bear a
close resemblance to the Cholesky QR algorithm we
describe next.

A. Cholesky QR
The Cholesky factorization of an n × n symmetric

positive definite real-valued matrix A is:

A = LLT

where L is an n× n lower triangular matrix. Note that,
for any A that is full rank, ATA is symmetric positive
definite. The Cholesky factor L for the matrix ATA is
exactly the matrix R in the QR factorization as the
following derivation shows. Let A = QR. Then

ATA = (QR)TQR = RTQTQR = RTR.

Since R is upper triangular and L is unique, RTR =
LLT . The method of computing R via the Cholesky
decomposition of ATA matrix is called Cholesky QR.

Thus, the problem of finding R becomes the prob-
lem of computing ATA. This task is straightforward
in MapReduce. In the map stage, each task collects
rows – recall that these are key-values pairs – to form
a local matrix Ap and then computes AT

p Ap. These
matrices are small, n × n, and are output by row. In
fact, AT

p Ap is symmetric, and there are ways to reduce
the computation by utilizing this symmetry. We do not
exploit them because disk access time dominates the
computation; a more detailed performance discussion is
in Sec. V. In the reduce stage, each individual reduce
function takes in multiple instances of each row of ATA
from the mappers. These rows are summed to produce
a row of ATA. Formally, this method computes:

ATA =
P∑

p=1
AT

p Ap

where Ai is the input to each map-task. Alg. 1 explicitly
shows how this is done with key-value pairs in a MapRe-
duce architecture.

Extending the ATA computation to Cholesky QR
simply consists of gathering all rows of ATA on one pro-
cessor and serially computing the Cholesky factorization
ATA = LLT . The serial Cholesky factorization is fast
since ATA is small, n×n. The Cholesky QR MapReduce
algorithm is illustrated in Fig. 1.



Algorithm 1 Compute ATA in MapReduce
function map(key k, val a)

for i, row in enumerate(aTa) do
emit(i, row)

end for
end function

function reduce(key k, 〈 vals vk
j 〉)

emit(k, sum(〈vk
j 〉))

end function

It is important to note the architecture limitation
due to the number of columns, n. The number of keys
emitted by each map task is exactly n: 0, 1, ... n−1 (one
for each row of AT

p Ap), and the total number of unique
keys passed to the reduction stage is n. Thus, the row
sum reduction stage can use at most n tasks.

Alternatively, the reduce function can emit a key-value
pair where the key represents the row and column index
of a given entry of AT

p Ap, and the value is the given entry.
This increases the number of unique keys to n2 (or, by
taking symmetry into account, n(n− 1)). It is also valid
to use more general reduction trees where partial row
sums are computed on all the processors, and a reduction
to n processors accumulates the partial row sums. The
cost of this more general tree is the startup time for
another map and reduce iteration. Typically, the extra
startup time is more expensive than the performance
penalty of having less parallelism.

Each of these variations of Cholesky QR can be
described by our performance model in Sec. V-A. For
experiments, we use a small cluster (where at most 40
reduce tasks are available), and these design choices
have little effect on the running times. We use the
implementation described in Alg. 1 as it is the simplest.

B. Indirect TSQR
One of the problems with Cholesky QR is that the

matrix ATA has the square of the condition number
of the matrix A. This suggests that finite precision
computations with ATA will not always produce an
accurate R matrix. For this reason, Constantine and
Gleich studied a succinct MapReduce implementation [5]
of the TSQR algorithm by Demmel et al. [7], where map
and reduce tasks both compute local QR computations.
This method is known to be numerically stable [7] and
was recently shown to have superior stability to many
standard algorithms [14]. Constantine and Gleich’s ini-
tial implementation is only designed to compute R. We
will refer to this method as “Indirect TSQR”, because
Q may be computed indirectly with Q = AR−1. In the
following section, we extend this method to also compute
Q in a stable manner.

We will now briefly review the Indirect TSQR algo-
rithm and its implementation to facilitate the explana-
tion of the more intricate direct version. Let A be a
matrix with 8n rows and n columns, which is partitioned
across four map tasks as:

A =


A1
A2
A3
A4

 .
Each map task computes a local QR factorization:

A =


Q1

Q2
Q3

Q4


︸ ︷︷ ︸

8n×4n


R1
R2
R3
R4


︸ ︷︷ ︸
4n×n

.

The matrix of stacked upper triangular matrices on the
right is then passed to a reduce task and factored into
Q̃R̃. At this point, we have the QR factorization of A in
product form:

A =

=Q︷ ︸︸ ︷
Q1

Q2
Q3

Q4


︸ ︷︷ ︸

8n×4n

Q̃︸︷︷︸
4n×n

=R︷︸︸︷
R̃︸︷︷︸

n×n

.

The Indirect TSQR method ignores the intermediate
Q factors and simply outputs the n × n factors Ri in
the intermediate stage and R̃ in the final stage. Fig. 2
illustrates each map and reduce output. We do not need
to gather all R factors onto a single task to compute R̃.
Any reduction tree computes R̃ correctly. Constantine
and Gleich found that using an additional MapReduce
iteration to form a more parallel reduction tree could
greatly accelerate the method. This finding differs from
the Cholesky QR method, where additional iterations
rarely helped. In the next section, we show how to save
the Q factors to reconstruct Q directly.
C. Computing AR−1

Given the matrix R, the simplest method for comput-
ing Q is computing the inverse of R and multiplying by
A, that is, computing AR−1. Since R is n×n and upper-
triangular, we can compute its inverse quickly. Fig. 3
illustrates how the matrix multiplication and iterative
refinement step cleanly translate to MapReduce. This
“indirect” method of the inverse computation is not
backwards stable (for example, see [17]). Thus, a step
of iterative refinement may be used to get Q within
desired accuracy. However, the indirect methods may
still have large errors after iterative refinement if A is
ill-conditioned enough. This further motivates the use
of a direct method.
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Figure 1. MapReduce Cholesky QR computation for a matrix A with 4 columns.
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Figure 2. MapReduce TSQR computation. S(1) is the matrix consisting of the rows of the Ri factors stacked on top of each other,
i = 1, 2, 3, 4. Similarly, S(2) is the matrix consisting of the rows of the R2,j factors stacked on top of each other, j = 1, 2, 3.

III. Direct QR Factorizations in MapReduce

One of the textbook algorithms to compute a stable
QR factorization is the Householder QR method [11].
This method always produces a matrix Q where
‖QTQ− I‖2 is on the order of machine error. We begin
our discussion by explaining how to implement this
method in MapReduce.

A. Householder QR
The Householder QR algorithm [19] is not as friendly

to MapReduce as either Cholesky QR or Indirect TSQR.
One reason for this phenomena is the iterative nature
of the algorithm. At each step of the algorithm, the
matrix A is completely updated. In MapReduce, this

means we must constantly rewrite the matrix on disk.
Conceptually, each step of the Householder QR method
corresponds to three MapReduce calls. These are illus-
trated in Fig. 4. The first step of the algorithm computes
the norm of a column of A to help form the Householder
reflector. The second and third steps of the algorithm
update the matrix with A ← A − 2v(AT v)T , where
v is the Householder reflector. However, in the actual
implementation, the first and third steps are combined
because we can compute the norm for the next step
immediately after updating the matrix in the third step.

Thus, the MapReduce Householder QR algorithm uses
2n passes over the data for a matrix A with n columns.
Every other pass requires rewriting the matrix on disk.
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Figure 3. Indirect MapReduce computation of Q with iterative
refinement.

As n grows, the performance of this algorithm becomes
significantly worse than our other algorithms.

This MapReduce implementation of Householder QR
is a BLAS 2 algorithm, whereas standard Sca/LAPACK
uses a BLAS 3 algorithm [1], [3]. The central reason for
this is the row-wise layout of the matrix in the Hadoop
Distributed File System (HDFS). For tall-and-skinny
matrices, the canonical key-value pair stored in HDFS
uses a row as the matrix as the value and a unique row
identifier for the key. Thus, reading the leading columns
of the matrix has the same cost as reading the entire
matrix. The stock BLAS 3 algorithm for LAPACK is a
much better choice for their column-wise matrix layout.

B. Direct TSQR

We finally arrive at our proposed method. Here, we
directly compute the QR decomposition of A in three
steps using two map functions and one reduce function,
as illustrated in Fig. 5. This avoids the iterative nature
of the Householder methods. For an example, consider
again a matrix A with 8n rows and n columns, which is
partitioned across four map tasks for the first step:

A =


A1
A2
A3
A4

 .

The first step uses only map tasks. Each task collects
data as a local matrix, computes a single QR decom-
position, and emits Q and R to separate files. The
factorization of A then looks as follows, with QjRj the

computed factorization on the jth task:

A =


Q1

Q2
Q3

Q4


︸ ︷︷ ︸

8n×4n


R1
R2
R3
R4


︸ ︷︷ ︸
4n×n

.

The second step is a single reduce task. The input is the
set of R factors from the first step. The R factors are
collected as a matrix and a single QR decomposition is
performed. The sections of Q corresponding to each R
factor are emitted as values. In the following figure, R̃
is the final upper triangular factor in our QR decompo-
sition of A: 

R1
R2
R3
R4


︸ ︷︷ ︸
4n×n

=


Q2

1
Q2

2
Q2

3
Q2

4


︸ ︷︷ ︸
4n×n

R̃︸︷︷︸
n×n

.

The third step also uses only map tasks. The input is
the set of Q factors from the first step. The Q factors
from the second step are small enough that we distribute
the data in a file to all map tasks. The corresponding Q
factors are multiplied together to emit the final Q:

Q︸︷︷︸
8n×n

=


Q1

Q2
Q3

Q4


︸ ︷︷ ︸

8n×4n


Q2

1
Q2

2
Q2

3
Q2

4


︸ ︷︷ ︸
4n×n

=


Q1Q

2
1

Q2Q
2
2

Q3Q
2
3

Q4Q
2
4


︸ ︷︷ ︸

8n×n

.

A = QR̃

To compute the SVD of A, we modify the second step
and add a fourth step. In the second step, we also
compute R = UΣV T . Then A = (QU)ΣV T is the SVD
of A. Since R is n×n, computing its SVD is cheap. The
fourth step computesQU . If Q is not needed, i.e. only the
singular vectors of QU are desired, then we can pass U to
the third step and compute QU directly without writing
Q to disk. In this case, the SVD uses the same number
of passes over the data as the QR factorization. If only
the singular values are needed, then only the first two
steps of the algorithm are needed along with the SVD
of R. However, in this case, it would be favorable to use
the TSQR implementation from Sec. II-B to compute R.

One implementation challenge is matching the Q and
R factors to the tasks on which they are computed.
In the first step, the key-value pairs emitted use a
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Figure 4. Outline of MapReduce Householder QR.

unique map task identifier (e.g., via the uuid package
in Python) as the key and the Q or R factor as the
value. The reduce task in the second step maintains an
ordered list of the keys read. The kth key in the list
corresponds to rows (k − 1)n + 1 to kn of the locally
computed Q factor. The map tasks in the third step
parse a data file containing the Q factors from the second
step, and this redundant parsing allows us to skip the
shuffle and reduce. Another implementation challenge is
that the map tasks in the first step and the reduce task
in the second step must emit the Q and R factors to
separate files. For this functionality, we use the feathers
extension of Dumbo.

C. Extending Direct TSQR to a recursive algorithm
A central limitation to the Direct TSQR method is the

necessity of gathering all R factors from the first step
onto one processor in the second step. As the matrix
becomes fatter, this serial bottleneck becomes limiting.
We can cope with this issue by recursively extending the
method with a recursive step following the first step. The
algorithm is outlined in Alg. 2.

Algorithm 2 Recursive extension of direct method
function DirectTSQR(matrix A)

Q1, R1 = FirstStep(A)
if R1 is too big then

Assign keys to rows of R1
Q2 = DirectTSQR(R1)

else
Q2 = SecondStep(R1)

end if
Q = ThirdStep(Q1, Q2)
return Q

end function

IV. Stability Experiments
A major motivation for using the Direct TSQR

method is numerical stability. Based on prior work, we
know that the Direct TSQR method should produce a
matrix Q with columns that are orthogonal to machine
precision [8], [14], and Indirect TSQR and Cholesky QR
should fail if the matrix is sufficiently ill-conditioned.
Fig. 6 shows results from a numerical stability experi-
ment which measures the loss in orthogonality in Q for
Cholesky QR (with and without iterative refinement),
Indirect TSQR (with and without iterative refinement),
and Direct TSQR. We use ‖QTQ− I‖2 to measure the
accuracy of Q. As expected, using the inverse results in
error that scales with the condition number. One step
of iterative refinement and the direct TSQR method
both yield errors consistently around 10−15. Cholesky
QR fails when the condition number of the matrix is 108

or greater, and Indirect TSQR with iterative refinement
has a large error when the condition number reaches
1016. Previous work by Langou shows consistent results
for similar experiments [13].

V. Performance Experiments
We evaluate performance in three ways. First, we

build a performance model for our methods based on
how much data is read and written by the MapReduce
cluster. Second, we evaluate the implementations on a
10-node, 40-core MapReduce cluster at Stanford’s Insti-
tute for Computational and Mathematical Engineering
(ICME). Each node has 6 2-TB disks, 24 GB of RAM,
and a single Intel Core i7-960 3.2 GHz processor. They
are connected via Gigabit ethernet. After fitting only
two parameters – the read and write bandwidth – the
performance model predicts the actual runtime within a
factor of two. Finally, we explore the fault-tolerance of
the MapReduce system by artificially introducing faults
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into each task. Even when the frequency of faults is 1/8,
the runtime only grows by about 23.2%.

We do not perform standard parallel scaling studies
due to how the Hadoop framework integrates the com-
putational engine with the distributed filesystem. This
combination makes these measurements difficult without
rebuilding the cluster for each experiment.

A. Performance model
Let mj and rj be the number of map and reduce

tasks for step j, respectively. Let mmax be the maximum
number of map tasks and rmax be the maximum number

of reduce tasks for the cluster. Both mmax and rmax are
fixed in the Hadoop configuration, and mmax + rmax

is usually at least the total number of cores. Let kj be
the number of distinct input keys passed to the reduce
tasks for step j. We define the map parallelism for step
j as pm

j = min{mmax,mj} and the reduce parallelism
for step j as pr

j = min{rmax, rj , kj}. Let Rm
j , Wm

j be
the amount of data read and written in the jth map
task, respectively. We have analogous definitions for Rr

j

and W r
j for the jth reduce task. Finally, let βr and βw be

the inverse read and write bandwidth, respectively. After
computing βr and βw, we can provide a lower bound for
the algorithm by counting disk reads and writes. The
lower bound for a job with N iterations is:

Tlb =
N∑

j=1

Rm
j βr +Wm

j βw

pm
j

+
Rr

jβr +W r
j βw

pr
j

.

We use streaming benchmarks to estimate βr and
βw for the 40-core ICME cluster, and the results are
in Table II. On this cluster, mmax = rmax = 40.
Table III provides the number of reads and writes for
our algorithms, and Table IV provides the information
for computing pm

j and pr
j . The keys for the matrix

row identifiers are 32-byte strings. The computed lower
bounds for our algorithms are in Table V. In Sec. V-B,
we examine how close the implementations are to the
lower bounds.

B. Algorithmic comparison
Using one step of iterative refinement yields numerical

errors that are acceptable in a vast majority of cases. In



Table II
Streaming time to read from and write to disk. Performance is in inverse bandwidth, so larger βr and βw means slower

streaming. The streaming benchmarks are performed with mmax map tasks.

Rows Cols. HDFS Size read+write read βr/mmax βw/mmax

(GB) (secs.) (secs.) (s/GB) (s/GB)

4,000,000,000 4 134.6 713 305 2.266 3.0312
2,500,000,000 10 193.1 909 309 1.6002 3.1072
600,000,000 25 112.0 526 169 1.5089 3.1875
500,000,000 50 183.6 848 253 1.378 3.2407
150,000,000 100 109.6 504 152 1.3869 3.2117

Table III
Number of reads and writes at each step (in bytes). We assume a double is 8 bytes and K is the number of bytes for a

row key (K = 32 in our experiments). Only one iteration of Householder QR is shown: the lower bound repeats this
iteration n times. The amount of key data is separated from the amount of value data. For example, 8mn+Km is Km

bytes in key data and 8mn bytes in value data.

Cholesky Indirect Direct House.
TSQR TSQR (1 step)

Rm
1 8mn+Km 8mn+Km 8mn+Km 8mn+Km

Wm
1 8m1n2 + 8m1n 8m1n2 + 8m1n 8mn+ 8m1n2 +Km+ 64m1 8mn+Km

Rr
1 8m1n2 + 8m1n 8m1n2 + 8m1n 0 0

W r
1 8n2 + 8n 8r1n2 + 8r1n 0 0

Rm
2 8n2 + 8n 8r1n2 + 8r1n 8m1n2 +Km1 8mn+Km

Wm
2 8n2 + 8n 8r1n2 + 8r1n 8m1n2 +Km1 16m1
Rr

2 8n2 + 8n 8r1n2 + 8r1n 8m1n2 +Km1 0
W r

2 8n2 + 8n 8n2 + 8n 8m1n2 + 32m1 + 8n2 + 8n 0
Rm

3 8mn+Km+m3(8n2 + 8n) 8mn+Km+m3(8n2 + 8n) 8mn+Km+m3(8m1n2 + 64m1) —
Wm

3 8mn+Km 8mn+Km 8mn+Km —
Rr

3 0 0 0 —
W r

3 0 0 0 —

Table V
Computed lower bounds for each algorithm.

Rows Cols. Cholesky Indirect Cholesky Indirect Direct House.
TSQR +I.R. TSQR+I.R. TSQR

Tlb (secs.)

4,000,000,000 4 1803 1803 3606 3606 2528 7213
2,500,000,000 10 1645 1645 3290 3290 2464 16448
600,000,000 25 804 804 1609 1609 1236 20111
500,000,000 50 1240 1240 2480 2480 2095 61989
150,000,000 100 696 696 1392 1392 1335 69569

these cases, performance is our motivator for algorithm
choice. Tabs. VI and VII show performance results of
the Indirect and Direct TSQR methods, Cholesky QR,
and Householder QR for a variety of matrices. The
running time of Householder QR is long enough that
we extrapolate the performance data from the first four
steps of the algorithm.

In our experiments, we see that Indirect TSQR and
Cholesky QR provide the fastest ways of computing the
Q and R factors, albeit ‖QTQ− I‖2 may be large. For
all matrices with greater than four columns, these two
methods have similar running times. For such matrices,
the majority of the running time is the AR−1 step, and
this step is identical between the two methods. This is
precisely because the write bandwidth is less than the

read bandwidth.
For the matrices with 10, 25, and 50 columns, Direct

TSQR outperforms the indirect methods with iterative
refinement. The performance gain for this method is
the greatest for smaller numbers of columns. However,
when the matrix becomes too skinny (e.g., with four
columns), Cholesky QR with iterative refinement is a
better choice. When the matrix becomes too fat (e.g.,
with 100 columns), the local gather in Step 2 becomes
expensive. Table VIII shows the amount of time spent
in each step of the Direct TSQR computation. Indeed,
Step 2 consumes a larger fraction of the running time as
the number of columns increases.

For every matrix, Householder QR is by far the slowest
method. As the number of columns grows, the algorithm



Table VI
Times to compute QR on a variety of matrices with four MapReduce algorithms. *Householder QR data extrapolated

from the first four steps of the algorithm.

Rows Cols. HDFS Size Cholesky Indirect Cholesky Indirect Direct House.*
(GB) TSQR +I.R. TSQR+I.R. TSQR

job time (secs.)

4,000,000,000 4 134.6 2931 4076 5832 7431 6128 15021
2,500,000,000 10 193.1 2508 2509 5011 5052 4035 32950
600,000,000 25 112.0 1098 1104 2221 2235 1910 37388
500,000,000 50 183.6 1563 1618 3204 3298 3090 117775
150,000,000 100 109.6 921 954 1878 1960 2154 133025

Table VII
Floating point operations per second on a variety of matrices with four MapReduce algorithms.

Rows Cols. 2∗rows∗cols2 Cholesky Indirect Cholesky Indirect Direct House.*
TSQR +I.R. TSQR+I.R. TSQR

2∗rows∗cols2/sec

4,000,000,000 4 1.28e+11 4.37e+07 3.14e+07 2.19e+07 1.72e+07 2.09e+07 8.52e+06
2,500,000,000 10 5.00e+11 1.99e+08 1.99e+08 9.98e+07 9.90e+07 1.24e+08 1.52e+07
600,000,000 25 7.50e+11 6.83e+08 6.79e+08 3.38e+08 3.36e+08 3.93e+08 2.01e+07
500,000,000 50 2.50e+12 1.60e+09 1.55e+09 7.80e+08 7.58e+08 8.09e+08 2.12e+07
150,000,000 100 3.00e+12 3.26e+09 3.14e+09 1.60e+09 1.53e+09 1.39e+09 2.26e+07

Table IV
Values needed to compute pm

j and pr
j . For Householder

QR, only the data for one step is shown. Each step of
Householder QR has identical data. Both m1 and m3 are
dependent on the matrix size. Other listed data are not.

Cholesky Indirect Direct House.
TSQR TSQR (1 step)

4.0B × 4 m1 1200 1200 2000 1200
2.5B × 10 1680 1680 2640 1680
600M × 25 1200 1200 1600 1920
500M × 50 1920 1920 2560 1920
150M × 100 1200 1200 1600 1200

m2 mmax mmax mmax —

4.0B × 4 m3 1200 1200 2000 —
2.5B × 10 1680 1680 2640 —
600M × 25 1200 1200 1600 —
500M × 50 1920 1920 2560 —
150M × 100 1200 1200 1600 —

r1 rmax rmax rmax —
r2 1 1 1 —

k1 n m1n m1 —
k2 n m1n m1 —
k3 0 0 0 —

becomes continuously less competitive.
Table IX shows how each algorithm performs com-

pared to its lower bound from Table V. We see that
Direct TSQR diverges from this bound when the num-
ber of columns is too small. To explain this differ-
ence, we note that Direct TSQR must gather all the
keys and values in the first step before performing any
computation. When the number of key-value pairs is
large, e.g., the 4, 000, 000, 000 × 4 matrix, then this

Table VIII
Fraction of time spent in each step of the Direct TSQR
algorithm (fractions may not sum to 1 due to rounding).

Rows Cols. Step 1 Step 2 Step 3

4,000,000,000 4 0.72 0.02 0.26
2,500,000,000 10 0.61 0.04 0.34
600,000,000 25 0.56 0.06 0.38
500,000,000 50 0.55 0.07 0.39
150,000,000 100 0.47 0.15 0.38

step becomes limiting and this is not accounted for
by our performance model. Thus, the model predicts
the runtime of Cholesky QR and Indirect TSQR with
iterative refinement more accurately than Direct TSQR.
Although their lower bounds are greater, the empirical
performance makes these algorithms more attractive as
the number of columns increases. The enormous lower
bound of Householder QR makes the algorithm entirely
unattractive, which renders Direct TSQR the best algo-
rithm if guaranteed stability is required.

C. Fault tolerance
One motivation for using a MapReduce architecture

is fault tolerance. We measure the effects of faults on
performance by crashing tasks with a certain probability
of fault. Fig. 7 shows how the performance changes as
we vary the probability of failure for tasks while running
the Direct TSQR method on a matrix with 800 million
rows and 10 columns. This matrix occupies 62.9 GB on
HDFS.

In total, 800 map tasks are launched for each map
stage of the Direct TSQR method. With no injected
faults, the running time is 1220 seconds. When the



Table IX
Performance of algorithms as a multiple of the lower bounds from Table V.

Rows Cols. Cholesky Indirect Cholesky Indirect Direct House.
TSQR +I.R. TSQR+I.R. TSQR

multiple of Tlb

4,000,000,000 4 1.6256 2.2607 1.6173 2.0607 2.4241 2.0825
2,500,000,000 10 1.5246 1.5252 1.5231 1.5356 1.6376 2.0033
600,000,000 25 1.3657 1.3731 1.3804 1.3891 1.5453 1.8591
500,000,000 50 1.2605 1.3048 1.2919 1.3298 1.4749 1.8999
150,000,000 100 1.3233 1.3707 1.3491 1.4080 1.6135 1.9121
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Figure 7. Running time of Direct TSQR on an 800, 000, 000 × 10
matrix with injected faults

probability of a fault is 1/8, the running time is 1503
seconds, only a 23.2 % performance penalty.

VI. Conclusion
If numerical stability is required, the Direct TSQR

method discussed in this paper is the best choice of
algorithm. It is guaranteed to produce a numerically
orthogonal matrix. It usually takes no more than twice
the time of the fastest, but unstable method, and it
often outperforms conceptually simplier methods. It is
also orders of magnitude faster than the Householder
QR method implemented in MapReduce.

All of the code used for this paper is openly available
online, see:

https://github.com/arbenson/mrtsqr

This software runs on any system supporting Hadoop
streaming, including cluster management systems like
Mesos [12].

In the future we plan to investigate mixed MPI and
Hadoop code. The idea is that once all the local map-
pers have run in the first step of the Direct TSQR
method, the resulting Ri matrices constitute a much
smaller input. If we run a standard, in-memory MPI
implementation to compute the QR factorization of this

smaller matrix, then we could remove two iterations from
the direct TSQR method. Also, we would remove much
of the disk IO associated with saving the Qi matrices.
We believe these changes would make our MapReduce
codes significantly faster.
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