
On the Use of Shared Storage in Shared-Nothing
Environments

Krish K.R†, Aleksandr Khasymski†, Guanying Wang†, Ali R. Butt†, Gaurav Makkar‡

†Dept. of Computer Science, Virginia Tech; ‡NetApp Inc.
Email: {kris,khasymskia,wanggy,butta}@cs.vt.edu; {Gaurav.Makkar}@netapp.com

Abstract—Shared-nothing environments, exemplified by sys-
tems such as MapReduce and Hadoop, employ node-local storage
to achieve high scalability. The exponential growth in application
datasets, however, demands ever higher I/O throughput and
disk capacity. Simply equipping individual nodes in a Hadoop
cluster with more disks is not scalable as it: increases the per-
node cost, increases the probability of storage failure at the
node, and worsens node failure recovery times. To this end, we
propose dividing a Hadoop rack into several (small) sub-racks,
and consolidating disks of a sub-rack’s compute nodes into a
separate shared Localized Storage Node (LSN) within the sub-
rack. Such a shared LSN is easier to manage and provision, and
can offer an economically better solution by employing overall
fewer disks at the LSN than the total of the sub-rack’s individual
nodes, while still achieving high I/O performance.

In this paper, we provide a quantitative study on the impact
of shared storage in Hadoop clusters. We utilize several typical
Hadoop applications and test them on a medium-sized cluster
and via simulations. Our evaluation shows that: (i) the staggered
workload allows our design to support the same number of
compute nodes at a comparable or better throughput using
fewer total disks than in the node-local case, thus providing
more efficient resource utilization; (ii) the impact of lost locality
can be mitigated by better provisioning the LSN-node network
interconnect and the number of disks in an LSN; and (iii) the
consolidation of disks into an LSN is a viable and efficient
alternative to the extant node-local storage design. Finally, we
show that LSN-based design can deliver up to 39% performance
improvement over standard Hadoop.

I. INTRODUCTION

In recent years, enterprises have been increasingly adopting
the MapReduce [9] model — and its publicly available open-
source implementation, Hadoop [6] — for data processing and
analytics. The main attraction of MapReduce is its computa-
tional model, which hides the complex system-level details
of fault tolerance, replication, and data management from the
application programmer. This allows for large data-intensive
applications to be transparently parallelized on large clusters.
Hadoop clusters are typically built using commodity ma-

chines (nodes) and employ a shared-nothing architecture. In
Hadoop’s context, shared nothing implies that local resources,
such as CPU, memory, and disks are not shared across nodes,
even if they are in the same rack. Each Hadoop node typically
serves as both a compute node, executing the tasks, and a
storage node, storing the associated data on local disks. Any
interactions between nodes occur explicitly and only during
the shuffle phase of MapReduce. The application tasks spend

the majority of their time only using node-local resources
and consequently the system can achieve very-high scalability.
This shared-nothing property also provides simplified overall
application semantics; a node failure does not affect other
nodes, and the failed node can be easily replaced by assigning
its tasks to a different node. On the flip side, isolating local
resources implies that idle resources at one node cannot be
used to serve the needs of another node experiencing a work-
load spike. This is critical, as although ideally MapReduce
workloads should be equally divided among the participating
nodes; in reality, skew in data/task assignment results in a load
imbalance between the nodes [3]. Thus, the shared-nothing
model leads to inefficiencies and resource-fragmentation as
resources can be under- or over-provisioned depending on the
workload assigned to the node, even when enough resources
are available in the system to handle the workload.
Consider the case of provisioning a node for a desired

disk throughput. One solution used in large-scale setups is
equipping each node with more disks and stripping data across
them to handle load spikes [7]. However, this not only results
in costly over-provisioning, but also increases node failure
recovery times and complicates fault tolerance semantics.
In this paper, we posit that aggregating and sharing re-

sources across nodes can produce an efficient resource allo-
cation in an otherwise shared-nothing Hadoop cluster. To this
end, we divide a Hadoop cluster rack into several sub-racks,
and consolidate disks of a sub-rack’s compute nodes into a
separate shared Localized Storage Node (LSN) within the sub-
rack. The scope of a single LSN can range from serving a few
nodes to perhaps a complete Hadoop cluster rack.
A key observation that makes this approach viable is that in

typical Hadoop clusters, accesses to disks are often staggered
in time because of the mix of different types of jobs and
data skew across nodes. This, coupled with the bursty node
workload, implies that contention at the LSN from its asso-
ciated nodes is expected to be low. Therefore, by simply re-
purposing a sub-rack’s node-local disks in an LSN, each node
can receive a higher instantaneous I/O throughput provided by
the larger number of disks in the LSN. Conversely, the LSN
can service its associated nodes at the default I/O throughput
(experienced by nodes using their local disks only) with fewer
number of disks at the LSN. We note that we do not argue for
provisioning LSNs in addition to the node-local disks, rather
placing some or all of the disks from a sub-rack’s nodes at

2013 IEEE International Conference on Big Data

978-1-4799-1293-3/13/$31.00 ©2013 IEEE 313

Fig. 1. Standard Hadoop cluster architecture.

their LSN. Of course, moving the disks away from a node and
into a shared LSN results in loss of data locality, so achieving
higher I/O throughput depends on appropriate provisioning of
both disks and network bandwidth to the LSN. Our design,
thus, provides a practical control knob for realizing a desired
performance-cost operating point for a Hadoop cluster.
Another advantage of LSN-based design is that it decouples

storage and compute provisioning, and allows for scaling up
storage to meet the demands of big data applications by
simply provisioning more disks at the LSN. Consolidating data
into fewer high-density nodes opens the door for a myriad
of global decisions and optimizations, such as deduplication,
compression, and snap-shot generation. Standard enterprise
fault tolerance techniques, such as RAID-5 and RAID-6, can
also be employed more easily in our LSN-based design.

II. INTEGRATING SHARED STORAGE IN HADOOP

In this section, we motivate our design of consolidating
disks from individual Hadoop nodes into a local shared
storage, and then outline several alternative shared-storage
designs.

A. Hadoop Architecture

A typical Hadoop cluster topology organizes nodes into
racks as shown in Figure 1. In addition to a MapReduce
runtime, Hadoop also includes the Hadoop Distributed File
System (HDFS) that is based on GFS [10]. HDFS consists of a
master data management component, NameNode, and worker
components called DataNodes, which also run the compute
managers JobTracker and TaskTrackers, respectively. HDFS
divides the data into blocks (chunks) and distributes them
across all DataNodes in the cluster. Moreover, the system
typically maintains three replicas of each data block, two
placed within the same rack and one outside.

B. Rationale and Motivation

Application datasets continue to grow at unprecedented
rates. To keep up with this trend, the per-node disk capacity
on Hadoop clusters is increasing rapidly, e.g., from two 80 GB
disks in the original MapReduce deployment [10] to four
and (even eight) 3 TB disks [7] in modern Hadoop setups.
This raises several issues about the viability of using node-
local storage for all data. First, simply adding more disks to
local nodes increases the chance of some disks failing, and

Fig. 2. Hadoop architecture using an LSN.

reduces the already typically low Mean Time Between Failures
(MTBF) of a Hadoop node. Second, when using commodity
Hadoop hardware, a significant time and bandwidth resources
are spent on recreating replicas after node or disk failures. In
contrast, Enterprise storage solutions have lower MTBF than
commodity hardware clusters and ensure lower failure rate
for the data [5], [4]. Third, provisioning all the storage needs
of a node locally prevents use of advanced solutions such as
the use of SSDs, as current price-points make it economically
impractical to deploy such approaches at all the nodes. Finally,
we argue that following the conventional wisdom of treating
data-locality as the only design constraint in Hadoop clusters,
results in a suboptimal solution, both in terms of performance
and efficient utilization of resources. Factors such as storage
utilization can no longer be ignored in the face of growing
datasets.
Consider the following scenario. If a single task utilizes a

single disk for 5% of its execution time, about 20 tasks are
needed to fully utilize a single disk, given that tasks are all
staggered so they do not compete with each other. If a node has
4 local disks, it takes about 80 tasks running concurrently to
fully utilize all disks on the node. Moreover, if the tasks are not
uniformly assigned to different nodes, which is typical, there
will be a skew in the load with some nodes experiencing I/O
bottlenecks, while others with idle disks. A better solution is to
sacrifice some locality and consolidate disks into a localized
storage node (LSN), which can service multiple nodes and
thus achieve better disk utilization.
To this end, we propose consolidating the disks from a small

number of compute nodes into an LSN, which yields higher
average disk utilization and simplified cluster provisioning.

C. Alternate Storage Sharing Scenarios in Hadoop

A consolidated shared storage system can reside at different
levels of the Hadoop architecture. In the following, we present
three potential alternative scenarios for sharing storage in
Hadoop.
1) Naive Storage Consolidation: A first cut design is to

take all MapReduce related data and move it to a single con-
solidated storage outside the entire Hadoop compute cluster,
and provision a very high bandwidth link between the compute
nodes and the storage system. Such a setup is often deployed to
connect a cluster file system to a supercomputer. However, in
this configuration a typical large-scale data-intensive Hadoop

314

Fig. 3. Hadoop architecture using a hybrid storage design comprising of a
small node-local disk for shuffle data and an LSN for supporting HDFS.

application would create an almost constant high-volume I/O
flood to the storage system, which would quickly saturate the
storage connection link and become a bottleneck. Moreover,
aggregating storage cluster-wide would require a sophisticated
cluster file system that treats the storage nodes as an integrated
unit. This in turn would entail complexity in managing fail-
ures and providing high performance. Consequently, such a
design goes against the very spirit of the MapReduce model
that achieves unprecedented scalability by treating the cluster
resources as loosely coupled with data stored locally, and that
are readily replaceable.
2) Localized Storage Consolidation: The main bottleneck

in the previous case is the interconnect between the global
shared storage and Hadoop nodes. In our next design, shown
in Figure 2, we limit the number of compute nodes that share
a storage system, i.e., a sub-rack whose size range from a
fraction of a rack to perhaps a complete rack. We refer to the
shared storage as Localized Storage Node (LSN). The intuition
behind this local consolidation approach is that it avoids the
bandwidth bottlenecks by limiting the sharing to a few nodes
instead of the whole cluster. All the disks from the sub-rack’s
compute nodes are consolidated into a corresponding LSN for
the sub-rack. The LSN supports both their HDFS and shuffle
data for the sub-rack.
In this configuration, map tasks no longer have node-level

locality and must retrieve data from the corresponding LSN
in the sub-rack. However, since data is now striped across
a larger number of disks at the LSN than those of a single
node, the LSN can provide much higher I/O throughput, which
can mitigate the impact of lost locality. Moreover, since only
a small number of nodes share an LSN, only the inter-rack
interconnect is used for accessing data, and multiple sets
of nodes (in different racks) can interact with their LSNs
simultaneously, avoiding a global bottleneck.
3) Hybrid Storage Consolidation: One limitation of the

previous design is that each compute node requires at least
one local disk to run its operating system, and thus makes it
impractical to remove all disks from a node to its associated
LSN. The key insight of our next design, shown in Figure 3,
is to store shuffle data, which is not replicated and usually
consumed shortly after it is generated, on the node-local disk.
Thus, we design a hybrid setup where the LSN stores HDFS

Network Data Storage
Conf N1 N2 D1 D2 D3

Nodes 1 Gbps 10 Gbps 1 disk
LSN 1 Gbps 10 Gbps 1 disk 3 disks 5 disks
Speedup 1 10× 1 3× 5×

TABLE I
NETWORK AND DISK CONFIGURATIONS IN THE TESTBED.

data for a sub-rack of nodes, while a local node disk stores
shuffle data and OS files required to run the node.
An extra advantage of the hybrid approach is that it paves

the way for economically incorporating SSDs in the Hadoop
architecture. For instance, the node-local disks can be replaced
by (low-capacity) SSD devices for holding the OS and serving
as a buffer for in-memory shuffle data. Given the good random
I/O (especially read) performance of SSDs [1], handling shuf-
fle data would be a well-matched use-case for them. This is
also advocated by recent work on the importance of memory-
locality rather than disk-locality in Hadoop [2].

III. EVALUATION

In this section, we present the evaluation of the hybrid
localized shared storage design in Hadoop. We compare a
baseline Hadoop to LSN-based one.

A. Tests Using a Real Cluster

Our first set of tests explore the impact of LSN on Hadoop
performance using a real cluster.
1) Experimental Setup: Our testbed consists of a master

node and 21 worker nodes serviced by three LSNs. The nodes
have two 2.8 GHz quad-core Intel Xeon processors, 8 GB of
RAM, and 1 SATA disk. The LSN nodes are identical to the
rest of the nodes, but contain 5 SATA disks. The disks are
Seagate Barracuda ES.2 7200 RPM with 500 GB capacity.
The machines are connected to a dedicated Gigabit switch via
1 Gbps links as well as a dedicated InfiniBand switch via
10 Gbps links. We ran the three basic benchmarks: TeraGen
with 1 mapper per compute node, Grep and TeraSort each
with 16 mappers and 2 reducer per compute node. TeraGen
generates 1 GB of data per worker node, which is the input
for Grep and TeraGen.
2) LSN Performance: For our next experiment, we used 15

worker nodes to compare the performance of standard Hadoop
(baseline) to that of LSN-based Hadoop using different net-
work and storage provisioning. Figure 4 shows the results
for six hybrid configurations with 3 LSNs, one per 5 worker
nodes, and two standard configurations, where (Nx, Dy) refers
to Nx and Dy in Table I. As a first point of comparison,
we test LSN(N1, D1), which consolidates all the HDFS
storage onto a single remote disk per LSN, without changing
the network bandwidth. Not surprisingly, going from fifteen
local disks, to three remote disk, slowed TeraGen, grep and
TeraSort by 2.45×, 2.55× and 1.50×, respectively, compared
to Baseline(N1, D1). The three disks do not provide enough
bandwidth to keep up with the fifteen compute nodes and
hence becomes a bottleneck.
Next, we test LSN(N2, D1), which increases the network

throughput available to each node, but still has only one disk

315

 50

 100

 150

 200

 250

 300

 350

 400

 450

TeraGen Grep TeraSort

E
xe

cu
tio

n
T

im
e

(s
)

Application

BaseLine(N1,D1)
LSN(N1,D1)
LSN(N1,D2)
LSN(N1,D3)

BaseLine(N2,D1)
LSN(N2,D1)
LSN(N2,D2)
LSN(N2,D3)

Fig. 4. Comparison of Hadoop (baseline) with
LSN-based configurations.

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

8 disks 16 disks 32 disks 64 disks

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

LSN

grep
TeraGen
TeraSort

join
aggregate

InvertedIndex
PageRank

small
summary

computation

Fig. 5. Performance of baseline Hadoop and LSN
with different number of disks in LSN. Network
speed is fixed at 40 Gbps.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

4Gbps 10Gbps 20Gbps 40Gbps

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

LSN

grep
TeraGen
TeraSort

join
aggregate

InvertedIndex
PageRank

small
summary

computation

Fig. 6. Performance of baseline Hadoop and
LSN with different network bandwidth to LSN.
The number of disks at LSN is fixed at 64.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

grep
TeraGen

TeraSort

join
aggregate

InvertedIndex

PageRank

sm
all

sum
m

ary

com
putation

E
xe

cu
tio

n
T

im
e

(s
)

Application

Baseline
LSN 1 disk

LSN 2 disks
LSN 3 disks
LSN 4 disks
LSN 5 disks
LSN 6 disks

Fig. 7. Performance of baseline Hadoop and LSN with different number of
disks in LSN. The network speed is fixed at 4 Gbps.

per LSN. The higher network bandwidth does not improve
the performance and TeraGen, grep and TeraSort execute
2.55×, 2.37× and 1.42× slower than Baseline(N2, D1),
respectively. In the next test, LSN(N1, D2), we increase
the number of disks, but not the network bandwidth. We
see that the addition of disks improves the performance,
as this configuration performed better than LSN(N1, D1)
with a performance improvement of 1.5×, 1.6× and 1.2× in
TeraGen, grep and TeraSort, respectively. The LSN(N1, D3)
configuration uses even more disks, however, the network is a
bottleneck and hence there is little extra benefit from adding
the disks. Finally, we test better provisioning both network
and storage, which is the intended deployment of our system.
LSN(N2, D3) sees a performance increase by 24%, 20% and
39% in TeraGen, grep, and TeraSort, respectively, compared
to BaseLine(N2, D1).
These results show that balancing shared disk provisioning

with an adequate network throughput to the LSN can perform
better than the shared-nothing baseline Hadoop.

B. Simulation Results

1) Simulating Hadoop Clusters: In this set of experiments,
we use simulation to study the impact of our LSN-based
Hadoop in detail. Table II lists the applications and summa-
rizes parameters therein, such as the input and output data size,
the number of mappers and reducers, which we simulate.
There is ample previous research done on modeling and

simulation of MapReduce workloads and setups [14], [17],

 0

 50

 100

 150

 200

 250

 300

 350

 400

grep
TeraGen

TeraSort

join
aggregate

InvertedIndex

PageRank

sm
all

sum
m

ary

com
putation

E
xe

cu
tio

n
T

im
e

(s
)

Application

Baseline
LSN 1Gbps
LSN 2Gbps
LSN 3Gbps
LSN 4Gbps

Fig. 8. Performance of baseline Hadoop and LSN with different network
bandwidth to LSN. The number of disks at the LSN is fixed at 6.
Application Map Reduce Number

Input Output Output Mapper Reducer

Grep 10 GB 1 MB 1 MB 160 1
TeraGen 0 KB 10 GB – 40 –
TeraSort 10 GB 10 GB 15 GB 160 40

Join 10 GB 1 GB 10 MB 160 40
Aggregate 10 GB 100 MB 10 MB 160 10
Inverted Index 1 GB 10 GB 100 MB 40 40
PageRank 1 GB 10 GB 1 GB 40 40

Small 100 KB 1 MB 10 KB 4 1
Summary 10 GB 10 MB 10 KB 160 1
Compute 1 GB 10 GB 100 MB 40 40

TABLE II
REPRESENTATIVE MAPREDUCE (HADOOP) APPLICATIONS USED IN OUR

STUDY. THE PARAMETERS SHOWN ARE THE VALUES USED IN OUR

SIMULATIONS. FOR TeraGen THE LISTED MAP COST IS WITH RESPECT TO
THE OUTPUT.

[19], [16], [13], [11], [12], which we leverage. We choose our
MRPerf [19] discrete event Hadoop simulator, as it has been
previously used to study impact of data locality, alternative net-
work topologies, and failure [19], [18]. The simulator provides
us with means to investigate the performance impact of system
features such as node, rack, and network configurations, disk
parameters and performance, data layout, and application I/O
characteristics — which we want to explore in the context of
LSN design.
The MRPerf simulator takes as input the topology of a

cluster, the parameters of a job, and a data layout, and produces
detailed simulation results about how the job would behave on
the specified cluster configuration. In this work, we extended

316

 0

 20

 40

 60

 80

 100

 120

grep
TeraGen

TeraSort

join
aggregate

InvertedIndex

PageRank

sm
all

sum
m

ary

com
putation

E
xe

cu
tio

n
T

im
e

(s
)

Application

LSN 32 disks
LSN 32 disks + 2Gbps

Fig. 9. LSN performance with Hadoop nodes
equipped 2 Gbps links.

 0

 20

 40

 60

 80

 100

 120

grep
TeraGen

TeraSort

join
aggregate

InvertedIndex

PageRank

sm
all

sum
m

ary

com
putation

E
xe

cu
tio

n
T

im
e

(s
)

Application

LSN 32 disks
LSN 32 disks + SSD

Fig. 10. LSN performance with Hadoop nodes
equipped with SSDs.

 0

 20

 40

 60

 80

 100

 120

grep
TeraGen

TeraSort

join
aggregate

InvertedIndex

PageRank

sm
all

sum
m

ary

com
putation

E
xe

cu
tio

n
T

im
e

(s
)

Application

baseline
LSN 32 disks + 2Gbps + SSD

Fig. 11. baseline performance compared to LSN
with nodes equipped with SSDs and 2 Gbps links.

the simulator to support our application-oriented evaluation.
The simulations use deterministic traces across multiple runs.
We focus on simulating a single sub-rack and analyze

in detail different LSN designs choices and their effect on
performance. We believe that the conclusion we draw will
generalize to larger clusters comprising multiple sub-racks,
each with its own LSN. This is true especially when a better
provisioned communication channel is used between nodes
and their associated LSNs to avoid the interconnect contention
due to node-LSN traffic of different LSNs.

2) 20-node LSN Simulation: We consider a topology with
20 nodes and 1 LSN. Each of the 20 nodes has 8 cores and
4 disks and is connected via 1 Gbps links. In the LSN case,
we aggregate up to 64 disks, leaving one disk at each node,
and connect it to the switch via a 40 Gbps link. In some of
the cases, we also increase each node’s interconnect to 2 Gbps
links and equip them with SSDs. All experiments are run with
8 map slots and 4 reduce slots.
In Figure 5, we change the number of disks provisioned at

the LSN and measure the execution time of each application
normalized to the baseline. In this case, the LSN’s network
is set to maximum throughput at 40 Gbps to make sure
it does not become a bottleneck. The performance numbers
of the LSN(N40D16) configuration, which are within 5.5%
as compared to the baseline Hadoop for eight out of ten
applications, illustrate the efficiency of our disk aggregation
technique. In this 20 node cluster, we are able to efficiently
utilize 55% fewer disks (20+16 = 36 disks in LSN(N40D16

compared to 20 ∗ 4 = 80 disks in baseline) to achieve
comparable performance for the studied applications. The two
applications, TeraGen and TeraSort, which are very output-
heavy see a 55% and 23% slowdown, respectively. In both
these cases, LSN becomes a bottleneck, as it is unable to keep
up with the workload.
Next we investigate the effect of network bandwidth on

application performance. For this experiment, we set the
number of disks to 64. The results are plotted in Figure 6.
We see that a 4 Gbps connection is sufficient to support half
of the applications, i.e., the ones that do not generate large
amount of data and 20 Gbps is enough to bring performance
of all applications except TeraGen to within 18.6%.
Next, we set up a simulation topology with 5 nodes and 1

LSN to simulate a smaller LSN to node ratio and again study
the effect of different design choices. All nodes are connected
through a single switch. Connection speed for each node and
LSN is 1 Gbps and 4 Gbps, respectively. Each of the five
nodes has 8 cores and 2 disks, while the LSN has 6 disks. We
run ten Hadoop applications and record the results. Each node
is configured with 8 map slots and 4 reduce slots.

The first test studies performance under varying number of
disks provisioned at the LSN. Figure 7 shows the results. The
Figure shows several aspects of design trade-offs for LSN.
First, LSN with 4 disks can match performance of baseline
Hadoop within 3.7%, on average, and there is almost no benefit
of adding more disks. This means LSN provide saving of a
disk. (9 disks in LSN versus 10 in baseline). Second, output
heavy jobs like TeraGen see a significant performance boost,
33% as seen by TeraGen, compared to baseline provided
mainly by the reduced number of replications. Moreover, LSN
can load balance between multiple nodes, and achieve high
overall performance. Third, read heavy workloads, such as
Grep, Aggregate, and Summary exhibit more uniform access
patterns to local disk and as a consequence experience a small
slowdown, 18.7% on average, when running on the LSN. This
is because aggregating the access at the LSN does not provide
an additional benefit. Finally, the rest of the applications are
within 4.6% of the baseline.

Next, we vary the bandwidth available at the LSN from
1 Gbps to 4 Gbps, and observe the performance impact.
Figure 8 summarizes the results. The four applications —
InvertedIndex, PageRank, Small, and Computation — that do
not consume or generate large amounts of data, but rather are
CPU intensive or operate on large amount of intermediate data,
see no benefit from increasing the LSN’s network. In contrast,
the rest of the applications, which do input/output experience
a significant slowdown from the baseline with 1 Gbps link at
the LSN. Provisioning 3 Gbps at the LSN, however, is enough
to handle the client workload with a performance overhead
within 5.7%, on average.

3) Better Provisioned Local Nodes: So far we have exam-
ined various provisioning scenarios for the LSN. In the next
set of experiments, we take a look at several design options at
the node side. To ensure that for these experiments the LSN is
not a bottleneck, we provision it with 32 disks and a 20 Gbps

317

network and set the map and reduce slots to four.
First, we examine the impact of increased local bandwidth

of each node as seen in Figure 9. A 2 Gbps link produces
a 4.0% speedup on average, most noticeably for Join, which
benefits from the extra bandwidth for both its heavy HDFS
and shuffle traffic and achieves a 9.9% speedup.
Our hybrid LSN approach significantly decreases the num-

ber and size of disks needed to be provisioned on each node,
which lets us optimize each node by replacing its hard disk
with an economically viable small-size SSD. The only work-
load related data that needs to be stored at the nodes is shuffle
data. Shuffle data tends to create I/O workloads that mostly
consist of random accesses [9]. The shuffling works in a
pulling model, where consuming reducers proactively retrieves
data from producing mappers [8]. Hence, the workload is
characterized by sequential writes and random reads, which
is a good match for the excellent random read performance
of SSDs. The results of adding an SSD to each node are
shown in Figure 10. TeraSort, InvertedIndex, PageRank, and
Computation, all of which process a lot of intermediate data,
get a significant performance boost (25.4% on average).
Finally, we combine the node-side optimizations of using

an SSD and a faster link, and compare the performance to
baseline Hadoop. The results are shown in Figure 11. The
optimizations coupled together help us bridge the performance
gap of even the most data intensive applications like TeraGen
to 39.3% (from 53.7% without). The rest of the benchmarks
achieve a 10.7% speedup in general and prove that our hybrid
localized storage is a viable augmentation of the otherwise
shared-nothing Hadoop architecture.

IV. RELATED WORKS

The work closest to ours is from Porter [15], which proposes
consolidating Hadoop node disks into a SuperDataNode and
running DataNode instances in virtual machines on that node.
The goal of the SuperDataNode is to decouple storage from
computation. The authors study basic Hadoop benchmarks
using their SuperDataNode, but do not examine the underlying
issues that cause the varying performance they encounter.
While we share the concept of disk consolidation, our work is
novel in its observation that resources are not well-utilized in a
bursty workload environment due to Hadoop’s shared-nothing
architecture. More recently, Ganesh et al. [2] argue that neither
disk locality nor remote memory access is good enough in data
center computing. The authors argue for developing mecha-
nisms that support memory locality, so applications achieve
high throughput by mostly employing in-memory accesses.
Achieving memory locality is complementary to our work.

V. CONCLUSION

In this paper, we revisit the cluster architecture of Hadoop
to better provision per-node storage resources in the face of
growing application datasets. We observe that simply adding
more disks to individual Hadoop nodes that often exhibit
bursty workloads is not efficient. This approach results in
low overall disk utilization, increases costs as well as the

chances of node failures, and the large capacity elongates
the time it would take to recreate a failed replica. Also,
scaling storage coupled with compute adds extra cost of non-
storage resources that are not necessarily required for I/O-
intensive workloads, and reduces overall system efficiency. To
this end, we study the impact of LSN on Hadoop application
performance using a range of representative applications and
configuration parameters. Our evaluation shows that a single
LSN servicing 20 compute nodes can achieve performance
within 5.5% of standard Hadoop on average, for eight out of
ten applications studied, while using a little over half (55%)
of the number of disks in the standard setup. Moreover, for a
case where an LSN is used by 5 compute nodes, we observe
up to 12% performance improvement while using 28% fewer
disks.

REFERENCES

[1] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Manasse, and
R. Panigrahy. Design tradeoffs for ssd performance. In USENIX ATC,
pages 57–70, 2008.

[2] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica. Disk-
locality in datacenter computing considered irrelevant. In Proceedings
of the 13th USENIX HotOS, HotOS’13, pages 12–12, 2011.

[3] G. Ananthanarayanan, A. Ghodsi, A. Wang, D. Borthakur, S. Kandula,
S. Shenker, and I. Stoica. Pacman: Coordinated memory caching for
parallel jobs. In 9th USENIX NSDI, pages 14–14, 2012.

[4] D. P. Anderson. Boinc: A system for public-resource computing and
storage. In Proceedings of the 5th IEEE/ACM International Workshop
on Grid Computing, GRID ’04, pages 4–10, Washington, DC, USA,
2004. IEEE Computer Society.

[5] Andy Konwinski and et.al . X-tracing Hadoop, 2008. Hadoop Summit.
[6] Apache Software Foundation. Hadoop, 2011.

http://hadoop.apache.org/core/, accessed on Nov 6, 2012.
[7] D. Borthakur. Facebook has the world’s largest hadoop cluster!,

2010. http://hadoopblog.blogspot.com/2010/05/facebook-has-worlds-
largest-hadoop.html.

[8] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy, and
R. Sears. Mapreduce online. In 7th USENIX NSDI, pages 21–21, 2010.

[9] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on
large clusters. In Proc. USENIX OSDI, pages 137–150, 2004.

[10] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file system. In
ACM SOSP, 2003.

[11] S. Hammoud, M. Li, Y. Liu, N. Alham, and Z. Liu. Mrsim: A discrete
event based mapreduce simulator. In Fuzzy Systems and Knowledge
Discovery (FSKD), volume 6, pages 2993 –2997, aug. 2010.

[12] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B. Cetin, and
S. Babu. Starfish: A self-tuning system for big data analytics. In CIDR,
pages 261–272, 2011.

[13] Y. Liu, M. Li, N. K. Alham, and S. Hammoud. Hsim: A mapreduce
simulator in enabling cloud computing. Future Generation Computer
Systems, (0):–, 2011.

[14] A. C. Murthy. Mumak: Map-Reduce Simulator. ASF JIRA
MAPREDUCE-728, 2009.

[15] G. Porter. Decoupling storage and computation in hadoop with super-
datanodes. SIGOPS Oper. Syst. Rev., 44:41–46, April 2010.

[16] F. Teng, L. Yu, and F. Magoules. Simmapreduce: A simulator for mod-
eling mapreduce framework. In Multimedia and Ubiquitous Engineering
(MUE), 2011 5th FTRA International Conference on, pages 277 –282,
june 2011.

[17] A. Verma, L. Cherkasova, and R. H. Campbell. Play it again, simmr!
In CLUSTER, pages 253–261. IEEE, 2011.

[18] G. Wang, A. R. Butt, H. Monti, and K. Gupta. Towards synthesizing
realistic workload traces for studying the Hadoop ecosystem. In Proc.
IEEE MASCOTS, 2011.

[19] G. Wang, A. R. Butt, P. Pandey, and K. Gupta. A Simulation Approach
to Evaluating Design Decisions in MapReduce Setups. In Proc. IEEE
MASCOTS, pages 1–11, 2009.

318

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

