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Abstract—We investigate ways in which to improve the in-
terpretability of LDA topic models by better analyzing and
visualizing their outputs. We focus on examining what we refer
to as topic similarity networks: graphs in which nodes represent
latent topics in text collections and links represent similarity
among topics. We describe efficient and effective approaches
to both building and labeling such networks. Visualizations
of topic models based on these networks are shown to be a
powerful means of exploring, characterizing, and summarizing
large collections of unstructured text documents. They help to
“tease out” non-obvious connections among different sets of
documents and provide insights into how topics form larger
themes. We demonstrate the efficacy and practicality of these
approaches through two case studies: 1) NSF grants for basic
research spanning a 14 year period and 2) the entire English
portion of Wikipedia.

I. I NTRODUCTION AND MOTIVATION

In this paper, we study network visualizations as a means
of enhancing the interpretability of probabilistic topic models
for insight discovery. We focus on what is perhaps the most
popular and prevalently-used topic model:latent Dirichlet
allocation or LDA [5]. Topic modeling algorithms like LDA
discover latent themes (i.e., topics) in document collections
and represent documents as a combination of these themes.
Thus, they are critical tools for exploring text data acrossmany
domains. Indeed, it is often the case that users mustdiscover
the subject matter buried within large and unfamiliar document
sets (e.g., sensemaking in text data). Keyword searches are
inadequate here, as it is unclear on where to even begin
searching. Topic discovery techniques such as LDA are a
boon to users in such scenarios, as they reveal the content
in an unsupervised and automated fashion. Automated topic
organization can potentially facilitate the comprehension of
unfamiliar document data on even a massive scale.

However, it is often quite challenging to obtain a “big
picture” view of the larger trends in a document collection
from only the raw output of an LDA model. LDA is fundamen-
tally a statistical tool that returns a probability distribution for
each document showing the relative presence (or absence) of
various discovered topics. These topics, in turn, are represented
as probability distributions over words (typically unigrams).
Words with the highest estimated probabilities for a discovered
topic are used as alabel for the topic. Exploring text corpora
using only these raw outputs is considerably challenging. In
order to derive insights and identify larger trends within the
document collection, one is left to inspect these numerical
distributions, which can be difficult, non-trivial, and farfrom

straightforward. The problem is exacerbated as document
collections under consideration grow. For instance, with the
existence of scalable, MapReduce implementations of LDA
(e.g.,[27], [29]), it is now possible to train an LDA model on
massive text corpora with many latent topics (i.e., big data).
The inferred topics discovered by these LDA implementations,
can themselves pose their own unique data challenge. It is
often unclear on how best to effectively browse these topics
to discover information of interest. This, in fact, tends tobe a
significant challenge even for large data (as opposed to “big
data”) — e.g., document collections on the order of tens of
thousands or hundreds of thousands. In the present work, we
investigate the use of what we refer to astopic similarity
networksto address these challenges.Topic similarity networks
are graphs in which nodes represent latent topics in text
collections and links represent similarity among topics. We
describe efficient and effective methods to both building and
labeling such networks.

Summary of Contributions. Our contributions in both the
areas of topic visualization and topic labeling are summarized
below.

1) Constructing Topic Similarity Networks:In Section
IV, we describe the construction oftopic similarity
networks, our approach to big data visualization. We
exploit these networks to discover how topics form
larger themes. We employ the use of community
detection in network visualizations to discover such
macro-level themes including the sometimes subtle
connections among these themes.

2) Labeling Topic Similarity Networks:In Section V,
we describe an approach to expressively labeling
discovered topics. Our method, based on keyphrase
extraction, is purely unsupervised, extractive, and
demonstrably efficient. These labels are, then, em-
ployed as node labels in ourtopic similarity networks
to enable better characterization of large document
sets. It is surprising to note that, to the best of
our knowledge, few of the existing works on topic
visualization (discussed in the next section) make
use of automated topic labeling methods. Our work,
then, represents one of the first examinations of the
efficacy of automated topic labeling in actual topic
visualizations of large, real-world data.

There has been a wave of recent work to address challenges
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in both visualizing topics and labeling topics – each of which
we discuss separately in light of our work.

II. BACKGROUND AND RELATED WORK

A. Visualizing Topics

A number of both graphical and text-based visualizations
and user interfaces have been proposed in the existing literature
to browse topics (e.g., [7], [9], [10], [14], [15], [19], [28]).
Several, likeTopicVizby Eisenstein et al. [14] andTopicNetsby
Gretarsson et al. [15], are quite innovative and make significant
strides towards improving the interpretability of learnedtopic
models. However, most of these existing methods focus on
shedding light on the relationships between topics and docu-
ments (or attributes of documents). Although some (e.g.,[15])
support the inference of pair-wise similarity between topics,
they do not provide insights into how topics come together to
form larger themes or the subtle connections among seemingly
disparate groups of topics. Such insights are important in
obtaining a “big picture” view of ill-understood document
collections. An exception to this rule is work oncorrelated
topic models(or CTMs) and its variants (e.g., [2], [8], [17]).
CTMs model and infer associations among topics. These asso-
ciations can be further mined to produce clusters of topics that
represent larger themes for incorporation into visualizations.
These models, however, reveal certain challenges when applied
in real-world scenarios. First, existing visualizations based on
CTM and its variants do not appear to easily lend themselves
to extracting the kinds of insights mentioned above. This isdue
both to the way in which the topic relations are constructed and
depicted and also the way in which the topic nodes are labeled
(topic labeling is discussed in the next section). One may refer
to [3], [8], [17] for examples of these existing visualizations
and for comparison to our visualizations shown later. Second,
some approaches, such as [17], artificially constrict the topic
relation structure with specification of what are referred to as
supertopics, which can hinder a view of the subtle connections
among different and seemingly disparate groups of topics and
subtopics. A third issue is related to practical scalability. Chen
et al. [8] showed that CTM is unable to process a corpus of
285K documents in any reasonable time frame (i.e., it will not
finish within a week). Similarly, an approach to infer topic
hierarchies proposed by [25] is limited to short texts only.
ScaCTM, a parallelized extension to CTM, was shown to be
substantially more scalable given a cluster of 40 machines [8].
But, for certain domains, such machine clusters may not be
available at sites of deployment. In fact, it is often the case
that only a single multi-core machine is available to process
millions of documents, as the storage capacity of today’s
machines often outstrips their processing capacity. Even in
scenarios where one has access to a large machine cluster, LDA
is significantlymore scalable and efficient because it does not
learn the correlation structure among topics. (See [8] for atime
complexity analysis of CTM, ScaCTM, and LDA). Given these
aforementioned issues and the clear scalability, efficiency, and
also prevalence of LDA, our objective in this work is to infer
these topic associations in an organic fashion from the raw
output of theoriginal LDA model. As we will describe in
Section IV, we do so by constructingtopic similarity networks:
networks depicting the similarity (represented as links) among
topics (represented as nodes). Next, we discuss existing work
on the labeling of topics.

B. Labeling Topics

A topic similarity network is only useful as a visualization
tool if the identity of network nodes are easily discernible.
Several visualization schemes label topics by simply using
the most probable word (or words) from the topic model
(e.g.,[8], [15], [17]). However, LDA-derived labels have been
observed to not always be adequately expressive of the topic
(e.g.,see [22], [25], [28]). As a result, a number of methods
have been proposed to better label topics in an automated
fashion (e.g., [4], [16], [19], [22], [25], [26]). Unfortunately,
for a variety of reasons, most of these existing techniques are
unable to handle the large text corpora we consider in this
work. In Section V, we describe our own method to label topics
to address gaps in this existing literature on topic labeling.
To better motivate the use of our own labeling method, we
describe several goals that must be met by any labeling scheme
for a topic similarity network in light of existing work on topic
labeling.

Unsupervised.The labeling method must be unsupervised, as
obtaining a training set for a supervised labeling method can
be prohibitively expensive and time-consuming.

Extractive. The labeling method must be extractive. That is,
labels must be generated directly from the terms within the
corpus under consideration, as opposed to an external reference
corpus such as Wikipedia. This is especially important for
the government and corporate domains, which often deal
with document collections describing sensitive or proprietary
information, state-of-the-art “bleeding edge” technology, or
otherwise esoteric subject matter. Such information may not
reside in publicly available reference corpora like Wikipedia.
This requirement prevents us from utilizing methods such
as [16], which employs the use of reference corpora when
labeling topics.

Supportive of User Interactivity. Topic similarity networks
are intended for use withinteractivesystems utilizing full-text
search and faceted navigation of documents (e.g.,Solr search
engine1). Under these scenarios, the documents comprising
topics may be filtered in various waysafter creation of the
topic model. For instance, in the government domain, only
those documents containing certain markings might be deemed
of interest and selected in a visualization. Labels heavily
associated with documents that have been filtered out may no
longer adequately describe the remaining documents pertaining
to important sub-topics. Labeling methods that are tightly
coupled with the topic model (e.g., [4], [22], [25], [26])
cannot cope well with such dynamic scenarios. Moreover, it is
prohibitively expensive to re-generate the topic model on the
filtered document collection. For these reasons, our labeling
method, described in Section V, is purposefully de-coupled
from the output of LDA. Hence, it can re-label topics in
a filtered document collection without having to re-generate
the topic model. Our labeling method, then, can best be
characterized as a cluster labeling approach to topic labeling.

Efficient. Dynamic filtering of document collections, as

1https://lucene.apache.org/solr
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described above, also necessitates a need for efficiency in
the labeling approach. As the document collection is filtered
in various ways, the labeling method might be repeatedly
executed on a large document collection, which can be
problematic for some existing labeling methods. For instance,
we were unsuccessful in executing the approach by [4] on
the document sets of interest in this work. The approaches by
[25] and [22] also do not appear to scale as easily or as well
to larger collections of longer documents. The method from
[25], for example, was designed only for very short texts
(e.g.,titles only).

These aforementioned issues motivate our development
of a custom labeling method for use with topic similarity
networks — a method that can scale to even massive
collections of documents. We begin a discussion of our work
with a brief overview of LDA and the notation and symbols
used throughout this paper.

III. PRELIMINARIES

Let D = {d1, d2, . . . , dN} represent a document collection
of interest and letK be the number of topics or themes
in D. Each document is composed of a sequence of words:
di = 〈wi1, wi2, . . . , wiNi

〉, whereNi is the number of words in
di and i ∈ {1 . . .N}. Let W =

⋃N

i=1
f(di) be the vocabulary

of D, wheref(·) takes a sequence of elements and returns
a set. Probabilistic topic models like LDA takeD and K
as input and produce two matrices as output. The matrix
θ ∈ R

N×K is the document-topic distribution matrix and
shows the distribution of topics within each document. The
matrix β ∈ R

K×|W | is the topic-word distribution matrix and
shows the distribution of words in each topic. Each row of
these matrices represents a probability distribution. Forany
topic i ∈ {1, . . . ,K}, theL terms with the highest probability
in distribution βi are typically used as thematic labels for
the topic. We use these LDA-derived labels as a baseline for
comparison in our work. But first, we describe construction of
the topic similarity network.

IV. CONSTRUCTING THENETWORK

LDA captures the degree to which both documents and
words are topically related. However, relations among the
topics themselves arenot explicitly captured. As we will show
shortly, such topic-level relations can be used to construct
network representations of text corpora. These representations,
in turn, can be used to better understand, characterize, and
visualize the themes in a document collection. In the present
work, we define these relations based on topic similarity.

Measuring Topic Similarity. Recall that topics are repre-
sented as probability distributions over vocabularyW and
captured by the matrixβ. Thus, the similarity for any two
topics can be directly computed by comparing the word
distributions fromβ. The Kullback-Leibler (KL) divergence,
a distance measure of two probability distributions, is often
used to make such comparisons (e.g., [15], [28]). However,
KL divergence satisfies neither the triangle inequality nor
symmetry and is, therefore, not a metric. As such, it is less
appropriate for defining network links based on similarity (the

complement of distance). Although symmetric versions of KL
divergence exist, we instead employ the Hellinger distance
metric to compute topic similarity. Specifically, for any two
topicsx, y ∈ {1 . . .K}, the Hellinger similarity is measured
as:

HS(βx, βy) = 1− 1√
2

√

√

√

√

|W |
∑

i=1

(
√

βxi −
√

βyi)2. (1)

A topic similarity networkG = (V,E) can be constructed
where V = {v1 . . . vK} is the set of nodes representing
discovered topics andE is the set of edges representing
similarities among topics. For any two topicsx, y ∈ {1 . . .K},
an edge{vx, vy} ∈ V exists if and only ifHS(βx, βy) is
greater than some pre-defined threshold,ξ.

Measuring Topic Similarity in MapReduce. Note that, when
constructing a topic similarity network as just described,the
number of computed similarities scales quadratically withK.
However, sinceK ≪ |D|, the method remains computationally
viable even for very large document collections. Moreover,
with some well-placed substitutions,β can be represented us-
ing a sparse matrix format for efficient in-memory processing
of massive document sets. (We currently employ a compressed
sparse row format for storing and manipulatingβ.) Neverthe-
less, for scenarios when even sparse representations ofβ are
unwieldy and a high degree of parallelization is desired, we
propose a MapReduce implementation of the topic similarity
computation. When breaking down problems into distributable
units of work under the MapReduce model for parallelization,
key-value pairs are employed as the core data structure [12]. In
our case, each cell in the matrixβ can be represented as a key-
value pair of the form (i : (j, βji)), wherei ∈ {1 . . . |W |} is
the index of a word (i.e., column),j ∈ {1 . . .K} is the index
of the topic (i.e., row), andβji is the probability of wordi
appearing in topicj. If grouping by key, we obtain a key-
value representation of each column inβ. That is, the values
list for any key i ∈ {1 . . . |W |} comprises the set of tuples
{(j, βji) | j ∈ {1 . . .K}}). The map operation accepts these
key-value pairs as input and outputs key-value pairs of the
form (x, y : ei), where the new keyx, y ∈ {1 . . .K} are pairs
of topics appearing in the aforementioned values list and the
value ei = (

√
βxi −

√

βyi)
2, for each wordi ∈ {1 . . . |W |}.

Thus, themap operation completes the inner expression for
Hellinger similarity (shown in Equation 1) for every word
represented inβ. The reduce operation simply sums these
values for every pair of topics and completes the Hellinger
similarity computation by taking the square root of this sum,
multiplying by 1√

2
, and subtracting from one. The resultant

network, constructed as described above, can be exploited to
discover insights, trends, and patterns among the topics inD.
For the present work, we employ the use of a community
detection algorithm to discover insights into how topics are
related to each other and form larger themes.

Discovering Larger Themes.A communitycan be loosely
defined as a set of nodes more densely connected among
themselves than to other nodes in the network [6]. Within the
context of a topic similarity network, such communities should
represent groups of highly-related topics, which we refer to as



topic groups. To detect these communities (or topic groups),
we employ the use of the Louvain algorithm, a heuristic
method based on modularity optimization [6]. Modularity
measures the fraction of links falling within communities as
compared to the expected fraction if links were distributed
evenly in the network [23]. The algorithm initially assignseach
topic node to its own community. At each iteration, in a local
and greedy fashion, topic nodes are re-assigned to communities
with which it achieves the highest modularity. As a greedy
optimization method, the Louvain algorithm is exceptionally
efficient and fast, even with a large number of topics. As
the authors of [6] note, the computational complexity of the
method is unknown, but it experimentally appears to run in
O(n log n) time. When the nodes in these constructed topic
similarity networks are marked by their inferred community
affiliation and labeled to express the topics they represent, the
networks become powerful tools for exploration and discovery
in large and heterogeneous text corpora. We discuss labeling
of topic nodes next.

V. L ABELING THE NETWORK

An algorithm capable of generating expressive thematic
labels for any subset of documents in a corpus can greatly
facilitate both characterization and navigation of document col-
lections. Here, we employ such an algorithm to label nodes in
a topic similarity network, as each node is a topic comprising
a subset of documents in the corpus. Our approach, referred
to as DOCSETLABELER, is a purely unsupervised, extractive
method and shown in Algorithm 1.2 DOCSETLABELER takes
DS , a subset of corpusD, as input, whereDS consists of
all documents associated with some LDA-discovered topic
t ∈ {1 . . .K}. This subset can be constructed in one of
two ways. The first is to populateDS with all documentsdi
(where i ∈ {1 . . .N}) for which the topic proportionθit is
greater than some pre-defined threshold (e.g.,0.3 was used in
[28]). The second is to constructDS by transforming topics
into mutually-exclusive clusters, where the topic clusterfor
documentdi is argmaxx θix. We employ the latter approach,
as it better eliminates noise contributed by foreign topics
(i.e., {1 . . .K} − {t}). Labels for topict are, then, extracted
by DOCSETLABELER directly from the text constituting the
documents inDS .

DOCSETLABELER is essentially adescriptivemodel of
topic labeling that follows naturally from four observed char-
acteristics of high-quality, topic-representative labels: Expres-
sivity, Prominence, Prevalence, andDiscriminability.

Expressivity. Expressivitycaptures the extent to which labels
express and represent themes. Previous works have noted that
human-assigned labels tend towards multi-word noun phrases,
as they are more expressive than unigrams (e.g., see [24]).
The term “information retrieval,” for instance, is more expres-
sive than just “information” or “retrieval” alone. Unigrams
tend to most often be expressive when denoting uniqueness
(i.e., a proper noun). This is especially true of research
reports, our domain of interest, as proper noun unigrams
denote important concepts, systems, techniques, or programs

2Lines 4–11 of Algorithm 1 are a variation of the KERA algorithm
described in [19].

Algorithm 1 DOCSETLABELER algorithm
Require: DS ⊂ D, a subset of corpusD
Require: C, the number of candidate terms to consider
Require: L, the number of labels to return for document set (L ≤ C)
Require: stopwords, list of terms to filter out
1: pos = a hash table
2: neg = a hash table
3: for all d ∈ D do
4: terms1 = extractSignificantPhrases(d, stopwords)
5: terms2 = extractNounPhrases(d, stopwords)
6: terms3 = extractProperNounUnigrams(d, stopwords)
7: candidates = (terms1 ∩ terms2 ) ∪ terms3

8: for all c ∈ candidates do
9: x = normalized frequency of term c ind

10: y = 1− index of first occurrence ofc in d
num. of words in d

11: (weight of termc) = 2·x·y
x+y

12: end for
13: if d ∈ DS then
14: pos[d] = top C terms based on weight
15: else
16: neg[d] = top C terms based on weight
17: end if
18: end for
19: for all ℓ ∈

⋃
x∈pos.values() x do

20: # compute information gain for each labelℓ
21: (score of labelℓ) = calcScore(ℓ, pos, neg)
22: end for
23: top candidates = top C labels based on information gain
24: # optionally re-sort final top candidates
25: top candidates = re sort(top candidates)
26: return topL labels fromtop candidates

(e.g., “LinearSVM,” “F-22”). Lines 4-6 in Algorithm 1 ex-
plicitly extract terms conforming to the above principles.
Noun phrases3 and proper nouns are extracted usinghun-
pos, an open-source, HMM-based, part-of-speech tagger.4 The
extractSignificantPhrases(·) function uses likelihood ratio
tests to extract phrases of multiple words that occur together
more often than chance.5 For a bigram of wordsw1 andw2,
this association,assoc(·, ·), is measured as:

assoc(w1, w2) = 2
∑

ij

nij log
nij

mij

, (2)

wherenij are the observed frequencies of the bigram from
the contingency table forw1 andw2 andmij are the expected
frequencies assuming that the bigram is independent [13]. Only
phrases with a p-value less than0.001 are extracted. These tests
can also be used to measure associations of words within n-
grams wheren ≥ 3 (e.g.,trigrams). However, we limit phrases
to then < 3 cases to save space in the visualizations.

Prominence. Prominence captures the degree to which
labels are featured prominently within individual documents.
Intuitively, prominent terms tend to make their first appearance
earlier and also appear more frequently. Thus, we weight
candidate labels by both frequency and position using the
harmonic mean, as shown in Line 11 of Algorithm 1.

3We use the POS pattern: (ADJECTIVE)*( NOUN)+.
4http://code.google.com/p/hunpos/
5This is known ascollocation extraction[20].

http://code.google.com/p/hunpos/


Actual Topic Labels from LDA Labels from DOCSETLABELER

Fluid Mechanics and Fluid Dynamics flow,fluid,flows,fluids,dynamics,transports fluid dynamics, fluid mechanics, multiphase flow
Game Theory agents,theory,game,agent,games,equilibrium game theory, economic agents, repeated games
Graph Theory discrete,graph,combinatorial,theory,combinatorics,graphs graph theory, algebraic combinatorics, ramsey theory
Human Evolution modern,fossil,early,years,human,age modern humans, human evolution, hominid evolution
Hydrology water,river,hydrologic,watershed,balance,surface hydrologic controls, watershed scale, alpine basins
Modal Analysis in Structural Engineering mode,modes,research,vibration,direction,coupling normal modes, vibration control, modal analysis
Object Recognition object, objects,features,recognition, oriented,feature object recognition, curved objects, cluttered scenes
Protein Function/Mechanisms protein,proteins,function,role,biochemical,phosphorylation protein kinases, protein phosphorylation, protein import
Protein Structure protein,proteins,binding,structure,amino,acid protein structure, protein folding, amino acid
Social Psychology social,people,research,individuals,attitudes,status social psychology, social influence, social perception

TABLE I: [NSF Grants.] Ten discovered NSF topics and the highest-ranked labels assigned to each by both LDA and DOCSETLABELER.

Prevalence and Discriminability. Good labels for a par-
ticular topic appear in many documents pertaining to that
topic (Prevalence) and appear rarely in other un-related topics
(Discriminability). This was also recently observed by [11]
and [28]. The concept ofinformation gain from the field
of information theory simultaneously captures both preva-
lence and discriminability. Consider a document collection
D where documents belong to either a positive or negative
category. TheentropyH of D measures impurity as follows:
H(D) = −p+ log2(p

+) − p− log2(p
−), where p+ and p−

are the proportions of positive and negative documents in
D, respectively.6 For instance, if all documents are positive
(or negative),H(D) = 0, while a perfectly even split of
positive and negative documents has entropy of1. In Al-
gorithm 1, we assignDS as positive andDS as negative.
The information gainIG of a candidate labelℓ in D, then,
is the expected entropy reduction due to segmenting onℓ:

IG(ℓ,D) = H(D) − ( |D
ℓ|

|D| H(D
ℓ) + |Dℓ|

|D| H(D
ℓ)), whereDℓ is

the set of documents inD from which labelℓ was extracted.
Thus, labels with the highest information gain forDS are
expected to be simultaneously common inDS (prevalence) and
rare inDS (discriminability). Information gain is computed by
the calcScore(·) function in Algorithm 1.

Final Sorting. At the end of the previous step, we are left
with a small number of candidate labels (e.g.,C = 5) for each
topic. There are several options for choosing the final labelfor
the topic node. For instance, one could simply select the label
with the highest information gain (i.e., the existing sorting).
One might also select the label most frequently extracted from
the documents pertaining to the topic. Yet another option isto
include word probabilities fromβ into the final weighting. All
three approaches generally yield good (albeit slightly different)
results. For the present work, based on some preliminary
testing, we choose to sort labels based on a combination of
the latter two approaches, as indicated in Line 25 of Algorithm
1. More specifically, we sort labels based on the mean of the
normalized frequency and the combinedβ probabilities for
each word comprising the label.

To conclude, we briefly comment on the efficiency and scala-
bility of our current DOCSETLABELER implementation. Note
that, in Algorithm 1, Lines1–12 process documents in an
online fashion and can be easily parallelized. Computing
information gain also scales well to larger collections of
longer documents, as it is a simple computation of different

6Note thatlog2(0) is taken to be0.

combinations of independent and dependent variables. More-
over, it deals with a substantially reduced representationof
the data (i.e., generally,C ≪ Ni for all i ∈ {1 . . .N}).
For these reasons, it is fairly straightforward to implement
DOCSETLABELER in a variety of different parallel processing
models (e.g.,MapReduce, multi-core processing). Lines1–12,
for instance, can be implemented as a map-only job with either
zero reducers or an identity reducer. On the other hand, for
execution on single-node, multi-core, shared-memory systems
(as opposed to clusters), documents can be processed in an
online fashion and passed to as many processors available on
the system.

VI. CASE STUDY 1: NSF RESEARCHGRANTS

As a realistic and informative case study, we utilize our
methods to characterize and visualize basic research funded by
the National Science Foundation (NSF). The corpus considered
in this case study consists of 132,372 titles and abstracts
describing NSF awards for basic research between the years
1990 and 2003 [1]. We executed the MALLET implementation
of LDA [21] on this corpus usingK = 400 as the number of
topics and200 as the number of iterations. All other parameters
were left as defaults. For topic similarity, we experimentally
set ξ as 0.15 to yield a graph density of approximately
0.01. For the labeling of topic nodes in the network using
DOCSETLABELER, we setC = 5 andL = 1. We did not find
the choice ofC to affect results significantly. This is possibly
due to the fact that, as described previously, we prune out
candidates with no statistical significance, as measured bya
likelihood ratio test.

Topic Labeling of NSF Grants. Table I shows the labels
generated for a sample of ten discovered topics by both
DOCSETLABELER and LDA. As can be seen, labels produced
by DOCSETLABELER are more expressive and representative
of the true themes of each topic. We assigned two judges to
evaluate labels for all topics. For a fair comparison, we showed
six unigram labels from LDA but only three labels (mostly
bigrams) from DOCSETLABELER for each topic. As shown in
Table III, both judged the labels by DOCSETLABELER to be
generally superior (χ2=145.73, P<0.0001) with an inter-judge
agreement of0.62, as measured by Cohen’s kappa coefficient.

DOCSETLABELER LDA
DOCSETLABELER 313 6
LDA 23 29

TABLE III: Evaluation of labels for each method on NSF grants. Overall,both

judges chose labels from DOCSETLABELER to be most on-point. (Poor quality topics

thrown out.)
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Fig. 1: [NSF Grants.] The Topic Similarity Networkof 14 years of NSF research and support (i.e., a total of132, 372 research grants). Major research topics
are shown including their subtle connections to each other.Also displayed (towards the bottom of network) are major funding efforts for education support and
conference support. Node sizes indicate the number of grantabstracts pertaining to the topic. Node colors indicate thecommunity (or topic group) affiliation,
which illustrate how research topics form larger themes.

Visualizing NSF Grants. A topic similarity network was
constructed, with each node representing a topic and labeled
using the highest ranked term returned by DOCSETLABELER.
The network concisely presents a comprehensive and holistic
view of 14 years of NSF-funded research and can be navigated
and explored using any available network visualization
software (e.g., Gephi, Cytoscape ). The entire network is
shown in Figure 1, where both expected and unexpected trends
are revealed. As can be seen, the visualization encapsulates

the major research funding efforts for scientific research
in addition to the subtle connections among them. Major
funding efforts for education and conference support are
also displayed (towards the bottom). In this network and all
networks shown in this paper, node sizes indicate the number
of documents pertaining to the topic represented by the
node.7 Node colors indicate the community (or topic group)

7Although we could have sized nodes based on funding amount ofthe
grant, we instead size nodes based on the number of documentsfor the sake
of consistency.



Actual Topic Labels from LDA Labels from DOCSETLABELER

BBC bbc,british,series,television,london,uk bbc, british television, bbc radio, british actor
Boxing fight,title,boxing,champion,round,boxer professional boxer, professional career, amateur boxer
Computers system,computer,systems,control,computers,electronic computer science, operating system, control system
Electronic Dance Music music,dj,label,dance,artists,records electronic music, record label, dance music
Probability Theory data,analysis,method,methods,distribution probability distribution, random variables, random variable
Manufacturing company,production,factory,manufacturing,plant,industry manufacturing company, motor company, manufacturing plant
Motorcycles motorcycle,racing,cc,race,davidson,bike speedway rider, cc race, british motorcycle
Summer Olympics olympics,summer,medal,won,olympic,world summer olympics, gold medal, bronze medal
Tropics species,family,tropical,habitat,natural,subtropical tropical moist, habitat loss, natural habitats
Winter Olympics winter,world,event,olympics,won,competed winter olympics, world championships, ski championship

TABLE II: [Wikipedia.] Ten discovered Wikipedia topics and the highest-ranked labels assigned to each by both LDA and DOCSETLABELER.

affiliation. Using this network, one can better understand
how topics form larger themes, discover and characterize
information of interest, and derive insights into how best
to search and explore the corpus further. It is difficult to
quantitatively evaluate visualization schemes such as this.
Thus, we present illustrative examples of the patterns and
trends discovered using our topic similarity network. Figure
2 shows one small corner of the “topic universe” — a “social
clique” of math topics discovered by community detection
within the larger network of all topics. Note that each node
in the network represents hundreds of documents (or more).
Thus, this visualization of math topics clearly and concisely
summarizes over10, 000 documents. Such visualizations also
provide insights into relations between topic groups. For
instance, Figure 3 shows a community of biology-related
topics (shown in pink). Here, we see peripheral connections
to another life science theme (shown in yellow) containing
topics such asgenetic variation, population dynamics, and
food webs. We also see a peripheral connection to a material
science theme (shown in red), illuminating research areas
dedicated to developing materials based on biological and
organic components and also the mutual interest in molecular
recognition. As a final example, Figure 4 shows a connected
component of astronomical research topics that appears
separate from the larger network. This last example illustrates
one possible way to use these visualizations to identify
outliers (i.e., topics that are comparatively more different than
the larger corpus based on their set of similarity scores).8

Fig. 2: [NSF Grants.] Two discovered topic groups (or communities)
pertaining to math-oriented research. The red covers pure math, while the
blue is more applied. Each are separate communities but tightly-coupled, as
shown. Together, they represent over10, 000 documents covering a range of
math subfields.

8While it is possible to re-connect singleton nodes to whichever node it is
most similar, we have not done so in any of the presented visualizations.

Fig. 3: [NSF Grants.] A discovered topic group related to biology (shown in
pink). Also shown are topic nodes from other related communities (e.g., poly-
mer blends, population dynamics) and their peripheral connections to this
biology-related topic group.

Fig. 4: [NSF Grants.] A connected component of astronomical research
topics separated from the larger network.

VII. C ASE STUDY 2: WIKIPEDIA

For our second case study, we apply our method to
visualize Wikipedia topics. The corpus considered here was
obtained from the University of Alberta and comprises the
entire English portion of Wikipedia.9 It contains over 3.3
million documents spanning a range of different topics. We
executed the MALLET implementation of LDA [21] on this
corpus usingK = 1000 as the number of topics and200 as the
number of iterations. All other parameters were left as defaults.
For topic similarity, we experimentally setξ as0.2 to yield a
graph density of approximately0.01. For the labeling of topic
nodes in the network using DOCSETLABELER, we again set
C = 5 andL = 1.

Labeling Wikipedia Topics. Table II shows a sample of ten
Wikipedia topics and the labels generated for each by both
LDA and DOCSETLABELER. As we did with the NSF grants,
we conducted a user evaluation of the labels generated for all
Wikipedia topics by both LDA and our method. From the re-
sults shown in Table IV, we again see that DOCSETLABELER
outperforms LDA (χ2=426.68, P<0.0001) with an inter-judge

9Shaoul, C. & Westbury C. (2010) The Westbury Lab Wikipedia
Corpus, Edmonton, AB: University of Alberta (downloaded from
http://www.psych.ualberta.ca/∼westburylab/downloads/westburylab.wikicorp.download.html

http://www.psych.ualberta.ca/~westburylab/downloads/westburylab.wikicorp.download.html


agreement of0.71, as measured by Cohen’s kappa coefficient..
However, we also see that LDA performs significantly better
here than on the NSF grants. We elaborate on this observation
further in Section VIII.

DOCSETLABELER LDA
DOCSETLABELER 545 74
LDA 30 199

TABLE IV: [Wikipedia.] Evaluation of labels for each method on
Wikipedia. Overall, both judges chose labels from DOCSETLABELER to be
most on-point. (Poor quality topics thrown out.)

Visualizing Wikipedia. A topic similarity network was con-
structed for Wikipedia, with nodes labeled using the high-
est ranked label generated from DOCSETLABELER for each
topic. Due to space constraints, we do not present the entire
Wikipedia topic similarity network in this paper. Rather, we
provide illustrative examples of some of the major trends
discovered by our method. Two of the most salient and well-
defined topic groups (i.e., macro-level themes) emerging from
our visualization aresportsandmusic/dance, shown in Figures
5a and 5b, respectively. We posit that this is due to the fact that
authorship and editing of Wikipedia articles are crowd-sourced
and the subjects ofsportsandmusic/danceboth have enormous
fan bases. It should follow that television and film should also
appear as salient topic groups, and this is precisely what we
see in Figure 6. Also shown in Figure 6 are the peripheral
connections to topic nodes from other related communities
(e.g., plot summaryand love story from a writing theme in
green,daily newspaperand monthly magazinefrom a news
media theme in yellow).

VIII. L IMITATIONS

In both our two case studies, DOCSETLABELER was
observed to outperform LDA on topic labeling tasks. However,
comparing the two case studies, we see the performance
differential was less for Wikipedia topics and greater for
the highly technical and scientific topics present in the NSF
grants corpus. We attribute this to the fact that Wikipedia
is an encyclopedia with many topics that are very general
and broad in nature. On those topics that are so broad and
general that they are best summarized with a single word
(e.g., songs, tennis, BBC), LDA performs quite well – albeit
sometimes less well than DOCSETLABELER. In cases where
there is not an equivalently expressive bigram (i.e., two-word
phrase) or proper unigram, LDA will perform better than our
method, since DOCSETLABELER currently focuses only on
bigrams andproper unigrams. One example of the latter case
is the motorcycletopic in Wikipedia shown in Table II. The
top-ranked labels generated by DOCSETLABELER are simply
not as expressive as the simple label “motorcycle” produced
by LDA. Addressing such cases is an area for future work.
However, we find these cases to be in the minority – especially
with respect to mining content from scientific and technical
documents, which is our current and primary area of interest.

A second limitation is related to short texts. Both LDA and
DOCSETLABELER are optimized for articles, summaries, and
reports, such as the corpora considered in this work. Shorter
documents such as abstracts are also handled well by both
algorithms, as evidenced by performance on the NSF grant
abstracts. However, extremely short texts can cause difficulties.

(a) Sports-Themed Topic Group

(b) Music/Dance-Themed Topic Group

Fig. 5: [Wikipedia.] Discovered Wikipedia topic groups for: (a)Sportsand
(b) Music/Dance.

Fig. 6: [Wikipedia.] A discovered topic group pertaining toTelevi-
sion/Film/Radio(shown in purple). Also shown are the peripheral connections
to topic nodes from other related communities (e.g., plot summaryand love

story from a writing theme in green,daily newspaperandmonthly magazine
from a news media theme in yellow).

This was observed to a certain degree in some Wikipedia topics
containing many so-called “stub” articles of only a single
sentence10 (e.g., one-sentence descriptions of minor fictional
characters, small towns, or persons of minor notability). One
solution might be to replace LDA and DOCSETLABELER with
algorithms specifically designed to handle short texts suchas
Twitter-LDA [30] and keyword extraction algorithms designed

10It appears that Wikipedia now recommends a
minimum of three sentences for an article. See
http://en.wikipedia.org/wiki/Wikipediatalk:One sentencedoes not an article make

http://en.wikipedia.org/wiki/Wikipedia_talk:One_sentence_does_not_an_article_make


for short snippets of text [18]. We leave an investigation ofthis
for future work.

IX. CONCLUSION

We have investigated the use oftopic similarity networks
as a practical approach to improving the interpretability of
LDA topic models. We described both how to construct such
networks and an approach to labeling nodes in the network.
These methods were combined and employed to effectively
characterize and explore 14 years of NSF-funded basic re-
search and the English portion of Wikipedia using network
analysis. For future work, we plan on incorporating these
visualizations into a larger, facet-based, text analytic system
previously developed for the U.S. Department of Defense (see
[19] for more details on this system).
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