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Abstract

Main memory column-stores have proven to be efficient for processing analytical queries.
Still, there has been much less work in the context of clusters. Using only a single machine
poses several restrictions: Processing power and data volume are bounded to the number of
cores and main memory fitting on one tightly coupled system. To enable the processing of larger
data sets, switching to a cluster becomes necessary. In this work, we explore techniques for
efficient execution of analytical SQL queries on large amounts of data in a parallel database
cluster while making maximal use of the available hardware. This includes precompiled query
plans for efficient CPU utilization, full parallelization on single nodes and across the cluster,
and efficient inter-node communication. We implement all features in a prototype for running a
subset of TPC-H benchmark queries. We evaluate our implementation using a 128 node cluster
running TPC-H queries with 30 000 gigabyte of uncompressed data.

Keywords: Distributed databases; Distributed computing; Parallel processing; Query pro-
cessing; Data analysis; Data warehouses

1 Introduction

Today, main memory column-stores are widely used for the efficient execution of analytical queries
and lead to significant performance advantages [1]. While the performance of the database systems
increases, challenges increase too as users always want lower query response times and process bigger
data. There are two approaches to improve performance and data size [41]:

• scale-up: improve the power of a single machine

• scale-out: use multiple connected machines

A scale-up solution improves the capabilities of a single machine. As current speed improvements
of single processing units are getting smaller, today, extra processing power is usually gained by
adding more processing cores into a tightly integrated processor. To use the full processing power
on a single machine, parallelization of query processing functions becomes obligatory. Here, it is
important to cover all major processing steps since each serially executed part can quickly become
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the bottleneck of execution and prevent satisfying speedup factors [19]. Although the number of
cores on a single chip is constantly increasing, the current architecture usually contains an upper
limit. The same holds for main memory, even if current main memories with several terabytes per
machine appear already to be quite large. To go beyond these limits and process several petabytes
of data with sufficient processing power requires more than one machine.

A scale-out solution includes the use of several machines working together, usually across an
efficient network. Using several machines can not only exceed the maximum processable data
volumes of a single machine but can also be very cost competitive. Several small machines providing
performance equal to one high-end server might often be significantly cheaper, making it an attractive
alternative.

A cluster can be a very efficient solution, but it can also increase system complexity significantly.
In particular, if each computation node in the cluster holds only parts of the overall data, an efficient
communication network between the nodes is required. In a shared-disk implementation, all nodes
in a cluster can access the same logical disk such that every node can access all the data on disk.
However, the shared disk can become a new bottleneck and reduce the main memory advantages.
Indeed, we focus on shared-nothing systems within a cluster, i.e., we have no shared resource and
every node stores only parts of the overall data, making large data volumes possible. On a single
shared-memory node it is essential to utilize all available threads and perform parallel execution.
Inter-query parallelism is not enough if the number of concurrent queries is lower than the number
of threads. It is also not enough when we just want to minimize the execution time of a single query
running alone on the system. Therefore, parallel execution within query operators (intra-operator)
or between operators (inter-operator) is mandatory in order to use the full hardware capacity.

Besides parallel databases, no-SQL alternatives like MapReduce have attracted increasing at-
tention for processing large amounts of data in recent years. However, it should be noted that for
complex queries, SQL is both higher level and allows faster processing in many situations [32].

In this work, we explore with which techniques and algorithms we can achieve maximal per-
formance for executing analytical SQL queries in a distributed database cluster. In particular, we
combine major techniques relevant for performance in one system to make maximal use of the
available hardware. In order to improve performance of queries that only return a human-readable
part of the complete result, we also develop new algorithms for top-k selection. Aiming for a
shared-nothing system, we want to support large amounts of data that fit into the overall main
memory of the cluster system. Using a subset of different analytical queries from the popular TPC-H
benchmark, we study the most efficient way for execution with the available hardware, trying to
reach a new performance baseline. We contribute a performance study that includes a distributed
implementation evaluated in a networked cluster with up to 128 nodes. While analyzing optimization
possibilities for these TPC-H queries in detail, we are looking for solutions to systematically apply
our optimizations and communication patterns on arbitrary queries. At the end, we compare our
implementation with the current official TPC-H record holders.

In order to make full use of the available hardware in our cluster, we combine the following
principles:

• efficient single core data processing

• full parallelization on a single machine

• efficient distributed execution and communication
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Note that distributed query execution usually increases the number of query passes. Additional
communication steps during query execution are required to request data or to ship data to a remote
node for further processing because in a shared-nothing environment, related data resides often on a
different node. Most techniques for distributed query execution are orthogonal to the local query
execution model. Hence, these techniques can also be applied in different execution models.

Exchanging data between nodes in a cluster requires efficient inter-node communication. We
use the message passing library MPI [18] for this purpose. MPI provides advanced collective
operations like gather, (personalized) all-to-all, or reduction. Theses collective operations enable
efficient and scalable communication between all nodes in the network. Relying only on point-to-
point communication could easily introduce communication bottlenecks as scalable communication
algorithms are often non-trivial. The possibility of adding custom data types and reduction functions
to the MPI operators further improves performance.

The structure of the paper is as follows. First, we discuss related work. Second, we engineer
efficient solutions to reduce communication costs. Third, we discuss our methods in the context of the
TPC-H benchmark. Next, we evaluate our implementation experimentally. Finally, we summarize
the key results of our work and sketch possible future research.

2 Related Work

This work is based on two previous papers. In the first, [9] we consider the queries of the TPC-H
benchmark on a single shared memory machine. We adopt the approach used there to consider
queries manually translated into a single function consisting of optimized C code. This not only led
to performance one or two orders of magnitude higher than the state of the art but is also allows
us to focus on the algorithmic issues of how to achieve high performance on modern architectures.
The wide adoption of just-in-time compilation in the mean time further justifies this approach (see
below). Another observation in this paper was that details of parallelization were orthogonal to the
details of how to achieve good inner loop performance. This motivated us to use the same approach
for evaluating the algorithmic aspects of parallelization on distributed memory machines. This led
to a short conference paper [42] demonstrating our approach for 6 out of 21 TPC-H queries. The
present full paper extends this to 11 queries, significantly improves the implementation of 2 of the
3 queries that did not scale well previously, briefly discusses the remaining 10 queries, describes
additional parallelization techniques, and explains everything in more detail.

Automatic just-in-time compilation has now become a standard technique [14, 25, 30, 31] also
used by other database systems (e.g., HyPer [24, 35]). Indeed, our group has also implemented
a query-compiler on its own which is part of a commercial product however without a published
description of the details. Compile times of such compilers can be in the range of centiseconds with
code performance similar to the manually written code we study here.

Early work on cluster query execution for OLAP queries stems from DeWitt et al. [11] analyzing
parallel database systems in a shared nothing environment running on disk without multi-threading
having very low performance numbers compared to today’s systems. More recent work is from Akal et
al. [2] implementing a database cluster by introducing a middleware for coordination of single cluster
nodes without a deep integration into the database system itself. Their throughput experiments on
64 nodes have similar query times than our implementation, but with a factor of 10 000 less data.
The work of Akal is further refined by Lima et al. [28, 29] by improving load balancing between the
nodes and sometimes using indexes instead of scans. Still, the overall performance problem remains
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and using data replication makes it difficult to scale to large data sets.
The mentioned solutions do not apply more advanced communication patterns, but it has been

shown by Chockler et al. [7] that this is required to leverage the full performance of the system.
Eavis et al. [12] developed the prototype Sidera which is based on message passing and targets online
analytical processing. Neither the synthetic data, nor the benchmark queries were specified in detail,
but performance numbers are in the range of seconds for processing an input data set of 1 million
rows on 16 nodes. Again, our system achieves similar runtimes with the same number of nodes
processing about 10 000 times more data using complicated TPC-H benchmark queries.

Shute et al. [37] introduce F1, a highly scalable distributed database for OLTP and OLAP queries
which is mainly used for Google AdWords. They state that their database holds 100TB of data
and processes hundreds of thousands of requests per second which is a factor of 3 to 4 more data
with significantly lower runtimes than we achieve in our experiments. However, they do not give
additional information on the kind of queries. For large distributed queries they report times similar
to MySQL and often linear speedup when adding more resources. While we aim to reduce the use of
the network by utilizing copartitioning of tables, they cannot make use of copartitioned tables and
cause high network traffic by frequent repartitioning. Our approach becomes therefore more suitable
for a scenario with many small machines.

Lee et al. [26] give an overview on distributed processing in the SAP HANA database. They
also aim to reduce communication and use a toolset that checks incoming workloads and proposes
partitioning schemes for the tables. They give experimental results for a database of 100GB with
runtimes slightly faster than ours but on a factor 300 less data than we use. They do not give a
detailed description of the query used but state that it requires a full table scan over the fact table,
which might be comparable to query 1 of the TPC-H benchmark. This is one of the least complex
queries we examine and we also achieve fast runtimes for more complex queries.

Cuzzocrea et al. [8] propose a framework for parallel building of OLAP data cubes in a shared
nothing environment. They evaluate their work on a transformed version of the TPC-H benchmark.
Their results show runtimes about a factor 10 faster than in our experiments (excluding the time
for building the data cube) but on a factor 3 000 less data. Also, their runtimes for some queries
are significantly higher (for example query 11, where they report runtimes in the range of minutes
instead of centiseconds).

For the case that only the largest tables of the database (fact tables) are split and distributed over
the nodes in the cluster and all other tables (dimension tables) are replicated on every node, Furtado
et al. [15] used virtual partitioning to improve load balancing. They replicate the partitions of the
fact tables over some nodes and use an algorithm called adaptive virtual partitioning to split the
tables into virtual partitions that are used to execute parts of the query using a middleware. They
evaluate their work on the TPC-H benchmark and show that it is competitive with a full replication
of all tables. Because they only provide relative scaling experiments and a relative comparison with
the the fully replicated case but no absolute running time, we cannot give a quantitative comparison
to our results. However, it is clear that their approach needs significantly more memory than our
solution due to replication of the dimension tables and partitions of the fact tables. Also, they only
evaluate their implementation on a SF = 5 TPC-H database which is a factor 6 000 less then our
experiments.

Han et al. [20] and Karanasos et al. [23] both present their approaches to query optimization for
distributed query execution by re-optimizing during execution using accurate statistic information
about the data at the current stage of query execution. As we optimize query execution by hand,

4



Orders
SF ∗ 1.5M

Customer
SF ∗ 0.15M

Lineitem
SF ∗ 6M

Nation
25 (replicated)

Region
5 (replicated)

Partsupp
SF ∗ 0.8M

Part
SF ∗ 0.2M

Supplier
SF ∗ 0.01M

Local access (one-to-many)
Remote access (one-to-many)

Figure 1: Database tables specified by TPC-H

our work is complementary to theirs, providing insights in possible choices for the optimizer. In
particular Karanasos et al. [23] show that collecting information such as the selectivity of predicates
before query optimization only causes minor overhead. This accurate information is required to
determine which of the strategies we use in this paper is most efficient.

3 Distributed Query Execution

In this section we present our approach to distributed query execution in a shared-nothing environment
where all nodes are identical and none plays a special role. We consider these assumptions important
for scalability. The next section describes the data distribution of our system. After that we present
several classes for systematic and efficient query execution in the distributed environment. Finally,
several optimization examples follow.

3.1 Data Distribution

In many cases, for the distributed execution of OLAP queries, only the fact tables get partitioned
across the nodes, while the dimension tables get replicated across all nodes. This has the benefit,
that most joins between tables can be evaluated locally, eliminating most of the challenges we had to
overcome. The main disadvantage, however, is that these solutions cannot scale well due to significant
memory consumption by the replicated tables. To support full scalability and large database sizes,
we need to minimize replicated data and maximize the usage of the available main memory. In
general, we distribute all tables by partitioning them across the nodes. Only in extreme cases where
a table has a small constant size, we replicate the table across all nodes. As a result, each node holds
1/P of the tuples of each distributed table, where P is the number of nodes. There are three basic
partitioning strategies: range-based, round-robin and hashing [10]. We use range-based partitioning,
which is sufficient for synthetic data like in the TPC-H benchmark and also simplifies data generation.
We also use co-partitioning [16], i.e., for two tables with closely related tuples defined by a foreign
key relation, we store corresponding tuples in partitions on the same node. With this, equi-joins
on the foreign key relation can be evaluated locally and additional communication is avoided. In
our experiments with the database benchmark TPC-H, for example, we use co-partitioning for the
tables lineitem and orders and for part and partsupp. See a detailed TPC-H table schema in Fig. 1.
The schema is extended by a data locality property for foreign key relations. Dashed edges show
remote access joins and indicate that the joined tuples can be located in a different partition. Joins
on solid edges can be performed locally.
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In general, range partitioning can lead to load imbalances, e.g., if a filter predicate qualifies only
tuples within a single range of the partitioning key. In a productive system we would, therefore,
rather use hash based partitioning to obtain a reasonable load balance for arbitrary access patterns.
With small modifications, the concepts used here also apply to other partitioning strategies.

3.2 Efficient Solutions for Data Exchange

We now present ways to reduce the communication effort, especially for remote join paths. After
a brief discussion of general techniques, we develop more specialized solutions, e.g., by improving
filters on remote attributes, and by exchanging bit-reduced, estimated values.

3.2.1 Data Compression for Reducing Communication Volume

For the queries we often have to exchange sets of integers (e.g., primary keys, or positions in
dictionaries), or, equivalently, very sparse bitsets. Both can be represented by an increasing sequence
of integers. These can be compressed by encoding only the differences between subsequent numbers
(delta encoding). Various variable-length codes are available for compressing the differences. On
the high bandwidth networks we use, we face a trade-off between computation and communication
overhead that requires careful (shared-memory parallel and vectorized) implementation of the codecs.
We use the FastPFor library [27], which offers a good compromise in that respect. For unsorted
data, dictionary based compression is more effective. Here, the LZ41 library gives a good trade-off
between speed and compression.

3.2.2 Filter on Remote Attribute

Consider the case that the query graph contains a remote join path and the referenced remote
attribute is filtered (e.g. “WHERE x.nation=[nation]”, with x as a remote relation). In particular,
the (remote) join partners that are qualified by the filter predicate should be determined. If no
column of the remote join partner is used for the output, this is called a semi-join. We use two
different solutions for this problem depending on the table sizes and the selectivity of the filter.

Alternative 1 is to collect all keys required by the join after all locally evaluable filters are
processed and request them from the remote node. As all local work has been done, this is the latest
point in time possible. Evaluating local predicates before performing joins has also be found to
be beneficial in other work (e.g. Karanasos et al. [23]). The receiving nodes select qualified rows
for the join partner and return a bitset answering for each requested key the question whether the
corresponding row qualifies with respect to the filter or not. Using this solution, the amount of
additional space required on each node for the filter is independent from the overall size of the table.
Both the sets of requested keys and the reply can be compressed.

Alternative 2 is to filter the remote attribute (join column) and materializing the results as a
bitset. Afterwards, the complete bitset is replicated over all nodes (e.g., using the MPI operation
all_gather). Once more, this bitset can be compressed. With this, we avoid the explicit transmission
of the required keys. We can profit in cases where most nodes address a significant fraction of the
remote table anyway or when the remote filter is highly selective. In that latter case, an additional
benefit is that local work can be reduced by applying the remote filter first which is just an access to
the replicated bitset.

1github.com/Cyan4973/lz4
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In a productive system, the choice between these two alternatives can be made by estimating the
selectivity of local and remote filters using sampling. Using the known table sizes, the number of nodes,
and appropriate models for the cost of the collective communication operations [4], one can then
approximate the overall cost of both alternatives. Karanasos et al. [23] show that performing a pilot
run to collect these information only has little overhead. To make this more concrete, we estimate
the number of bits communicated by each node assuming random distribution of data, information
theoretically optimal compression, P nodes, n requests generated after local filtering (n/P per node),
a remote table of size m and γm rows of the remote table surviving remote filtering. Alternative 1
then requires n/P logmp/n bits of communication.2 Alternative 2 communicates γm log 1/γ bits.

3.2.3 Selecting the Global top-k Results From Local Ones

A prominent pattern of decision support queries is aggregating values by key and returning only
the top-k results. Assuming that the data is partitioned by the key used for aggregation, we can
aggregate locally and then identify the global top-k elements among the results. This is the classical
selection problem in a distributed setting. Asymptotically efficient algorithms have been considered
in the literature (e.g. [22]). Here we consider simple, pragmatic solutions. First, it makes sense
to identify the local top-k results on each processor. A naïve solution would then be to gather all
P · k results on one root node, sort them and only keep the first k rows. By making use of the
collective reduce operation, we can reduce the communication effort: The input to the reduction are
the k-vectors of locally largest values sorted in descending order. Every time the messages of two
nodes get combined by the reduce function, we merge the two (sorted) arrays and only keep the first
k rows. Since the messages sizes for both solutions are equal, the bottleneck communication volume
for the reduce operation is logarithmic in the number of MPI processes in contrast to linear for the
gather operation, we take some load off the network with this approach.

3.2.4 Filtering top-k results

Now consider a similar situation as in Section 3.2.3. Aggregation is possible locally but now some of
the keys are disqualified, e.g. by a filter condition. The interesting case is when the filter qualifying
or disqualifying the keys lies on a remote join path. We use an algorithm that reduces communication
overhead by evaluating the remote filter in a lazy fashion. We request the filter results only for
chunks of so far unfiltered elements that have locally largest values. Assuming that a fraction p of the
keys qualify for the result, we only need to communicate data for expected k/p keys instead of all the
keys. This iteration ends when each PE has identified k elements that pass the filter condition. Then
the globally best elements are determined as in Section 3.2.3. If p is very small, one can optionally
run a global top-k identification from time to time. Only PEs that still have unfiltered elements
larger than the globally k-largest filtered elements then need to continue filtering.

3.2.5 Top-k Selection on Distributed Results

A more difficult case is when the values to be aggregated are not partitioned by key. The complete
aggregate of each key is found by aggregating the partial results from all nodes. One naïve solution
for this problem is to compute all complete aggregate results from the partial results and determine
the top-k results afterwards. However, in the case of many keys and small k, the communication

2This expression only makes sense if n/p < m. However for n/p > m, Alternative 2 is better anyway.
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overhead for this operation can be very high compared to the final result size. There has been a
lot of previous work for solving this problem efficiently, for example, the threshold algorithm by
Fagin et al. [13] or TPUT by Cao et al. [6]. Unfortunately, these algorithms do not perform well
with the aggregation function SUM if we have the same independent value distribution of the partial
sums across the nodes. In this case, the final aggregated sums follow a normal distribution and both
algorithms communicate almost all partial sums before selecting the top-k.

For this situation we propose a new distributed algorithm that communicates only several bits of
all partial sums. Full values are only communicated for a small set of top-k candidates. A detailed
description of the algorithm follows.

In the first step, we approximate each partial sum by only m bits of the number. To skip leading
zeros, the m bits begin at an offset which is shared by a group of keys (e.g., 1024). The offset is
equal to the position of the highest one-bit of all numbers within the group. These m bits are only
an approximation of the values as lower bits are missing. Still, we can compute a maximal and
minimal error (all lower bits are one and zero, respectively). Each node is now responsible for a
range of keys, which are distributed by a personalized all-to-all message such that each node receives
all encoded sums for its key-range. We further compute a lower and upper bound for each decoded
partial sum and sum them up by key, resulting in an upper and lower bound for the total sum per
key. A collective reduce operation determines the global k-th highest lower bound. Each key with
an upper bound below the k-th highest lower bound cannot be part of the top-k results anymore
and is, therefore, discarded. After that, each node requests the full partial sums for its remaining
keys, which is expected to be a small set. In a final step, the k-th highest total sums are determined
across the nodes.

Using a larger number for the number of bits m increases the message size in the first step but
also improves the lower and upper bound afterwards. In our experiments, we applied this algorithm
in query 15 of the TPC-H benchmark reducing the communicated data volume by a factor of 8
compared to the naïve solution (see Section 5.3.1).

3.2.6 Tuning Basic Communication Functions

For communication between the nodes, we use collective operations provided by our MPI imple-
mentation. Here, operations like all-to-all, gather or reduction are implemented in an efficient and
usually non-trivial way. But even a dedicated framework like MPI can suffer performance problems
at certain functions, which we noticed during experiments for all-to-all in our OpenMPI library
v1.8.4 implementation. The average all-to-all throughput of sent data per node changed from 0.5GB/s
to 2.5GB/s when switching from 12 nodes to 16 nodes. Also, we noticed a high variance between
different runs.

To tackle the performance problem, we use our own implementation of a personalized all-to-all
communication using the 1-factor algorithm [36]. It uses non-blocking send and receive calls for
point-to-point messages exchange. The algorithm requires O(P ) communication rounds for pairing
each node with each other node and is thus linear in the number of nodes. A communication
partner of u in round i is vi(u) = (i− u) mod p.3 The 1-factor algorithm is faster compared to the
library-provided all-to-all by at least a factor of two in our micro-benchmark.

3Note that u is also the partner of vi(u), which can be seen by evaluating vi(vi(u)) = (i−((i−u) mod p)) mod p = u
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3.2.7 Late Materialization

Analytical query results often consist only of a small number of rows as the answer should remain
human-readable. Actually, this is true for all 22 query results of the TPC-H benchmark and usually
achieved by small group-by cardinalities or selecting only the top k results. Consequently, we delay
the gathering of secondary attributes in the result set that are not involved in the actual query
computation (e.g. in TPC-H query 15: s_name, s_address, s_phone). This way, the secondary
attributes do not slow down the main query computation. When the final result is collected on a
single node, we can request the attributes by one collective scatter operator and receive them by a
collective gather operation both in O(logP ) steps, where P is the number of processors.

4 Application in TPC-H

4.1 TPC-H

The TPC-H benchmark is used to measure the performance of database systems for decision support
(OLAP) queries [33,40]. We use the data generator defined by the benchmark and check the query
results for correctness. We do not change the ordering of the rows in the tables. Each table is split
into P (number of nodes) chunks and chunk i is generated directly in main memory on node with
rank i using the following dbgen parameters: -s 〈SF 〉 -S 〈rank〉 -C 〈P 〉. Only the tables NATION
and REGION with both at most 25 rows are not split and replicated across all nodes. We implement
11 out of 22 TPC-H queries covering several aspects like filtering, small and large aggregations and
different join types. Section 4.3 gives a detailed description of the queries.

To allow fair comparison with other systems, we comply with the official TPC-H rules as far as
possible. In particular, we follow the rules for sorting relations, data structures, and join indexes,
which are created transparently between all foreign keys. Still, we do not provide the full functionality
of a DBMS: We do not support ACID, updates, and the execution of arbitrary SQL statements. See
the discussion on future work in Section 6 for more details.

4.2 Parallelization

We use a hybrid parallelization approach for the implementation combining inter-node and intra-
node parallelism. For the inter-node parallelism we use the open standard MPI (message passing
interface), which provides collective communication operations for remote data exchange [18]. Our
MPI implementation is Open MPI [17], an open source implementation of the MPI specification.
The collective operations used by our algorithms are gather (collecting a message from each node
at root), allgather (like gather but every node gets the messages from all nodes), scatter (send a
message to each node from root), all-to-all (every node exchanges a message with every node), reduce
(every node has a message, all messages are the same size, and an operator is applied when joining
two messages, the result lies on one root node) and allreduce (like reduce but every node gets the
result). Moreover, we implement user-defined reduce operators for an efficient result aggregation as
well as customized MPI data types.

Besides MPI, intra-node parallelism based on shared-memory is realized by using OpenMP for
simple loop parallelization and TBB (Intel Threading Building Blocks), a template library for C++
that offers an abstraction of thread management [34]. In general we apply data-parallelism and
logically partition the input into several parts for processing using “parallel_for” and “parallel_reduce”
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of the TBB framework, providing work stealing and load balancing between the threads. This way
we take full advantage of the available intra-node parallelism.

4.3 The Implemented Queries

We select queries 1, 2, 3, 4, 5, 11, 13, 14, 15, 18 and 21 from the 22 TPC-H queries with the objective
to cover various challenges and access patterns for distributed execution. Appendix A discusses the
remaining queries, indicating that only few of them would raise additional questions. There is also a
certain focus on expensive queries.

Query 1 performs a large aggregation and accesses only a single table, providing the top ten
unshipped orders based on the potential revenue per order. It is the most used query in related work.

Query 4 refers to two co-partitioned tables. It counts per order priority (5 distinct values) the
number of orders, which contain delayed lineitems to estimate the quality of the order priority
system.

Query 18 also uses two co-partitioned tables. It only accesses remote attributes for the result
output. It determines the top-100 customers based on the property of having placed a large quantity
order.

The remaining queries have significant remote data dependencies, which means that join partners
can be stored on a different partition.

Query 2 uses none of the fact tables but has a remote filter attribute to determine qualified
suppliers and get the top-100 results.

Query 3 uses two fact tables and one remote attribute as filter to provide the top ten unshipped
orders based on the potential revenue per order.

Query 5 uses one fact table and two filter attributes on remote join paths. The result consists of
only five rows.

Query 11 uses no fact table and has no locally evaluable filter. It has a filter on a remote attribute
and a threshold filter that is dependent on a global aggregation.

Query 13 uses one fact table and a filter attribute on a remote join path. It also groups by a key
on that remote join path.

Query 14 uses one fact table and a remote filter attribute. The result consists of only one row
and is computable using two aggregates.

Query 15 uses one fact table and remote attributes for result output. It produces a large
intermediate set of partial results (grouped by a remote key) where we want to find the top-1 element
only.

Query 21 is similar to query 15 but additionally applies a remote filter during aggregation.
We continue with a detailed implementation description for each query. Note that we perform

local aggregations of a query using shared-memory parallelism (as described in [9] where applicable)
and we do not mention them explicitly. We encourage the reader to check the SQL code for the
queries from the TPC-H specification in order to follow the detailed descriptions.

Query 1 (pricing summary report) reports the overall amount of business that was billed, shipped
and returned within a time interval. At first, the query aggregates a key figure based on the lineitem
table. The aggregates are grouped by two possible returnflags and three different values of linestatus.
Therefore, the distributed result set has 6 entries at most. Second, we use the collective reduce
operation to aggregate the distributed results. A custom reduce operator merges the partial result
sets by returnflags and linestatus.
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Query 2 (minimum cost supplier) finds for each part of a given size and type the supplier from
a given region with the lowest price for that part and returns the top-100 results ordered by the
suppliers account balances. After filtering by size and type, only 0.4% of the partsupps remain to
be filtered by the suppliers region, so we request these filter results explicitly. After we found all
suppliers that qualify for the result, we send this information to the corresponding nodes, sort the
suppliers by their account balance and derive a global result using a custom reduce function. As
the query uses some columns that are not required for computing the top-100 results, we can safe a
significant amount of communication time by materializing these columns at the latest point in time
possible, which is when the global top-100 results are found.

Query 3 (shipping priority) provides the top ten unshipped orders based on the potential revenue
per order. We implement two versions for this query. For the first version, we transform the query
into two sub-queries to resolve remote dependencies. The first sub-query computes an intermediate
result by applying the second solution from Section 3.2.2, where a filter is evaluated on a join
attribute to qualify customers by their nation. Afterwards, the intermediate results are redistributed.
The second sub-query uses the intermediate result to filter and aggregate. Thus, it operates on
locally available data. Finally, each node keeps the local top-ten result tuples.
For the second version, we use the solution from Section 3.2.4. We first aggregate and filter with the
locally available information. We then sort the orders by their revenue and request the filter result
on the customers market segment until we have found the top ten results on each node.
A collective reduce operation gains the global top-ten in both versions. In particular, we implement
a custom reduce operator that selects the top-ten of two incoming local top-ten lists.

Query 4 (order priority checking) counts per order priority (5 distinct values) the number of
orders, which contain delayed lineitems to estimate the quality of the order priority system. The
lineitems of a qualified order are aggregated by the corresponding priority. The distributed results
are aggregated using a collective reduction.

Query 5 (local supplier volume) lists the revenue done through customers and suppliers from the
same nation during the period of one year in a given region. Due to the small size of the supplier
table, we distribute their nation over all nodes. We then filter the orders by year and the suppliers
region and request the nations for all required customers. After receiving the nations, we filter by
the customers nation, group the orders and derive a global result by a collective reduce operation.

Query 11 (important stock identification) reports the parts that are (in terms of value) most
available in a given nation. Because there is no locally evaluable filter, we distribute the filter result
on the suppliers nation over all nodes. We then calculate the total value of all available parts in
the given nation locally and derive the global sum using the allreduce operation. After that we can
select all qualified parts and gather them on one node.

Query 13 (customer distribution) reports how many customers have placed 1, 2, 3, . . . orders.
Only orders matching a filter condition qualify. We split this query into two sub-queries. First,
we get all customers of qualified orders and send their keys to the corresponding nodes. We then
compute a local result and derive the global result.

Query 14 (promotion effect) calculates the fraction of revenue done by special parts over all
revenues during one month. We split this query into two subqueries. First, we filter the lineitems
by date. We then request the filter on the remote join path to the parts and calculate the total
revenue as well as the revenue done through promotion parts. After that, we reduce the global and
the promotion revenue to the root node in order to calculate the final result.

Query 15 (top supplier) determines the suppliers with a maximum total revenue based on
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lineitems within a specified time interval. We split the original query into two sub-queries for
resolving the remote dependencies. The first sub-query aggregates the revenue per supplier. The
join path to supplier is remote. Hence, every node has knowledge only of the partial revenue per
supplier. The output should contain the maximum revenue and the related suppliers. Consequently,
we apply our top-k selection algorithm with value approximation (see Section 3.2.5) to determine
the maximum total revenue. Alternatively, we also implemented the simple solution of redistributing
all partial sums to their corresponding nodes (determined by their partition key), aggregate them
and select the maximum. We expect a better performance of the approximation algorithm over the
simple solution.

Query 18 (large volume customer) determines the top-100 customers based on the property of
having placed a large quantity order. The query aggregates lineitems and reports the top-100. In a
first step, the local top-100 are determined. Afterwards, the local results are reduced to select the
global top-100. The result output contains attributes of remote join paths. Therefore, we request
the remote attributes for the 100 tuples and collect them.

Query 21 (suppliers who kept orders waiting) lists those suppliers of a specified nation who were
part of a multisupplier order and were the only supplier delaying the order. We implement two
versions for this query. For the first version we transform the query into three sub-queries. The
first sub-query computes an intermediate result by evaluating a filter on the join attribute (see the
second solution from Section 3.2.2) qualifying suppliers by their nation. The intermediate results are
redistributed and used in the second sub-query to filter tuples during the aggregation. In particular,
the aggregate is grouped by a remote attribute, which implies a distributed result among the nodes.
The partial results are aggregated within a third sub-query to select the final top-ten tuples.
For the second version we compute the intermediate result without the filter on the suppliers nation.
We then request the filter result for the suppliers nation for all suppliers that hold up at least one
delayed shipment (see the first solution from Section 3.2.2). For every qualified supplier, the number
of delayed shipments is then gathered at their corresponding nodes.
The local top 100 suppliers are kept and the global result is determined using a collective reduce
operation.

5 Evaluation

In this section, we evaluate the combination of a clustered query execution using message passing for
the inter-node communication, with shared-memory parallelism on each node and highly optimized
algorithms. In this context, all tables (except extremely small tables with ≤ 50 rows) are range-
partitioned without table replication. For query 3 and 21, we also evaluate the behavior if the remote
join attribute is replicated.

5.1 Methodology

We measure the running time and scalability of the implemented queries to evaluate our contribution.
In this context, weakly scaled factors are used to linearly scale up the input size with the number of
computation nodes [5]. This approach simulates the case of an end user who wants to run distributed
queries on a growing database. The configurations for {#nodes, scale factor} were {2i; 100 · 2i} for
i = 0..7. We briefly introduce the technical method that was used in the implemented prototype
for measuring the experiments. At first, we synchronize the nodes with a barrier before each query
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run. Second, we measured the walltime for the complete query execution. The walltime is used
because communication times are hidden from the local CPU time [3] but should be considered in
the measures. Third, in order to get an accumulated communication time per query, we also track
the running time of occurring MPI communication operations. In detail, the walltime values of
each node were aggregated on the root node to determine the mean running time over all nodes.
Additionally, specific checkpoints were tracked by using the CPU time. Those detailed measures
allow the evaluation of shared-memory parallelism.

5.2 Experimental Setup

For our experiments we use a cluster where each node has 64GB main memory and two E5-2670
Intel Xeon octa-cores with 2.6GHz, 8× 256KB L2 cache, and 20MB L3 cache. Up to 128 out of
400 nodes are available per user. The nodes are connected using InfiniBand 4X QDR. According
to the cluster user manual, the point-to-point network bandwidth is more than 3 700MB/s with a
latency about 1µs. We ran micro-benchmarks to measure the real throughput, (a) using explicit
send/receive (between two nodes 3 480MB/s) and (b) using a personalized all-to-all (between 2− 8
nodes ≈ 3 000MB/s, P ≥ 16 :< 2 400MB/s in Open MPI v1.8.4). The experienced throughput is,
therefore, lower than promised. This observation is critical because we use only collective operations
for inter-node synchronization, such as all-to-all. The cluster (thin nodes) allows a theoretical
maximum main-memory usage of 8TB. A Suse Linux Enterprise (SLES) 11 runs on every node. We
compile our implementation with GCC 4.8.5 (optimization level -O3) and use Open MPI 1.8.4 as
message passing library.

5.3 Experiments

The results of our first experiment are presented in Fig. 2, which contains the plotted running times
and Fig. 3, which contains the percentage of time spent for communication, both for weakly scaled
factors. Some queries have been tested in several variants. Label late stands for the first method
of remote filtering described in Section 3.2.2 – request data after local filtering. Label repl(icate)
stands for a version where the table on the remote join path is replicated over all nodes, allowing a
local evaluation of the join. Label lazy refers to the top-k filtering method from Section 3.2.4. The
versions of query 3 and 21 without any addition use the second method from Section 3.2.2.

Queries 1, 4 and 18 only require data during the aggregation which are available on the node’s
partition. In this context, we expected a constant running time in the weak scaling experiment.
As evident from Fig. 2, the running times were nearly constant. The maximum scale factor of the
experiment was 12, 800 on 128 nodes. In the experiment, the queries 4 and 18 required around
80–130ms, whereas query 1 requires ≈ 270ms for execution.

The main challenge for queries with join paths to tuples on a non-local partition (queries 2, 3,
5,11, 13, 14, 15, 21) was the reduction of intermediate communications. Those communications
represent an inherent sequential part of the query execution and moreover, the message sizes depend
on the scale factor. Therefore, it is required to keep them small enough to gain good scale up
characteristics in order to increase the number of nodes (P ) for growing hardware and computation
demands. The running times for weakly scaled factors should increase for larger P because of an
increased communication effort for joining or redistributing intermediate sub-query results.
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As can be seen in Fig. 2, the running times of queries 3, 15 and 21 (without replication) increased
with P and its corresponding scale factor. Nevertheless, the running time did not double for a
doubled input size and factor two more nodes. For example, the execution of query 15 took four
times longer on 64 nodes than on one node, although the amount of processed data was 64 times
higher. The observed increasing running time can be explained with an increasing communication
effort since the number of communicated elements doubled for each step on the x-axis.
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Figure 2: Experimental results (SF = 100 · P ) - runtime
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Figure 3: Experimental results (SF = 100 · P ) - communication

For the first versions of queries 3 and 21, we evaluate a filter attribute in the first step within a
sub-query. The intermediate result size depends linearly on the scale factor and thus the running
time increased. In a second sub-query, the redistributed intermediate results were joined during
the actual aggregation. In this context, we expected the increasing running time for query 3 and
a part of the increased running time for query 21 with growing communication costs because of a
doubled intermediate result size for a doubled scale factor. For the second version of query 3 (lazy)
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and 21 (late), we execute the query without the remote filter and request the results for required
keys at a later stage. We expected a better scaling behavior for these versions because every node
only requests a constant number of filter results in weak scaling experiments and only a proportion
of the rows are accessed on the remote join path. We did, however, expect slower runtimes for lower
number of nodes because we can’t perform the whole aggregation step in one run without the results
from the remote join path.

We also test alternative implementations of queries 3 (repl.) and 21 (repl.) where we replicate
the remote join attribute to eliminate the remote dependency. Here, the applied strategy for query
3 resulted in constant running time. This is very fast because only at the end we need one collective
reduce communication with a fixed-size to collect the final result set.

In contrast to query 3, query 21 scaled worse and did not provide constant running times with the
replicated join attribute. This effect can be explained by a second remote dependency, namely the
remote group-by key of the aggregation. Tuples consisting of group-by key and partial aggregate are
merged and aggregated by using a custom reduce operator. The number of partial results increases
with the scale factor and, therefore, this operation clearly dominates the running time for larger P .
We did not apply our top-k selection by value approximation for query 21 because the integer words
of the partial sums are very small.

Overall, we see that the scaling behavior for execution plans that request filter results explicitly
(queries 2, 3 (lazy), 5, 13, 14) is considerably better than for execution plans that exchange a global
filter result over all nodes (queries 3, 11, 21). This can be accounted to the increasing communication
time required for the allgather operation when adding more data and nodes. However, for lower
number of nodes we observe faster running times when exchanging a full bitset due to faster local
processing.

For queries 5, 13 and 14, a considerable amount of time is spent sorting keys before sending them
to other nodes resulting in long overall execution times. The first reason for this is to construct the
individual messages, however, this can be avoided by the use of simple indexes. The second reason
for sorting is for better compression rates. We decided to accept this loss in runtime because for
slower networks than ours, we assume faster execution times when keeping the message sizes as low
as possible.

5.3.1 Top-k Selection

Figure 2 shows the running times for query 15 using our top-k value approximation algorithm.
Because of weakly-scaled factors, the number of intermediate results doubles in every step and leads
to a growing query running time. We evaluate our algorithm (see Section 3.2.5) more precisely by
comparing three different implementations of query 15. We implemented the following variants:

1. a simple implementation which communicates the full values (64 bit required for each) of all
partial sums using the library-provided all-to-all algorithm

2. a simple implementation similar to 1) but using the 1-factor algorithm

3. an implementation which uses our top-k solution with approximated values (8 bit approxima-
tion).

The results of our experiments with a weakly scaled factor (SF = 100 · P ) can be seen in Fig. 4,
where all three bars are clustered and relate to the same number of nodes. A bar represents either
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Figure 4: Q15 – Actual and approximated values (SF = 100 · P )

the simple solution (every first two bars, black with MPI all-to-all and dark gray with 1-factor) or
our implemented top-k algorithm with value approximation (every third bar, gray). Light gray parts
identify the time used for the local aggregation and they are expected to be equal among the three
experiments.

First, the 1-factor implementation requires less communication time for the same amount of data
as the library-provided all-to-all algorithm for P > 2. Second, we compare the simple variants with
the top-k algorithm. We predicted lower running times for the approximative algorithm (gray bar)
due to a factor 8 less data to be exchanged – compared to exchanging the actual values (64 bit keys
originally, 8 bit for encoded values). For better comparison, we also used the 1-factor algorithm to
exchange the encoded values. The overhead of encoding and decoding the partial sums requires
computation time as well, but we parallelized it using multi-threading. Moreover, the intra-node
throughput with 14GB/s for encoding and 4GB/s for decoding (the decoding includes the required
aggregation of partial sums per key) are higher than the specified point-to-point network throughput
of 3700MB/s. Our prediction for the top-k algorithm with partial results approximation was correct
by observing speedups up to 2.3 over the simple approach (with 1-factor).

5.4 Intra-node parallelism

A further experiment allows evaluating the effect of intra-node parallelism on query running times.
Note that each cluster node contains 16 physical cores and Hyper-Threading is enabled. We
used weakly-scaled factors and run the queries on 128 nodes. Next, the relative speedups of the
weakly-scaled experiments with enabled multi-threading over the single-threaded running times were
calculated for each query. The speedups are shown in Table 1. The queries which require little
communication achieve high speedup of 18–24, even more than the factor 16 to be expected from
the number of cores. The speedup is lower for the communication-bound queries. But even there we
achieve speedups of up to 6.
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Table 1: Speedup of intra-node parallelism (128 nodes)

Query Speedup Query Speedup
1 18.7 13 4.7
2 2.5 14 6.0
3 5.9 15 3.1
3 (lazy) 8.2 18 24.2
4 18.1 21 5.7
5 6.6 21 (late) 5.9
11 1.8

5.5 Comparison with TPC-H Record Holder

We execute an additional test series with SF = 10 000 on 60 nodes and with SF = 30 000 on
128 nodes in order to compare our results to the current TPC-H record holder. The current record
holder for Scalefactors 10 000, 30 000 and 100 000 is EXASolution 5.0 on a Dell PowerEdge 720xd.
Each machine has two Intel Xeon E5-2680v2 10C 2.8GHz processors with 10 cores per chip. 4

In the official results for SF = 10 000, EXASolution 5.0 is run on 34 Dell PowerEdge R720xd
nodes. However, we cannot run our implementation on only 34 with SF = 10 000 because our
system does not have enough memory. Thus, we also provide a comparison to the second best result
for SF = 10 000 which is EXASolution 4.0 an a Dell PowerEdge 710 with 60 nodes. Each node
has 72GB RAM and they use two Intel Xeon X5690 QC 3.46GHz, each chip with six cores. Both
systems contain 60 nodes. The total RAM of the EXASol cluster is 4320GB whereas our cluster has
3840GB of RAM available. The interconnection between the nodes is realized by an InfiniBand 4X
QDR network, which is the same as in our cluster.

The results are provided in Table 2, where we show for each query: our running time, the running
time of EXASol, and the factor by which we are faster than the competitor. As can be seen, the
running times of our implementation are better by a factor of up to 50 compared to EXASolution
4.0. The comparison with EXASolution 5.0 is only of limited significance because of the use of
less machines. At the one hand less nodes naturally yield less parallelism, one the other hand
the communication overhead is reduced because more work can be done locally. Compared to
EXASolution 5.0 our results are better by a factor of up to 56 for SF = 10 000 and up to 101 for
SF = 30 000.

As our cluster uses different machines than EXASol we provided SPECintrate numbers of the
SPEC 2006 benchmark [21] for comparison 5.

6 Conclusion and Future Work

We have demonstrated that distributed query execution using message passing in the combination
with intra-node shared-memory parallelism can be performed very efficiently in a cluster. We

4State of August 29, 2017
5The TPC-H benchmark for EXASolution 5.0 was run on a Dell PowerEdge 720xd, whereas the SPECintrate

benchmark was run on a Dell PowerEdge 720. The two models differ in the maximum number of internally mounted
disks, which is not of interest for our comparison. Also, the memory configuration was different for the two benchmarks.
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Table 2: Power test, our system and current record holder. SPEC values
are SPECintrate from [38].

SF = 10 000 SF = 30 000

Query We EXASol 4.0 EXASol 5.0 We EXASol 5.0
in [ s] in [ s] factor in [ s] factor in [ s] in [ s] factor

1 0.442 10.6 24.0 8.1 18.3 0.625 20.7 33.1
2 0.063 1.1 17.5 0.9 14.3 0.093 2.0 21.5
3 0.945 6.9 7.3 6.7 7.1 2.786 16.0 5.7
3lazy 0.610 6.9 11.3 6.7 11.0 0.867 16.0 18.5
4 0.137 1.8 13.1 1.8 13.1 0.124 4.1 33.0
5 2.539 7.2 2.8 4.2 1.7 1.463 11.5 7.9
11 0.404 15.0 37.1 12.1 30.0 0.688 35.6 51.7
13 6.833 8.8 1.3 7.8 1.1 4.548 21.1 4.6
14 1.091 2.7 2.5 3.0 2.7 1.659 7.9 4.8
15 1.156 10.8 9.3 11.4 9.9 3.331 29.9 9.0
18 0.212 10.8 50.9 11.9 56.1 0.301 30.5 101.3
21 1.122 30.6 27.2 3.9 3.5 2.306 10.3 4.5
21late 0.869 30.6 35.2 3.9 4.5 1.501 10.3 6.9
SPEC 625 419 0.7 827 1.3 625 827 1.3
Nodes 60 60 1.0 34 0.6 128 40 0.3
RAM 3.8TB 4.3TB 1.1 5.4TB 1.4 8.2TB 12.8TB 1.6

developed several techniques for resolving remote data dependency by using efficient communication
algorithms. Moreover, we demonstrated the application of our concepts on a subset of TPC-H
benchmark queries. The evaluation showed that we are able to query large amounts of data with
short response times using a cluster and combining sophisticated collective operations (from MPI),
multi-threading and efficient algorithms. In particular, we efficiently implemented clustered SQL
query execution with data sets of up to 30 000GB of uncompressed data in main memory and
achieved query running times with a factor of one to two orders of magnitudes faster than one of the
best results reported for clustered execution of TPC-H on scale factor 10 000.

Future Work In this work, the individual query plans with its physical operators are chosen
manually and then translated into static C++ functions. To allow the execution of arbitrary SQL
queries the system must be enhanced by two components: First, a cost based optimizer having all
information at hand to choose a cost optimal query plan. Second, a compiler translating the query
plan into native code parts, such that the resulting executable code is equal or similar to the C++
functions in this work. With this, the additional execution time to allow dynamic arbitrary queries is
mainly the time spent in these two components. We are currently working on a productive database
engine which already features a cost based optimizer and a query compiler compiling incoming
SQL queries into native code in the range of centiseconds. Using data volumes and queries as in
our evaluation, running times are dominated by the execution and not the compilation of plans.
Although not all algorithms and plans described in this work are yet integrated into the productive
system, we do not see any obstacle for doing so. Also, there are other systems demonstrating the
feasibility of such an approach with similar observations (see also Section 2)
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For larger systems with thousands of nodes, fault tolerance will become important because node
failures and other errors will be common place. The challenge here is to introduce some redundancy
without excessive cost.

We applied range partitioning and co-partitioning for specific tables because TPC-H uses synthetic
data and we could achieve a good load balance with those strategies. Nevertheless, there are also
adaptive partitioning methods like [39], adjusting the partitioning according to the current access
patterns and workload. Finally, we evaluated our implementation by using a high performance cluster
with a fast InfiniBand network for node interconnection. An application on commodity hardware
with slower networks is also an interesting use case as part of future work.
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6 Trivial local query.

7 Two remote filters (on customer and supplier nations). Planning is interesting: First query one
of the remote filters. The result size determines which strategy is best for the second filter.
Aggregation is cheap since the result is just 4 lines (2 years × 2 nations pairs).

8 Three remote filters. Similar issues as for Query 7.

9 Very expensive query. We have a remote data dependency on ps_supplycost and supplier nation.
The only filter condition is on colors which could be supported by a full text index. The filter
condition can be evaluated remotely and we only send the resulting supply costs. Aggregation
is cheap once more.

10 Rather selective local filters. We are aggregating on a remote key and thus might profit from the
top-k selection strategies described in Section 3.2.5.

12 Trivial local query.

16 Very selective local filter. Hence variant one of Section 3.2.2 is promising.

17 Filtering by remote attribute. No local filter.

19 Highly selective local filter. Hence Variant 1 from Section 3.2.2 is always best and we can expect
good scalability. There are remote filters on part. Aggregation of local data to a single value.

20 Rather complex with aggregation on a nonlocal key as a subquery. Several remote filter conditions.

22 Can be executed almost locally if orders and customers are copartitioned or if we have an index
mapping customers to orders.
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