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Abstract—We investigate ways in which to improve the in-  straightforward. The problem is exacerbated as document
terpretability of LDA topic models by better analyzing and  collections under consideration grow. For instance, wita t
visualizing their outputs. We focus on examining what we redr  existence of scalable, MapReduce implementations of LDA
to as topic similarity networks: graphs in which nodes represent (e g. [27], [29]), it is now possible to train an LDA model on
latent topics in text collections and links represent simirity — aggiye text corpora with many latent topiée.( big data).
among topics. We describe efficient and effective approache 4 jnferred topics discovered by these LDA implementation
to both building and labeling such networks. Visualizatiors . g .
of topic models based on these networks are shown to be a &7 themselves pose their own unique data challenge. IF IS
powerful means of exploring, characterizing, and summarimg ~ Often unclear on how best to effectively browse these topics
large collections of unstructured text documents. They hel to  to discover information of interest. This, in fact, tendsbwa
“tease out” non-obvious connections among different setsfo significant challenge even for large data (as opposed to “big
documents and provide insights into how topics form larger data”) — e.g.,document collections on the order of tens of
themes. We demonstrate the efficacy and practicality of thes thousands or hundreds of thousands. In the present work, we
approaches through two case studies: 1) NSF grants for basic jnvestigate the use of what we refer to tpic similarity
research spanning a 14 year period and 2) the entire English  networksto address these challeng@spic similarity networks
portion of Wikipedia. are graphs in which nodes represent latent topics in text
collections and links represent similarity among topice W
describe efficient and effective methods to both buildind an

In this paper, we study network visualizations as a meanibeling such networks.
of enhancing the interpretability of probabilistic topimdels
for insight discovery. We focus on what is perhaps the mos
popular and prevalently-used topic modédtent Dirichlet
allocation or LDA [5]. Topic modeling algorithms like LDA
discover latent themed.€., topics) in document collections
and represent documents as a combination of these themes.
Thus, they are critical tools for exploring text data acnossy
domains. Indeed, it is often the case that users missover
the subject matter buried within large and unfamiliar doean
sets é.g., sensemaking in text data). Keyword searches are
inadequate here, as it is unclear on where to even begin
searching. Topic discovery techniques such as LDA are a
boon to users in such scenarios, as they reveal the content
in an unsupervised and automated fashion. Automated topic
organization can potentially facilitate the comprehensid
unfamiliar document data on even a massive scale.

I. INTRODUCTION AND MOTIVATION

gummary of Contributions. Our contributions in both the
areas of topic visualization and topic labeling are sumpeaki
below.

1) Constructing Topic Similarity Networkdn Section
V] we describe the construction @bpic similarity
networks our approach to big data visualization. We
exploit these networks to discover how topics form
larger themes. We employ the use of community
detection in network visualizations to discover such
macro-level themes including the sometimes subtle
connections among these themes.

2) Labeling Topic Similarity Networkstn Section[V,
we describe an approach to expressively labeling
discovered topics. Our method, based on keyphrase

However, it is often quite challenging to obtain a “big extraction, is purely unsupervised, extractive, and
picture” view of the larger trends in a document collection demonstrably efficient. These labels are, then, em-
from only the raw output of an LDA model. LDA is fundamen- ployed as node labels in otopic similarity networks
tally a statistical tool that returns a probability distriton for to enable better characterization of large document
each document showing the relative presence (or absence) of sets. It is surprising to note that, to the best of
various discovered topics. These topics, in turn, are sgprted our knowledge, few of the existing works on topic
as probability distributions over words (typically unigra). visualization (discussed in the next section) make
Words with the highest estimated probabilities for a disred use of automated topic labeling methods. Our work,
topic are used as label for the topic. Exploring text corpora then, represents one of the first examinations of the
using only these raw outputs is considerably challenging. | efficacy of automated topic labeling in actual topic
order to derive insights and identify larger trends withire t visualizations of large, real-world data.

document collection, one is left to inspect these numerical
distributions, which can be difficult, non-trivial, and fiom There has been a wave of recent work to address challenges
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in both visualizing topics and labeling topics — each of wihic B. Labeling Topics

we discuss separately in light of our work. A topic similarity network is only useful as a visualization

tool if the identity of network nodes are easily discernible
Several visualization schemes label topics by simply using
A. Visualizing Topics the most probable word (or words) from the topic model
S(e.g.,[8], [15], [17]). However, LDA-derived labels have been
observed to not always be adequately expressive of the topic
(e.g.,see [[22], [[25], [28]). As a result, a number of methods
have been proposed to better label topics in an automated
fashion €.g.,[4], [16], [19], [22], [25], [2€]). Unfortunately,

for a variety of reasons, most of these existing techniques a
unable to handle the large text corpora we consider in this
Work. In Sectioh V, we describe our own method to label topics
Yo address gaps in this existing literature on topic lalgelin
To better motivate the use of our own labeling method, we
describe several goals that must be met by any labeling sshem

Il. BACKGROUND AND RELATED WORK

A number of both graphical and text-based visualization
and user interfaces have been proposed in the existingtliter
to browse topics€.qg.,[7], [9], [10], [14], [15], [19], [28]).
Several, likeTopicVizby Eisenstein et al._[14] antbpicNetsy
Gretarsson et al. [15], are quite innovative and make siamifi
strides towards improving the interpretability of learrtegic
models. However, most of these existing methods focus o
shedding light on the relationships between topics and -doc
ments (or attributes of documents). Although som.g.([15])
support the inference of pair-wise similarity between tgpi
they do not provide insights into how topics come togethe_r t or a topic similarity network in light of existing work on pic
form larger themes or the subtle connections among seeyning -

; i S . labeling.
disparate groups of topics. Such insights are important in
obtaining a “big picture” view of ill-understood document
collections. An exception to this rule is work aorrelated Unsupervised.The labeling method must be unsupervised, as
topic modelglor CTMs) and its variantse(g.,[2], [8], [17]). obtaining a training set for a supervised labeling methad ca
CTMs model and infer associations among topics. These assbe prohibitively expensive and time-consuming.
ciations can be further mined to produce clusters of togias t
represent larger themes for incorporation into visuaitires
These models, however, reveal certain challenges wheiedppl
in real-world scenarios. First, existing visualizatioraséd on
CTM and its variants do not appear to easily lend themselve
to extracting the kinds of insights mentioned above. Thitis
both to the way in which the topic relations are constructed a
depicted and also the way in which the topic nodes are label
(topic labeling is discussed in the next section). One mégrre
to [3], [8], [17] for examples of these existing visualizats
and for comparison to our visualizations shown later. Sécon
some approaches, such asli[17], artificially constrict thpécto
relation structure with specification of what are referrech$
supertopics, which can hinder a view of the subtle connestio
among different and seemingly disparate groups of topids an
subtopics. A third issue is related to practical scalabilthen  Supportive of User Interactivity. Topic similarity networks
et al. [8] showed that CTM is unable to process a corpus ofire intended for use witimteractivesystems utilizing full-text
285K documents in any reasonable time frame (it will not search and faceted navigation of documentg.(Solr search
finish within a week). Similarly, an approach to infer topic enginél). Under these scenarios, the documents comprising
hierarchies proposed by [25] is limited to short texts only.topics may be filtered in various wayafter creation of the
ScaCTM, a parallelized extension to CTM, was shown to bdopic model. For instance, in the government domain, only
substantially more scalable given a cluster of 40 mach/@ps [ those documents containing certain markings might be déeme
But, for certain domains, such machine clusters may not bef interest and selected in a visualization. Labels heavily
available at sites of deployment. In fact, it is often theecas associated with documents that have been filtered out may no
that only a single multi-core machine is available to preceslonger adequately describe the remaining documents pergai
millions of documents, as the storage capacity of today’d0 important sub-topics. Labeling methods that are tightly
machines often outstrips their processing capacity. Even icoupled with the topic modele(g., [4], [22], [25], [26])
scenarios where one has access to a large machine cluster, L@annot cope well with such dynamic scenarios. Moreoves, it i
is significantlymore scalable and efficient because it does noprohibitively expensive to re-generate the topic model loa t
learn the correlation structure among topics. (Sée [8] fima  filtered document collection. For these reasons, our lageli
complexity analysis of CTM, ScaCTM, and LDA). Given these method, described in Sectidnl V, is purposefully de-coupled
aforementioned issues and the clear scalability, effisiemed ~ from the output of LDA. Hence, it can re-label topics in
also prevalence of LDA, our objective in this work is to infer a filtered document collection without having to re-generat
these topic associations in an organic fashion from the rawhe topic model. Our labeling method, then, can best be
output of theoriginal LDA model. As we will describe in characterized as a cluster labeling approach to topicitael
Sectior 1V, we do so by constructitigpic similarity networks
networks depicting the similarity (represented as linkapag
topics (represented as nodes). Next, we discuss existimg wo
on the labeling of topics. Ihttps://lucene.apache.org/<olr

Extractive. The labeling method must be extractive. That is,
labels must be generated directly from the terms within the
corpus under consideration, as opposed to an externagnefer
Eorpus such as Wikipedia. This is especially important for
the government and corporate domains, which often deal

ith document collections describing sensitive or praarig
nformation, state-of-the-art “bleeding edge” technglogr
otherwise esoteric subject matter. Such information may no
reside in publicly available reference corpora like Wilde
This requirement prevents us from utilizing methods such
as [16], which employs the use of reference corpora when
labeling topics.

Efficient. Dynamic filtering of document collections, as
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described above, also necessitates a need for efficiency somplement of distance). Although symmetric versions of KL
the labeling approach. As the document collection is fittere divergence exist, we instead employ the Hellinger distance
in various ways, the labeling method might be repeatedlymetric to compute topic similarity. Specifically, for any dw
executed on a large document collection, which can beopicsz,y € {1... K}, the Hellinger similarity is measured
problematic for some existing labeling methods. For instan as:
we were unsuccessful in executing the approach[by [4] on

X e (W]

the document sets of interest in this work. The approaches by 1

[25] and [22] also do not appear to scale as easily or as well Hs(Be, By) =1 — 7 > (VBei—VByi) (D)

to larger collections of longer documents. The method from =1

[25], for example, was designed only for very short texts o

(e.g. titles only). A topic similarity networkG = (V, E') can be constructed
where V. = {v;...vk} is the set of nodes representing

discovered topics and? is the set of edges representing

These aforementioned issues motivate our developmegiMilarities among topics. For any two topiesy € {1... K},
of a custom labeling method for use with topic similarity an edge{v,,v,} € V exists if and only if Hs(8z, 8y) is
networks — a method that can scale to even massivareater than some pre-defined thresheld,

collections of documents. We begin a discussion of our work

with a brief overvigw of LDA and the notation and symbols Measuring Topic Similarity in MapReduce. Note that, when
used throughout this paper. constructing a topic similarity network as just describtus
number of computed similarities scales quadratically with

lll.  PRELIMINARIES However, sincek’ < | D|, the method remains computationally

Let D = {d,ds, ...,dy} represent a document collection viable even for very large document collections. Moreover,
of interest and letk be the number of topics or themes with some well-placed substitutiong,can be represented us-

in D. Each document is composed of a sequence of worddd @ sparse matrix format for efficient in-memory procegsin
d; = (wi1, wia, . . ., win, ), whereN; is the number of words in of massive document sets. (We currently employ a compressed

d; andi € {1...N}. Let W — UJ-V 7(d;) be the vocabulary sparse row format for storing and manipulatifig Neverthe—
0;‘ D, where .f'(.~) takes a sequé?li:e o% elements and returnéess’. for scenarios when even sparse representatiofisa
a se{ Probabilistic topic models like LDA takB and K unwieldy and a high degree of parallelization is desired, we

as input and produce two matrices as output. The matrifOPOS€e a MapReduce implementation of th? topip similarity
§ € RN*K is the document-topic distribution matrix and computation. When breaking down problems into distribletab

shows the distribution of topics within each document. Thetg't_svgruvgorgirusn;rzrgr]ne :\gaggggl:ﬁ: g?g%gg sﬁ?&?{ﬁ;?{gn
matrix 8 € REXIW1 is the topic-word distribution matrix and << P ploy -

shows the distribution of words in each topic. Each row ofOUr case, each cell in the matyikcan be represented as a key-

: L lue pair of the formi(: (j, 8;:)), wherei € {1...|W|} is
these matrices represents a probability distribution. &oy valu . JrIh . .
topici € {1,..., K}, the L terms with the highest probability tr}etrl]ndtex of a wordi(e., cczjlumn),ytf {1. bli)}l'ls tr}e mdde_x
in distribution g; are typically used as thematic labels for of the topic (.e., row), andg;; is the probability of wordi

the topic. We use these LDA-derived labels as a baseline fo"ilglpzaﬂangrégegig{%h l;fggggﬁ'ggl b%ﬂ'?gir;’]\’aet .tht?]'g aalk?g
comparison in our work. But first, we describe constructién o?( uf P kevi : umnt h 'S, fV ul
the topic similarity network. ist for any keyi € {1...|W|} comprises the set of tuples

{(4,B4i) | 7 € {1...K}}). The map operation accepts these
key-value pairs as input and outputs key-value pairs of the
form (z,y : e;), where the new key,y € {1... K} are pairs

LDA captures the degree to which both documents and®f topics appearing in the aforementioned values list ard th
words are topically related. However, relations among thevaluee; = (v/Bai — \/@)2, for each wordi € {1...|W]|}.
topics themselves amot explicitly captured. As we will show Thus, themap operation completes the inner expression for
shortly, such topic-level relations can be used to construdiellinger similarity (shown in Equatiof] 1) for every word
network representations of text corpora. These repreiemsa ~ represented in3. The reduce operation simply sums these
in turn, can be used to better understand, characterize, av@lues for every pair of topics and completes the Hellinger
visualize the themes in a document collection. In the priesersimilarity computation by taking the square root of this sum
work, we define these relations based on topic similarity. ~ multiplying by =, and subtracting from one. The resultant
network, constructed as described above, can be explated t
discover insights, trends, and patterns among the topids. in
For the present work, we employ the use of a community
detection algorithm to discover insights into how topice ar
related to each other and form larger themes.

IV. CONSTRUCTING THENETWORK

Measuring Topic Similarity. Recall that topics are repre-
sented as probability distributions over vocabuld#y and
captured by the matrix3. Thus, the similarity for any two
topics can be directly computed by comparing the word
distributions froms. The Kullback-Leibler (KL) divergence,

a distance measure of two probability distributions, isepft Discovering Larger Themes.A communitycan be loosely
used to make such comparisoresq(, [15], [28]). However, defined as a set of nodes more densely connected among
KL divergence satisfies neither the triangle inequality northemselves than to other nodes in the netwbrk [6]. Within the
symmetry and is, therefore, not a metric. As such, it is lesgontext of a topic similarity network, such communities shio
appropriate for defining network links based on similaritye(  represent groups of highly-related topics, which we refeag



topic groups To detect these communities (or topic groups),Algorithm 1 DOCSETLABELER algorithm

we employ the use of the Louvain algorithm, a heuristiCrequire: Dg c D, a subset of corpu®
method based on modularity optimizationl [6]. Modularity Require: C, the number of candidate terms to consider
measures the fraction of links falling within communities a Require: L, the number of labels to return for document skt C)

compared to the expected fraction if links were distribute 1
evenly in the network [23]. The algorithm initially assigeach Y
topic node to its own community. At each iteration, in a local 3:
and greedy fashion, topic nodes are re-assigned to comigminit 4:
with which it achieves the highest modularity. As a greedy >
optimization method, the Louvain algorithm is exceptidpal -
efficient and fast, even with a large number of topics. As g:
the authors of([6] note, the computational complexity of the 9:

method is unknown, but it experimentally appears to run int0:
O(nlogn) time. When the nodes in these constructed topicL:
similarity networks are marked by their inferred community 12

14:

affiliation and labeled to express the topics they represbat

networks become powerful tools for exploration and discpve 1s:
in large and heterogeneous text corpora. We discuss labelirié:

of topic nodes next. g:
19
V. LABELING THE NETWORK gtl)f

An algorithm capable of generating expressive thematié¢2: _ _ ,
. top_candidates = top C' labels based on information gain

4:

labels for any subset of documents in a corpus can greatlg?'
facilitate both characterization and navigation of docohuel- 5

dRequire: stopwords, list of terms to filter out

pos = a hash table

neg = a hash table

for all d € D do
terms! = extractSignificantPhrases(d, stopwords)
terms2 = extractNounPhrases(d, stopwords)
terms3 = extractProperNounUnigrams(d, stopwords)
candidates = (terms1 N terms2) U terms3
for all ¢ € candidates do

x = normalized frequency of term c i
index of first occurrence aof in d

y=1- num.ofv\éordsind
(weight of terme) = zfrj
end for
if dé&€ Dg then
pos[d] = top C terms based on weight
else
neg[d] = top C terms based on weight
end if
: end for
forall €€ U, epos.valyes) @ O

# compute information gain for each lal#el
(score of label) = calcScore(¥, pos, neg)
end for

# optionally re-sort final top candidates

. ’ . 25: top_candidates = re_sort(top_candidates)
lections. Here, we employ such an algorithm to label nodes ine:

return topL labels fromtop_candidates

a topic similarity network, as each node is a topic compgisin
a subset of documents in the corpus. Our approach, referred
to as DOCSETLABELER, is a purely unsupervised, extractive

method and shown in Algorithifd@ DoCSETLABELER takes
Dg, a subset of corpu®, as input, whereDg consists of

all documents associated with some LDA-discovered topi
t € {1...K}. This subset can be constructed in one of

two ways. The first is to populat®g with all documentsl;
(wherei € {1...N}) for which the topic proportiord;; is
greater than some pre-defined thresheld) (0.3 was used in
[28]). The second is to construdds by transforming topics
into mutually-exclusive clusters, where the topic clusfar

documentd; is argmax, 6;,. We employ the latter approach,
as it better eliminates noise contributed by foreign topics

(i.e., {1...K} — {t}). Labels for topict are, then, extracted
by DocSETLABELER directly from the text constituting the
documents inDg.

DOCSETLABELER is essentially adescriptive model of
topic labeling that follows naturally from four observedach
acteristics of high-quality, topic-representative |lah&xpres-
sivity, ProminencePrevalence and Discriminability.

(e.g., “LinearSVM,” “F-22"). Lines 4-6 in Algorithm[1 ex-
plicitly extract terms conforming to the above principles.

é\loun phrasés and proper nouns are extracted usingn-

pos an open-source, HMM-based, part-of-speech tdfjgée
extractSignificantPhrases(-) function uses likelihood ratio
tests to extract phrases of multiple words that occur tageth
more often than chanFor a bigram of wordsv; andws,
this associationassoc(-, -), is measured as:

(2)

T4
assoc(wy, wg) = 2 g n;j log #,
ij K

wheren;; are the observed frequencies of the bigram from
the contingency table fan, andw, andm;; are the expected
frequencies assuming that the bigram is independent [18}. O
phrases with a p-value less th@01 are extracted. These tests
can also be used to measure associations of words within n-
grams wherex > 3 (e.g.,trigrams). However, we limit phrases
to then < 3 cases to save space in the visualizations.

Expressivity. Expressivitycaptures the extent to which labels
express and represent themes. Previous works have noted tha
human-assigned labels tend towards multi-word noun phrase i ) :
as they are more expressive than unigramg.(see [24]). Prominence. Prominence captures the degree to which
The term “information retrieval,” for instance, is more exg-  labels are featured prominently within individual docurtsen
sive than just “information” or “retrieval’ alone. Unigram Intuitively, prominent terms tend to make their first apeae
tend to most often be expressive when denoting uniquene&girlier and also appear more frequently. Thus, we weight
(i.e., a proper noun). This is especially true of researchcandidate labels by both frequency and position using the
reports, our domain of interest, as proper noun unigramfarmonic mean, as shown in Line 11 of Algoritfuin 1.

denote important concepts, systems, techniques, or prsgra

SWe use the POS patternaJECTIVE)*( NOUN)+.
4http://code.google.com/p/hunpbs/
5This is known ascollocation extraction20].

2Lines 4-11 of Algorithm [ are a variation of the KERA algorithm
described in[[19].
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Actual Topic Labels from LDA Labels from DOCSETLABELER

Fluid Mechanics and Fluid Dynamics flow,fluid,flows, fluids,dynamics,transports fluid dynamics, fluid mechanics, multiphase flow
Game Theory agents,theory,game,agent,games,equilibrium game theory, economic agents, repeated games
Graph Theory discrete,graph,combinatorial,theory,combinatoriegpbs graph theory, algebraic combinatorics, ramsey theory
Human Evolution modern,fossil,early,years,human,age modern humans, human evolution, hominid evolution
Hydrology water,river,hydrologic,watershed,balance,surface hydrologic controls, watershed scale, alpine basins
Modal Analysis in Structural Engineering mode,modes,research,vibration,direction,coupling normal modes, vibration control, modal analysis
Object Recognition object, objects,features,recognition, oriented,featur object recognition, curved objects, cluttered scenes
Protein Function/Mechanisms protein,proteins,function,role,biochemical,phospfation | protein kinases, protein phosphorylation, protein import
Protein Structure protein,proteins,binding,structure,amino,acid protein structure, protein folding, amino acid

Social Psychology social,people,research,individuals,attitudes,status social psychology, social influence, social perception

TABLE [: [NSF Grants.] Ten discovered NSF topics and the highest-ranked labeigressto each by both LDA and ®CSETLABELER.

combinations of independent and dependent variables. More
Prevalence and Discriminability. Good labels for a par- over, it deals with a substantially reduced representatibn
ticular topic appear in many documents pertaining to thathe data ite., generally, C < N; for all i € {1...N}).
topic (Prevalencgand appear rarely in other un-related topicsFor these reasons, it is fairly straightforward to impleinen
(Discriminability). This was also recently observed hy [11] DOCSETLABELER in a variety of different parallel processing
and [28]. The concept ofnformation gainfrom the field models é.g.,MapReduce, multi-core processing). Lines 2,
of information theory simultaneously captures both prevaforinstance, can be implemented as a map-only job with eithe
lence and discriminability. Consider a document collattio zero reducers or an identity reducer. On the other hand, for
D where documents belong to either a positive or negativexecution on single-node, multi-core, shared-memoryesyst
category. TheentropyH of D measures impurity as follows: (as opposed to clusters), documents can be processed in an
H(D) = —ptlogy(p™) — p~ logy(p~), wherep™ and p~ online fashion and passed to as many processors available on
are the proportions of positive and negative documents ithe system.
D, respectivelfl For instance, if all documents are positive

(or negative), H(D) = 0, while a perfectly even split of VI. CASE STUDY 1: NSF RESEARCHGRANTS
positive and negative documents has entropylofin Al-
gorithm[1, we assignDs as positive andDs as negative. As a realistic and informative case study, we utilize our

The information gainlG of a candidate labef in D, then, methods to characterize and visualize basic researchdumde

is the expected entr0|£3y reduction due to segmenting:on the National Science Foundation (NSF). The corpus corsitier
IG(¢, D) = H(D) — (MH(DZ) + |D_’Z\H(ﬁ)) whereD! is in this case study consists of 132,372 titles and abstracts

’ 12l 1] ’ describing NSF awards for basi h between th

the set of documents i from which label¢ was extracted. 9€SCribing NSk awards for basic research between the years
Thus, labels with the highest information gain férs are 1990 and 2003 |1]. We executed the MALLET implementation
expected to be simultaneously commoriip (prevalence)and ©f LDA [21] on this corpus usings’ = 400 as the number of
rare in Dy (discriminability). Information gain is computed by topics and200 as the number of iterations. All other parameters
the calcScore(-) function in Algorithm[d. were left as defaults. For topic similarity, we experimélgta

set £ as 0.15 to yield a graph density of approximately
) ) . 0.01. For the labeling of topic nodes in the network using
Final Sorting. At the end of the previous step, we are left DocSETLABELER, we setC' = 5 and L = 1. We did not find
with a small number of candidate labetsq.,C' = 5) for each  the choice ofC to affect results significantly. This is possibly
topic. There are several options for ChOOSIng the final |&drel due to the fact that, as described previous|y’ we prune out

the topic node. For instance, one could simply select thel lab candidates with no statistical significance, as measured by
with the highest information gaini.¢., the existing sorting). |ikelihood ratio test.

One might also select the label most frequently extracteoh fr
the documents pertaining to the topic. Yet another optido is ) )
include word probabilities frons into the final weighting. Al Topic Labeling of NSF Grants. Table[] shows the labels
three approaches generally yield good (albeit slightifediinty ~ generated for a sample of ten discovered topics by both
results. For the present work, based on some preliminarlpOCSETLABELER and LDA. As can be seen, labels produced
testing, we choose to sort labels based on a combination DOCSETLABELER are more expressive and representative
the latter two approaches, as indicated in Line 25 of Algonit  Of the true themes of each topic. We assigned two judges to
[. More specifically, we sort labels based on the mean of thévaluate labels for all topics. For a fair comparison, wenstb
normalized frequency and the combingdprobabilities for ~ Six unigram labels from LDA but only three labels (mostly
each word comprising the label. bigrams) from DCSETLABELER for each topic. As shown in
Table[IIl, both judged the labels by @SETLABELER to be
generally superion(®*=145.73, P<0.0001) with an inter-judge

Tp_ conclude, we briefly comment on .the efficiency and Scalaagreement 00.62, as measured by Cohen'’s kappa coefficient.
bility of our current DOCSETLABELER implementation. Note

that, in Algorithm[1, Lines1-12 process documents in an DOCSETLABELER | LDA

online fashion and can be easily parallelized. Computing DOCSETLABELER | 313 6

information gain also scales well to larger collections of LDA z 29

Ionger documents, as it is a Slmple computation of dlﬁerentrABLE [lI: Evaluation of labels for each method on NSF grants. Ovebaith

judges chose labels fromdZSETLABELER to be most on-point. (Poor quality topics

6Note thatlog, (0) is taken to bep. X :
thrown out.
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Fig. 1: [NSF Grants.] The Topic Similarity Networlof 14 years of NSF research and suppog.(a total of132, 372 research grants). Major research topics
are shown including their subtle connections to each ohen displayed (towards the bottom of network) are majording efforts for education support and
conference support. Node sizes indicate the number of giasttacts pertaining to the topic. Node colors indicatecttramunity (or topic group) affiliation,
which illustrate how research topics form larger themes.

the major research funding efforts for scientific research
in addition to the subtle connections among them. Major
Visualizing NSF Grants. A topic similarity network was funding efforts for education and conference support are
constructed, with each node representing a topic and ldbelalso displayed (towards the bottom). In this network and all
using the highest ranked term returned bgdSETLABELER. networks shown in this paper, node sizes indicate the number
The network concisely presents a comprehensive and leolistof documents pertaining to the topic represented by the
view of 14 years of NSF-funded research and can be navigatathdd] Node colors indicate the community (or topic group)
and explored using any available network visualization
software €.g., Gephi, Cytoscape ). The entire network is Although we could have sized nodes based on funding amourtheof
shown in Flgur(Ell where both expected and unexpected trenggnt we instead size nodes based on the number of docufoerte sake
are revealed. As can be seen, the visualization encapsulaté consistency.




Actual Topic Labels from LDA Labels from DOCSETLABELER

BBC bbc,british,series,television,london,uk bbc, british television, bbc radio, british actor

Boxing fight,title,boxing,champion,round,boxer professional boxer, professional career, amateur boxer
Computers system,computer,systems,control,computers,electronij computer science, operating system, control system
Electronic Dance Music | music,dj,label,dance,artists,records electronic music, record label, dance music

Probability Theory data,analysis,method,methods,distribution probability distribution, random variables, random vhaléa
Manufacturing company,production,factory,manufacturing,plant,stdyi | manufacturing company, motor company, manufacturingtplan
Motorcycles motorcycle,racing,cc,race,davidson,bike speedway rider, cc race, british motorcycle

Summer Olympics olympics,summer,medal,won,olympic,world summer olympics, gold medal, bronze medal

Tropics species,family,tropical,habitat,natural,subtropical tropical moist, habitat loss, natural habitats

Winter Olympics winter,world,event,olympics,won,competed winter olympics, world championships, ski championship

TABLE I [wikipedia.] Ten discovered Wikipedia topics and the highest-rankedl$ahssigned to each by both LDA andBSETLABELER.

affiliation. Using this network, one can better understand
how topics form larger themes, discover and characterize .
information of interest, and derive insights into how best Juveniierm
to search and explore the corpus further. It is difficult to genen®’ genetig

ductlon
gath

earlyLd‘opment
r;e

h P tel ucture

at@ d s molecula‘:ognltlon

quantitatively evaluate visualization schemes such as. thi XYgriation
natura@ectlon

Thus, we present illustrative examples of the patterns and oot nervo

; ; L eimilar : ol Iends
trends discovered using our topic similarity network. Feyu ,,D,,u,an@y,,am,cs P ,m;.;a',m poly
shows one small corner of the “topic universe” — a “social |/ /| /|  .@w. "‘emb“@' g compos atenals
winrone mlcroblal‘munmes//

cligue” of math topics discovered by community detection -
within the larger network of all topics. Note that each node
in the network represents hundreds of documents (or morefrig. 3: [NSF Grants.] A discovered topic group related to biology (shown in
Thus, this visualization of math topics clearly and conlgise pink). Also shown are topic nodes from other related comtiesiie.g., poly-
summarizes ovet0, 000 documents. Such visualizations alSo mer blends population dynamigsand their peripheral connections to this
provide insights into relations between topic groups. FOmiology-related topic group.

instance, Figurd]3 shows a community of biology-related
topics (shown in pink). Here, we see peripheral connections
to another life science theme (shown in yellow) containing
topics such agyenetic variation population dynamicsand
food websWe also see a peripheral connection to a material
science theme (shown in red), illuminating research areas
dedicated to developing materials based on biological and
organic components and also the mutual interest in molecul
recognition. As a final example, Figuré 4 shows a connecte
component of astronomical research topics that appears
separate from the larger network. This last example ilaiss
one possible way to use these visualizations to identify VIl. - CASE STUDY 2: WIKIPEDIA

outliers {.e., topics that are comparatively more differentthan  For our second case study, we apply our method to
the larger corpus based on their set of similarity scdtes).  visualize Wikipedia topics. The corpus considered here was
obtained from the University of Alberta and comprises the
entire English portion of Wikipedid. It contains over 3.3
million documents spanning a range of different topics. We
executed the MALLET implementation of LDA [21] on this
corpus usingK = 1000 as the number of topics arxd0 as the
number of iterations. All other parameters were left asulesa

For topic similarity, we experimentally sé€tas0.2 to yield a
graph density of approximately.01. For the labeling of topic

N\ nodes in the network using @CSETLABELER, we again set
ethods C=5andL =1.

skelet@luscle

':'Flg 4: [NSF Grants.] A connected component of astronomical research
pics separated from the larger network.

AN

.gfiﬁ‘\' mmecul.ynam.cs\s\\ Labgling Wikipedia Topics. Table[dl shows a sample of ten
> Wikipedia topics and the labels generated for each by both

LDA and DOCSETLABELER. As we did with the NSF grants,
we conducted a user evaluation of the labels generatedIfor al
Wikipedia topics by both LDA and our method. From the re-
sults shown in TabledV, we again see thabCBETL ABELER
outperforms LDA §2?=426.68, P<0.0001) with an inter-judge

\giugraph

Fig. 2: [NSF Grants.] Two discovered topic groups (or communities)
pertaining to math-oriented research. The red covers puath,mvhile the
blue is more applied. Each are separate communities butytighupled, as
shown. Together, they represent ouér, 000 documents covering a range of
math subfields.

9Shaoul, C. & Westbury C. (2010) The Westbury Lab Wikipedia
8While it is possible to re-connect singleton nodes to whieheode it is Corpus, Edmonton, AB: University of Alberta (downloaded orfr
most similar, we have not done so in any of the presented lzstians. http://www.psych.ualberta.caivestburylab/downloads/westburylab.wikicorp.downlddia
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agreement 06.71, as measured by Cohen’s kappa coefficient.. ragear—~ hOrS®Iace numuns

However, we also see that LDA performs significantly better car charflbionship o
here th he NSF We elab his ob i T piotess @l borer 7 ;
ere than on the grants. We elaborate on this observation bicycR Tacer professidMal tennis
further in Sectiori_VTII. professiohal footballf " ’I T o
- EI:))‘?SCSETLABELER |7_EA footba’ieggu'e,;Q‘iék%ingr a eague N
C S/f\: TLABELER - 155 ) rugberague - o gematonioail crickat team

hockefPleague — coccemieague -

“worl@ cup

TABLE |V: [wikipedia.] Evaluation of labels for each method on

Wikipedia. Overall, both judges chose labels fronoEBETLABELER to be amerlca.'football NS ‘”f{fkln‘élr.cu,h,i;.e,age
most on-point. (Poor quality topics thrown out.) : Ieague'aseball\,.w
profession8basketball | gq ciaseason oorieam -
Visualizing Wikipedia. A topic similarity network was con- i -
structed for Wikipedia, with nodes labeled using the high- (2) Sports-Themed Topic Group
est ranked label generated fromoBSETLABELER for each
topic. Due to space constraints, we do not present the entirg et
g ) Spave LY . g concdf four—dance @mpany " theatre €ompany
Wikipedia topic similarity network in this paper. Ratherew ‘ . ,
provide illustrative examples of some of the major trends :
discovered by our method. Two of the most salient and well- debutal bu m
defined topic groupd.€., macro-level themes) emerging from title@r k g musi®video
our visualization aresportsandmusic/danceshown in Figures itiesrac | SN g
andBb, respectively. We posit that this is due to the Featt t populé song SIﬂgl@ chart
authorship and editing of Wikipedia articles are crowdrsed roc Kba;ﬁh : hipthop
and the subjects afportsandmusic/dancéoth have enormous " recordlabel  ameriéan jazz
fan bases. It should follow that television and film shoulsbal electroi@c"musit(:@b * amencansiie symphon§Porchestra
appear as salient topic groups, and this is precisely what wg  eunkbana  MeERANG o o i
see in Figurd]6. Also shown in Figuié 6 are the peripheral rock®band
connections to topic nodes from other related communities (b) Music/Dance-Themed Topic Group

(e.g., plot summanand love storyfrom a writing theme in )
green,daily newspaperand monthly magazindrom a news Fig. 5: [Wikipedia.] Discovered Wikipedia topic groups for: (&portsand
media theme in yellow). (b) Music/Dance

VIII. L IMITATIONS daily néWspaper _____ °"9lish fnsiation
- monthlymagazine

In both our two case studies, d@SETLABELER was
observed to outperform LDA on topic labeling tasks. However
comparing the two case studies, we see the performancg
differential was less for Wikipedia topics and greater for
the highly technical and scientific topics present in the NSF
grants corpus. We attribute this to the fact that Wikipedia
is an encyclopedia with many topics that are very general . amerii Hm
and broad in nature. On those topics that are so broad and animatédt series X
general that they are best summarized with a single word /ﬂl/m/llﬂusjl' .
e.g., songstennis BBC), LDA performs quite well — albeit : o e Bevision
gor%etimegsless well t?anCD:SEpTLABELEg. In cases where film f*tﬂfal ~_indidh film
there is not an equivalently expressive bigrdra.(two-word
phrase) or proper unigram, LDA will perform better than our
method, since DCSETLABELER currently focuses only on
bigrams andoroper unigrams. One example of the latter case
is the motorcycletopic in Wikipedia shown in Tablg]JIl. The
top-ranked labels generated byoDSETLABELER are simply
not as expressive as the simple label “motorcycle” produced
by LDA. Addressing such cases is an area for future workThis was observed to a certain degree in some Wikipediagopic
However, we find these cases to be in the minority — especiallgontaining many so-called “stub” articles of only a single
with respect to mining content from scientific and technicalsentend®l (e.g., one-sentence descriptions of minor fictional
documents, which is our current and primary area of interescharacters, small towns, or persons of minor notability)eO
T solution might be to replace LDA anddZSETLABELER with
A second limitation is related to short texts. Both LDA and algorithms gspecificallypdesigned to handle short texts ssh

DOCSETLABELER are optimized for articles, summaries andT : : : .
. 2 = ! witter-LDA [30] and keyword extraction algorithms desegh
reports, such as the corpora considered in this work. Shorte [50] y 9

documents such as abstracts are also handled well by bottig; appears _ that _ Wikipedia now  tecommends a
algorithms, as evidenced by performance on the NSF granfinimum ~ of three  sentences for an  article.  See
abstracts. However, extremely short texts can cause difisu  [nttp://en.wikipedia.org/wiki/Wikipediatalk:One sentencedoes not_an_article_ make

plot s@ﬁﬁﬁry
shormﬁ

=

Fig. 6: [Wikipedia.] A discovered topic group pertaining tdelevi-
sion/Film/Radio(shown in purple). Also shown are the peripheral connestion
to topic nodes from other related communiti@sg(, plot summaryand love
story from a writing theme in greerdaily newspapeand monthly magazine
from a news media theme in yellow).
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for short snippets of text [18]. We leave an investigatiothi§  [16]
for future work.

IX. CONCLUSION

We have investigated the use wipic similarity networks
as a practical approach to improving the interpretability o [17]
LDA topic models. We described both how to construct such
networks and an approach to labeling nodes in the network.
These methods were combined and employed to effectivelig)
characterize and explore 14 years of NSF-funded basic re-
search and the English portion of Wikipedia using network
analysis. For future work, we plan on incorporating these
visualizations into a larger, facet-based, text analyyistem (19]
previously developed for the U.S. Department of Defense (se
[19] for more details on this system).
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