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Abstract—Graph analytics is becoming increasingly popular,
driving many important business applications from social net-
work analysis to machine learning. Since most graph data is
collected in a relational database, it seems natural to attempt
to perform graph analytics within the relational environment.
However, SQL, the query language for relational databases,
makes it difficult to express graph analytics operations. This is
because SQL requires programmers to think in terms of tables
and joins, rather than the more natural representation of graphs
as collections of nodes and edges. As a result, even relatively
simple graph operations can require very complex SQL queries.
In this paper, we present GRAPHiIQL, an intuitive query language
for graph analytics, which allows developers to reason in terms of
nodes and edges. GRAPHiIQL provides key graph constructs such
as looping, recursion, and neighborhood operations. At runtime,
GRAPHIQL compiles graph programs into efficient SQL queries
that can run on any relational database. We demonstrate the
applicability of GRAPHiIQL on several applications and compare
the performance of GRAPHiIQL queries with those of Apache
Giraph (a popular ‘vertex centric’ graph programming language).

I. INTRODUCTION

Graphs are everywhere — from the web to social networks
to communication topologies to online games to shopping,
logistics, and transportation — graph structured data is a part
of our everyday life. These applications all yield massive,
evolving graphs that capture user activity, intent, and inter-
actions. Analyzing these massive graph datasets is critical to
deriving key insights for businesses and organizations. As a
result, a plethora of systems for graph analytics have been
proposed in the past few years. These include vertex-centric
systems, e.g. Pregel [1], Giraph [2], GraphLab [3] and its
extensions [4], [5], [6], GPS [7], Trinity [8], GRACE [9],
[10], Pregelix [11]; neighborhood-centric systems, e.g. Gi-
raph++ [12], NScale [13], [14]; datalog-based systems, e.g. So-
cialite [15], [16], GrDB [17], [18]; SPARQL-based systems,
e.g. G-SPARQL [19]; RDF stores, e.g. Jena [20] and Al-
legroGraph [21]; key-value stores, e.g. Neo4j [22], Hyper-
graphDB [23]; and others such as TAO [24] and FlockDB [25].

These purpose-built graphs systems are typically used in
conjunction with a storage system such as a relational database.
A common usage pattern involves collecting raw data, e.g.,
about sales transactions, friend relationships, locations visited,
etc in a relational table, exporting this relational data into
a graph system, running some analysis, and then (possibly)
reloading the data into the database for presentation or aggre-
gation. Two systems are typically used because of the percep-
tion that 1) it is difficult or impossible to express many graph
analytics in SQL, 2) even if it is possible to express graph
analytics in SQL, relational databases are inefficient at the
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kind of iterative algorithms that comprise many graph analytics
(e.g., page rank, shortest paths), and 3) graphs systems lack
features that make them usable as primary data stores, such
as the ability to efficiently perform in-place updates, provide
transactions, or efficiently subset or aggregate records.

As a result, most users of graph systems run two different
platforms. This is cumbersome because users must put in
significant effort to learn, develop, and maintain two separate
environments. Thus, a natural question to ask is how bad it
would be to simply use a SQL-based relational system for both
storing raw data and performing graph analytics. Related work
suggests there may be some hope: for instance, researchers
have demonstrated very good performance of triangle counting
on Vertica [26], [27], comparable or better performance than
specialized graph systems for finding the shortest paths on
Oracle [28], and query optimization techniques for efficient
subgraph pattern matching in PostgreSQL [29]. Others have
looked at the utility of combining graph analysis with relational
operators [30], [31]. However, none of these efforts tried to
build a truly usable, general purpose graph processing layer
on top of relational systems.

In this work we describe a new, general purpose graph
processing language we have developed that can be readily
compiled into efficient SQL. We chose to develop a new
language because it is awkward to express graph analytics in
SQL, as many operations involve multiple self-joins on tables
of nodes and edges. Such queries are verbose and hard to read,
and require programmers to think in terms of tables and joins,
rather than the more natural representation of nodes and edges.
Complex SQL queries can result even for relatively simple
graph operations, e.g. multiple joins for simple neighborhood
accesses. The user also needs to tune the relational engine,
e.g. create physical designs such as sort orders and indexes, in
order to extract good performance.

To illustrate, we consider the problem of implementing
single source shortest paths in SQL. Assume that we have
a node table storing node ids and node values, and an edge
table storing source and destination node ids for each edge.
We could compute the path distance at a node by looking at
the distance stored in the neighboring nodes, and updating the
distance whenever we see a smaller distance, i.e.

UPDATE node SET node.value=node_update.value
FROM (
SELECT e.to_node AS id, min(nl.value+l) AS value
FROM node AS nl, edge AS e, node AS n2
WHERE nl.id=e.from_node AND n2.id=e.to_node
GROUP BY e.to_node, n2.value
HAVING min (nl.value+l) < n2.value
) AS node_update
WHERE node.id=node_update.id;



Clearly, coming up with the above query expression requires
expert knowledge and experience of SQL, moving the pro-
grammer far from the actual graph analysis task.

The above example shows that ease-of-use is a crucial
requirement for graph analytics. In fact, this is one of the
reason for the popularity of vertex-centric graph processing
models and the wide range of graph processing systems
based on it, including Pregel [1], Giraph [2], GraphLab [3],
GPS [7], Trinity [8], GRACE [9], [10], and Pregelix [11].
Using a vertex-centric programming model, the developer
only deals with the computation logic at each vertex of the
graph, without worrying about other messy details. However,
procedural vertex-centric programs require programmers to
write custom code, rather than declarative expressions as in
SQL. Furthermore, the vertex-centric model is not particularly
flexible and several seemingly simple graph operations are very
difficult to express, e.g. triangle counting and 1-hop analysis
(see Section II-A).

In this paper, we present GRAPHiIQL (pronounced graph-
ical), an intuitive declarative graph query language and com-
piler that compiles into efficient SQL programs that can
run on any relational database. GRAPHIQL is inspired by
PigLatin [32] in the sense that it aims to fit in a sweet spot
between the declarative style (SQL) and low-level procedural
style (vertex-centric) approaches. GRAPHIQL provides first
class support for graphs, allowing programmers to reason in
terms of nodes and edges. Furthermore, GRAPHiIQL offers key
graph constructs such as looping, recursion, and neighborhood
access, thereby making it a more natural query language for
expressing graph analytics. As a result, users can focus on their
actual analysis task instead of struggling with crafting SQL
expressions. The GRAPHIQL compiler also applies query op-
timization techniques to tune the performance, and runs them
on a standard relational engine. Thus, GRAPHIQL combines
efficient and easy to program graph analytics within relational
engines, which make it possible to perform transactional
operations, execute fine grained updates, and run a variety of
declarative queries to filter, aggregate and join graph data.

Contributions: In summary, our major contributions are:

(1.) We contrast two major query languages for graph analyt-
ics, a procedural query language and a structured query lan-
guage. We discuss the pros and cons of these two approaches
and motivate the need for a new language. (Section II).

(2.) We present GRAPHIQL, an intuitive graph query language
for relational databases. We introduce Graph Tables, a data
abstraction for manipulating graphs. We describe how users
can create as well as manipulate Graph Tables. (Section III)
(3.) We discuss several case studies, including typical ap-
plications such as PageRank and shortest path, as well as
more advanced node-centric analysis such as triangle counting,
discovering strong ties and finding weak overlaps. (Section IV)
(4.) We describe the GRAPHIQL compiler, which first parses
a GRAPHIQL query into an operator graph, and then compiles
Graph Tables to relational tables and Graph Table manip-
ulations to relational operators. GRAPHIQL applies several
standard optimization techniques to the resulting relational
algebra expression. (Section V)

(5.) We show the performance of GRAPHiIQL queries and
compare it with Apache Giraph, a popular system for large

scale graph analytics. Our result shows that GRAPHiIQL
queries can match or even outperform specialized graph pro-
cessing systems. (Section VI).

II. LANGUAGES FOR GRAPH ANALYSIS

In this section, we motivate the need for a new graph query
language. We start by looking at a leading graph language,
Pregel, and discuss its strength and weaknesses for graph
analytics. We then contrast Pregel with SQL, a very different
query language from Pregel, for graph analytics. Our goal is
to show the problems with the leading graph languages and
describe how GRAPHiIQL addresses them.

A. Pregel: Procedural Graph Language

Like MapReduce, procedural graph languages require pro-
grammers to implement one or more procedures that perform
the core of the graph operations, while the graph system
takes care of executing the program (often in a distributed
manner). The canonical procedural languages are so called
“vertex-centric languages”, such as Pregel [1]. These requires
programmers to write a vertex compute function, which is
executed once for each vertex of the graph (possibly over
several iterations or rounds). Listing 1 shows the vertex-centric
implementation of PageRank in Pregel [1]. The vertex compute
function takes a list of messages as input and sends one or
more messages to its neighbors.

void compute(vector<float> messages){
// compute the PageRank
float value;
if ( iteration >= 1){
float sum = 0;
for (vector<float >:: iterator it=messages.begin(); it!=messages.end(); ++it)
sum += xit;
value = 0.15/NUM_NODES + 0.85x%sum;
}
else
value = 1.0/NUM_NODES;
modifyVertex Value(value) ;
// send messages to all edges if there are still more iterations
if ( iteration < NUM_ITERATIONS){
vector<int> edges = getOutEdges();
for (vector<int>:: iterator it = edges.begin(); it != edges.end(); ++it)
sendMessage(xit, value/edges. size ());
}
voteToHalt () ;
}

// halt

Listing 1. PageRank in Pregel.

For many programs, such as PageRank, the vertex-centric ab-
straction is quite intuitive for programmers. However, vertex-
centric programs requires expert programmers whereas ana-
lysts are typically more comfortable with SQL-style declarative
languages. Furthermore, vertex-centric programming model is
not ideal for many analyses. Consider triangle counting (com-
puting the number of “triangles” in a graph, where a triangle is
any set of three nodes, A, B, and C, such that there is an edge
from A + B, from B + C, and from C < A). To implement
this as vertex program requires every vertex to have access to
its neighbors’ neighbors. To do this, we might use the first
superstep to ship the neighborhood information and the second
superstep to actually count the triangles, as shown in Listing 2.
This leads to significant communication overhead and poor
performance as large amounts of neighborhood information
are sent throughout the network.



void compute(vector<float> messages){
if ( iteration ==0){ // send neighborhood as messages
vector<int> edges = getOutEdges();
for (vector<int>:: iterator itl =edges.begin(); itl != edges.end(); ++itl)
for (vector<int>:: iterator it2=edges.begin(); it2 != edges.end(); ++it2)
sendMessage(xitl, *it2);
}
else {
multiset <float> ids ;
for (vector<float >:: iterator it=messages.begin(); it != messages.end(); ++it)
ids . insert (*it);
vint triangleCount = 0;
vector<int> edges = getOutEdges();
for (vector<int>:: iterator it=edges.begin(); it != edges.end(); ++it)
triangleCount += ids.count(xit);
modifyVertex Value( triangleCount ) ;

}
voteToHalt () ;
}

Listing 2. Per-node Triangle Counting in Pregel.

Figure 1(a) and 1(b) show the performance of Giraph
(open source implementation of Pregel) and Vertica (SQL)
on PageRank and triangle counting respectively. We ran these
experiments over varying graph sizes (shown on the x-axis)
on a single node. Giraph runs PageRank over all graph sizes,
however its performance is much worse than Vertica, by a
factor ranging from 14 to 6.5. Hence, although these vertex
centric languages are intuitive for some programs, they don’t
perform well. Additionally, Giraph can run triangle counting
only for smaller graphs and runs out of memory for larger
graphs, even with 12GB of RAM for each of the four workers.

B. SQL: Structured Query Language

SQL is a well known language used for a variety of data
analysis (including graph analytics). As we saw in Figure 1(a),
SQL-based systems can have very good performance for graph
queries. This is because programmers can leverage heavily
optimized built-in operators, compared to custom vertex func-
tions in Pregel. Furthermore, programmers do not have to
provide elaborate custom code, but can simply compose their
queries from the rich vocabulary of SQL operators. However,
SQL is awkward for some graph analysts and it is difficult
for analysts to craft the right SQL queries for their analysis.
For example, Listing 3 shows how one could implement
PageRank using SQL [33], over two tables: node(id,value) and
edge(from_node,to_node).

CREATE TABLE node_outbound AS
SELECT id, value/COUNT(to_node) AS new_value
FROM edge e, node n
WHERE e.from_node=n.id
GROUP BY id, value;
CREATE TABLE node_prime AS
SELECT to_node AS id, 0.15/N + 0.85xSUM(new_value) AS value
FROM edge e, node_outbound n
WHERE e.from_node=n.id
GROUP BY to_node;

Listing 3. PageRank in SQL.

SELECT el.from_node,count(x)/2 AS triangles
FROM edge el
JOIN edge €2 ON el.to_node=e2.from_node
JOIN edge e3 ON e2.to_node=e3.from_node
AND e3.to_node=el.from_node
GROUP BY el.from_node

Listing 4. Per-node Triangle Counting in SQL.

While the above PageRank implementation has good perfor-
mance, it is not particularly intuitive as it requires reasoning
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Fig. 1. Pregel and SQL languages over varying graph sizes (nodes/edges).

in terms of joins of tables. Likewise, Listing 4 shows triangle
counting using SQL.

Again, we see that it is not trivial to come up with the above
SQL statement, as users are forced to think in terms of tables
and joins instead of graph elements such as nodes and edges.
Furthermore, the analyst needs to be aware of system specific
optimizations and craft the query for best performance, e.g. in
the PageRank example, since the algorithm updates all nodes,
in most SQL databases it is better to create a new table
compared to updating an existing table in-place.

To bridge the gap between these two approach, in this
paper we propose a new graph query language that has
powerful syntax and expressibility (as in SQL) while allowing
programmers to think in terms of graphs (as in vertex-centric
languages). Furthermore, our language supports both SQL-
style aggregates as well as the Pregel-style vertex-programs,
thereby combining the best of both worlds. And finally, our
language runs all graph analysis on the relational database
engine itself, harnessing the efficiency of modern analytic
database engines. Thus, our goal is to strike the right balance
between usability, expressibility, and performance. We describe
our language in detail below.

III. GRAPHIQL

In this section, we introduce GRAPHiIQL, our new query
language for graph analytics. The core of GRAPHIQL is a new
data abstraction and a number of operators supported by it. We
describe these below.

A. Graph Tables

Typically, one would store a graph in a relational database
as a table of nodes and a table of edges. However, with this data
model, the programmers are left to deal with complicated (self)
joins when performing data analysis. Such joins are difficult
for many programmers to think about, and can introduce
performance bottlenecks that require careful tuning of SQL
or physical database structures (e.g., indexes and materialized
views). As an alternative, we believe it is more natural for
programmers to think of graphs in terms of a recursive data
structure. This recursive nature helps users to easily access
neighborhoods of nodes and edges, a key operation in almost
all graph analyses. Finally, the notion of neighborhood is
equally important for nodes as well as edges, i.e. an analyst
should be able to access the nodes or edges that are adjacent
to a given node or edge. To address these, we propose a new
data abstraction, called Graph Tables, to allow programmers



to easily express their graph analytics. A Graph Table has the
following three key features:

1) Collection of Graph Elements: A Graph Table is a set
of graph elements, which together describe a graph. A graph
element can be either a node or an edge. Each graph element
has a unique id as well as a type indicating whether it is a
node or an edge.

2) Graph Element Properties: A graph element can have
any number of properties associated to it, e.g. the name of
the graph element, or its weight denoting its importance. A
property is a key/value pair which describes the graph element.
Id and type are default properties of every element.

3) Recursive Association: Each graph element (or sets of
elements) has access to its outgoing and incoming graph ele-
ments, e.g. outgoing edges. Graph elements have this support
for neighborhood access via two recursive associations:

e out — points to outgoing graph elements
e in — points to incoming graph elements

For undirected graphs, out and in are identical sets of graph
elements. This neighborhood access allows programmers to
reason about the graphs more naturally.

Thus, Graph Table provides first class support for graphs
and is more intuitive to reason about. By utilizing a combined
data structure for both nodes and edges, GRAPHiIQL takes care
of combining their physical tables. Essentially, Graph Tables
act as a logical abstraction over the physical representation of
the graph. As we describe in Section V, Graph Tables can
be easily compiled into relational tables. In this paper, we
stick to node lists and edge lists as the underlying physical
representation. However, one could imagine other physical
representations as well.

B. Graph Table Definition

In the following, let us first look at the data definition
language (DDL) for Graph Tables.

1) Create: We introduce a GRAPHTABLE keyword to create
a Graph Table.

CREATE GRAPHTABLE g AS
NODE (pl,p2,..)
EDGE (ql,92,..)

This means that we create a Graph Table as a set of nodes and
edges, with properties p1,p2,.. and q1,q2,.. respectively.
Node and edge properties can have different or same name,
i.e. pl,p2, .. and q1,q2, .. are not disjoint. Also, note that in
this paper, we restrict ourselves to traditional graph elements,
i.e. nodes and edges. However, we could also extend Graph
Table to other types of graph elements, e.g. neighborhoods.
Exploring this in more detail would be a part of future work.

2) Load: Once created, we can load a Graph Table with
graph elements as follows:

LOAD g AS
NODE FROM graph_nodes DELIMITER d
EDGE FROM graph_edges DELIMITER d

Keywords NODE and EDGE identify the type of graph element
and files graph_nodes and graph_edges contain the data for
nodes and edges respectively. Different graph element types

can have different key value pairs. GRAPHIQL automatically
adds an id to each graph element, in case it is not provided.

3) Drop: We can drop a Graph Table as:

DROP GRAPHTABLE g

C. Graph Table Manipulation

Let us now look at the Graph Table manipulation operators
provided by GRAPHIQL. Overall, GRAPHIQL provides five
Graph Table operators which are powerful enough to express
a large variety of graph analytics. These are iterate, filter,
retrieve, update, and aggregate. We discuss these below.

1) Iterate: We can access individual graph elements of a
Graph Table using FOREACH. . IN statement as follows:

FOREACH item IN graph_element_set

Here the set of graph elements can be the original Graph Table
or a Graph Table referred to by recursive association from the
starting element (i.e. out, in). Additionally, we can execute a
fixed number of iterations using FOREACH, e.g.:

FOREACH i IN [1,5]
We can also iterate conditionally using WHILE statement:

WHILE condition

2) Filter: We can filter a Graph Table on one or more
key/value pairs to get a subset of the Graph Table, i.e. given
a Graph Table g, its subset ¢’ filtered on key/value pairs
k1/v1...kn /v, is given as:

g’ = g(kl=vl,k2=v2,...,kn=vn)

In addition, we can filter the graph to retrieve just nodes or
edges, and to select the neighborhood of a node. For example,
the set of nodes (i.e. graph elements of type node) in g is
given as g(type=N) and the set of edges in g is given as
g(type=E). While accessing individual graph elements (using
FOREACH statement), we can access the set of outgoing edges
of each graph element e as e.out(type=E). Likewise, the set
of outgoing nodes of e is given as e.out(type=N), and so on.

We see that the GRAPHIQL syntax for filter operation is very
compact, thus allowing an analyst to quickly narrow down his
analysis to only the interesting portions of the Graph Table.

3) Retrieve: We can conditionally retrieve graph elements
or algebraic expressions over elements as follows:

GET expressionl,expression2, ..
WHERE condition

.,expressionk

Here, expression can be any algebraic expression over a set of
graph elements or each graph element in a FOREACH construct.
For example, we can retrieve the value of all nodes as follows:

GET g (type=N) .value
Similarly, we can retrieve nodes with value greater than 10 as:

FOREACH n in g(type=N)
GET n
WHERE n.value>10



4) Update: GRAPHIQL also allows updating of graph
elements subject to a condition, as follows:

SET variable TO expression
WHERE condition

We can update all elements in a Graph Table, e.g. set the
weight of all edges to 1, as follows:

SET g (type=E) .weight TO 1
We can also do the above update using a FOREACH statement:

FOREACH e IN g (type=E)
SET e.weight TO 1

The update statement returns the number of graph elements
successfully updated.

5) Aggregate: Finally, GRAPHiIQL allows programmers to
aggregate properties from a set of graph elements. GRAPHIQL
has several aggregate functions including SUM, COUNT, MIN,
MAX, AVG, by default. For example, the number of outgoing
edges of each node in Graph Table g is given as:

FOREACH n IN g (type=N)
GET n.id, COUNT (n.out (type=E))

D. Nested Manipulations

Graph Table manipulations can be nested, i.e. the analysis
over the recursive Graph Tables can be nested within each
other. Updates, however, cannot be nested, i.e. we cannot apply
another Graph Table manipulation after applying an update.
Table I shows all valid nesting for Graph Table manipulations.

outer inner]  perate Aggregate Retrieve Update
Iterate v v v v
Aggregate v v v
Retrieve v v
Update v v
TABLE 1. VALID NESTING FOR GRAPH TABLE MANIPULATIONS.

As an example, we can retrieve all pairs of nodes as follows:

FOREACH nl IN g (type=N)
FOREACH n2 IN g(type=N)
GET nl.id, n2.id

Likewise, we can compute the number of 1-hop neighbors
(neighbors of neighbors) of each node in a Graph Table g
(assuming undirected graph) as follows:

FOREACH n IN g (type=N)
GET n.id, SUM(
FOREACH n’ IN n.out (type=N)
COUNT (n’ .out (type=N))
)

By nesting the Graph Table manipulations, programmers
can easily compose arbitrarily complex graph analysis.

E. User Defined Functions

GRAPHIQL supports user defined functions (UDFs) to
allow programmers to inject custom functionality. These UDFs
are stateless functions which take in a set of parameters,
perform some computation, and output the result. For example,

we can define a UDF with some computation for every vertex
of the graph. Likewise, we can also define a UDF having
computation for every edge of the graph. Programmers can
create a UDF by defining its signature. For instance, a vertex
UDF could be created as follows:

CREATE UDF vertex (int id, int value, g edges)
RETURNS int

Thereafter, we can run the UDF vertex over a Graph Table g
in a Pregel-style manner as follows:

WHILE c>0
FOREACH n IN g(type=N)
c = SET n.value TO vertex(n.id,n.value,n.out)

UDFs are powerful tools to extend the functionality of
GRAPHIQL.

IV. APPLICATIONS

In this section, we present several case studies to demon-
strate the applicability of GRAPHIQL. We consider both typ-
ically graph analysis, such as PageRank and shortest path,
as well as more complex analysis, such as triangle counting,
finding strongly overlapping vertices, and detecting weak ties.

A. PageRank

We first consider PageRank. The PageRank of a vertex is
the aggregate of the PageRanks contributed by its incoming
neighbors, i.e. the PageRank of each vertex n in a Graph Table
g is given as:

FOREACH n IN g(type=N)
SET n.value TO 0.15/N+0.85%*SUM (pr_neighbors)

Here, pr_neighbors are the PageRanks contributed by the
incoming neighbors. In the following we show how to compute
pr_neighbors as a GRAPHiIQL expression. Each vertex
distributes its PageRank equally among its outgoing neighbors,
i.e. the PageRank contributed by a vertex n’ to each neighbor
is given as:

n’ .value/COUNT (n’ .out (type=N))

Therefore, the total PageRank of a node (with pr_neighbors
expanded out) can be written as:

FOREACH n IN g (type=N)
SET n.value TO 0.15/N+0.85xSUM (
FOREACH n’ IN n.in(type=N)
GET n’ .value/COUNT (n’ .out (type=N))
)

We can run multiple iterations of PageRank by nesting the
above query in another loop. For example, we can run 10
iterations of PageRank as follows:

FOREACH i IN [1,10]
FOREACH n IN g (type=N)
SET n.value TO 0.15/N+0.85%xSUM (
FOREACH n’ IN n.in (type=N)
GET n’ .value/COUNT (n’ .out (type=N))
)

The three key features that makes writing the above ex-
pression extremely easy and intuitive are: (i) allowing users to
easily nest multiple sub queries, (ii) quick neighborhood access
via recursive association of graph elements, and (iii) the ability
to perform ad-hoc filtering of graph elements.



B. Shortest Path

Single Source Shortest Path (SSSP) is an important op-
eration in several applications, such as social networks and
transportation networks. To compute the shortest distance to
a vertex, we look at the distances to each of its neighbors,
find the minimum, and increment that by 1. We update the
vertex distance if the newly found distance is smaller. This is
expressed in GRAPHIQL as follows:

FOREACH n IN g (type=N)
SET n.value TO MIN(n.in (type=N) .value+l)
WHERE v’<n.value

As v’

Of course, we need to initialize the distance of source vertex to
0 and all other vertices to infinity. And we continue updating
the distances as long as any vertex finds a smaller distance,
i.e. as long as we have any updates to the Graph Table. The
entire SSSP query in GRAPHIQL looks as follows:

SET g (type=N) .value TO INF
SET g (type=N, id=startNode) .value TO 0O
WHILE updates>0
FOREACH n IN g (type=N)
updates = SET n.value TO
MIN (n.in (type=N) .value+l)
WHERE v’ <n.value

As v’

Thus, we see that the above path-style BFS query is easy
to express in GRAPHiIQL.

C. Triangle Counting

We now look at the problem of counting the number of
triangles in graph. Triangle counting is an important step in
algorithms such as computing clustering coefficients. Using
GRAPHIQL, the total number of triangles in a Graph Table g
can be counted as:

COUNT (
FOREACH el IN g (type=E)

GET el.out (type=E) .out (type=E,to_id=el.from_id)
)

Essentially, in the above query, we are looking for pat-
terns such that two successive outgoing edges of an edge
(i.e. out (type=E) .out (type=E)) form a triangle. Note that
in this query, we deal only with the edges because that is
more natural when thinking of triangles. This is in contrast to
vertex-centric languages where users are constrained to think
in terms of vertices.

Instead, of getting the global count, we can also count the
triangles for each node in the graph (useful for finding local
clustering coefficient). This could be done by iterating over all
vertices in the graph and looking for three successive edges
that form a triangle, as follows:

FOREACH n IN g (type=N)
GET n.id, COUNT (
n.out (type=E)
.out (type=E)
.out (type=E, to_id=n.id)
)

Thus, we see that in addition to path-style queries,
GRAPHIQL can also be easily used for pattern-style queries
to quickly navigate and find desired portions of the graph.

D. Strong Overlap

Let us now look at a slightly more complex graph analysis,
namely finding all nodes which have strong overlap between
them. Here we define overlap as the number of common
neighbors between two nodes. Other measures are of course
possible as well. Such a query can be very tricky to express
in other query languages, particularly in SQL. However, in
GRAPHIQL, we can make use of two nested loops over the
nodes in the graph and count the overlap between them. Given
two nodes, nl and n2, an overlap between them occurs when
n2 is the 2-hop outgoing neighborhood of n1, i.e.:

nl.out (type=N) .out (type=N, id=n2.id) = n2

Thereafter, we simply count these occurrences for every pair
of nodes and filter those which are above a threshold:

FOREACH nl in g(type=N)
FOREACH n2 in g(type=N)
GET nl.id,n2.id, COUNT (
nl.out (type=N) .out (type=N, id=n2.id)
) AS overlap
WHERE overlap > Threshold

Notice that in the above example, we have two nested iterators
over unrelated (i.e. not recursively associated) sets of graph
elements. Thus, the iterator nesting in GRAPHiIQL is not just
limited to neighborhood access. Rather, we can nest any two
sets of graph elements.

E. Weak Ties

Finally, let us consider an even more complex graph
analysis of finding all nodes which frequently act as ties
between two otherwise disconnected pair of nodes. This is
more complicated because it involves finding the absence of
edge between two vertices. Using GRAPHIQL, we can detect
whether two nodes nl and n2 have an edge between them by
checking whether COUNT (nl.out (type=N, id=n2)) is 0 or
not. Thus, we can get the neighboring node-pairs of n which
are pair-wise disconnected as follows:

FOREACH nl IN n.out (type=N)
FOREACH n2 IN n.out (type=N)
GET COUNT (nl.out (type=N,id=n2.1id))==0 ? 1:0

The ‘2’ operator above is similar to case expression in SQL,
i.e. it returns the first or the second value depending on the
condition before ‘2’. We find all nodes n which have a suffi-
cient number (greater than threshold) of mutually disconnected
neighbor-pairs, i.e. they act as ties between them, as follows:

FOREACH n IN g (type=N)
GET n.id, SUM(
FOREACH nl IN n.out (type=N)
FOREACH n2 IN n.out (type=N)
GET COUNT (nl.out (type=N, id=n2.id))==0 ? 1:0
) AS ties
WHERE ties > Threshold

Thus, we see that even though GRAPHIQL has a restricted
vocabulary, it is powerful enough to express fairly complex
graph analysis. More importantly, it brings the user focus back
to their analysis instead of struggling with the query language.



V. COMPILATION
A. Query Parser

The GRAPHIQL query parser parses GRAPHIQL query
statements into a parse tree of Graph Table operators, con-
sisting of Filter, Iterate, Retrieve, Update, and Aggregate op-
erators. The parser is responsible for checking the query syntax
against the syntax of the five Graph Table manipulations, as
defined in Section III-C. The parser also checks query nesting
in two respects:

e the symbols in a nested statement must be defined, either
in the same statement or any of the outer statements.

e the nesting must be valid; Table I summarizes the valid
nestings in GRAPHiQL.

For user-defined functions, GRAPHIiQL checks that the
function has been defined and its input/output matches with
its definition. After parsing and checking the query statements,
GRAPHIQL produces a logical query representation. This is
then used to build the relational plan, as described below.

B. Plan Builder

GRAPHIQL compiles the user queries into a relational
operator tree. In the following, we describe how GRAPHiIQL
compiles Graph Tables and its manipulations to relational
tables and relational operators over them.

1) Graph Table Manipulations to Relational Operators:
Let us first look at how GRAPHIQL compiles the Graph Table
manipulations to relational operators (still over Graph Tables
for the moment).

Filter. Filtering operations over a Graph Table are simply
mapped to selection predicates (o). For example, filtering over
keys ki, ko, .. is mapped as follows:

g(type=N, ki = vi, ko = v2,..) = Ok =0y ko—vs,..(9 (Eype=N))

The only exception here is the filter by type, which is used
when compiling Graph Tables to relational tables.

Scalar Iterators. Iterators over scalar values, e.g. roreacH i
v [1,10]. indicate a set of iterations for the analysis. We
map these to an outside driver loop to run the actual SQL.
The compilation of iterators over graph elements, in contrast,
depend on the type of manipulation they contain, i.e. retrieve,
update, or aggregate. We describe these below.

Retrieve. Retrieve operations are essentailly projections ()
over the Graph Table. Retrieve operations with or without an
iterator are compiled identically (the iterator only improves
readability.) For example, consider the following retrieve op-
eration which returns the values of all vertices:
FOREACH n IN g (type=N)

GET n.value
Apart from retrieval, this query also involves renaming
g (type=N) to n. Therefore, GRAPHIQL compiles it to
T value(Pn (g (type=1) )), Where p is the rename operator.

Update. An update operation modifies entries in the Graph
Table. We denote an update as: g < ¢’. Again, updates within
or without an iterator translate identically.

Aggregate. An aggregate operation computes statistics
(e.g. sum, count, etc.) over the Graph Table. For example,

COUNT (g (type=N) ) compiles t0 Yeount(g (type=N) ). En-
capsulating an aggregator in an iterator loop introduces a
group-by, i.e. the aggregate is computed for each item in
the loop. For example, consider the following statements to
compute the out-degree of each vertex:
FOREACH n IN g(type=N)

COUNT (n.out (type=E))
This will be compiled in GRAPHIQL as follows:

Yeount(n.out(type=E)) (Fn.id(pn (g (type=N) )))

GRAPHIQL treats the recursive associations of a Graph Table,
e.g. n.out,n.in, as projections of the Graph Table. Thus, we
can rewrite the above query by pushing down projections as
follows:

“Yeount (Fn.id (Trn.id,n.out(type:E) (pn (g (type=N) ))))

The above query first applies the projection (n.id and
n.out(type=E)) before applying the group-by and the count.
We can further decompose the projection in the above query
into a join between two views on the Graph Table, as follows:
’Ycoum(rn.id(ﬂn.id,n’ (pn (g (type=N) ) Ll
Pn’ (q (type=N) .out (type=E) ))))

Thus, aggregates in GRAPHIQL can be compiled to a combi-
nation of project, group-by, aggregate, and join operators.

We see that after compiling the Graph Table manipulations
to relational operators, a query looks very similar to a relational
query. The only missing piece is to translate the Graph Table
expressions to relational tables. We describe these next.

2) Graph Tables to Relational Tables: GRAPHiQL phys-
ically stores a Graph Table as relational tables in a database
system. By default, it creates two tables, a list of nodes IV and
a list of edges F, i.e. N and E are two relational views of
a Graph Table. However, we can create other views as well,
e.g. N X E. When compiling a query, GRAPHIQL translates
all Graph Table expressions into manipulations over the rela-
tional tables We show the typical Graph Table mappings below:

vyp — N
typ — F

g (type=N)
g( )
g (type=N) .out (type=E) — N X F
g( ) -
g( ).

e=
e=E
out (type=E) — EX E
out (type=N) — N X E X N
g.out.in+> g.in

type=E
type=N

g.in.out = g.out

With these, py,(g(type=1) ) in the above query is simply N and

P (g (type=1) .out (type=) ) can be denoted as N’ X E. The

entire query can then be written as follows:
’Ycoum(rn.id(ﬂn.id,n’(N X (N, X E))))

This could be further simplified to:
’Ycount(Fn.id(Wn.id(N al E)))

The above query expression is standard relational algebra
(easily translatable into SQL) and could be readily executed
on any relational database of choice.

3) Tuning Relational Algebra Expressions: The previous
sections showed that we can compile GRAPHIQL queries to
relational algebra expressions. A major advantage of doing
this is that we can now readily apply several standard re-
lational query optimization techniques in order to improve
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Compiled Relational Algebra Expression

PageRank

l}gl(n-value <~ ’Ysum(FnAid((N X E X N,) M ('Ycounl(rid(NN X E)))))

updateCount >0
Shortest Path

(n'value ~ Un.value>v’(’Ymin(n’.value)+l(Fn.id(N X E X N,))))

Triangles (global)

'Ycounl(Uel.fmm:eg.to(El X Eo X Ed))

Triangles (local)

'Ycounl(rel.frum(o—el.from:eg.to(El e E2 X EJ)))

Strong Overlap

Tcount>t ('Ycounl(rel .from,eo from(El X EQ)))

Weak Ties

Ucounl>t('chu1ll(F51.lo((El X EQ) X ES)))

TABLE II.

query performance. In the following, we outline some of
these techniques. For a more detailed overview on optimizing
relational queries, please see [34].

De-duplication of Graph Elements. For undirected graphs,
recursive access to the Graph Table can create duplicate
graph elements. For example, g(type=E).out (type=g) Will
include every pair of edges twice, one in each direc-
tion, as well as include cycles. GRAPHIQL avoids that
by introducing an additional selection predicate as follows:
Uel.f'rom<el.to/\eg.f'r'om<ez.to(E1 bl EQ)

Selection Pushdown. As in standard relational queries,
GRAPHIQL pushes down the selections as much as possi-
ble, i.e. only the relevant graph elements are passed to the
higher level operators. For instance, with selection pushdown
g (type=E) .out (type=g) would be compiled as follows:

(Uel.from<614to(El)) X (UEQ.f’I‘Om<62.tO(E2))'

Cross-product As Join. A cross product followed by a selection
can be mapped to a join operator. For example, we can get the
overlap between all pairs of nodes as follows:
FOREACH nl in g(type=N)
FOREACH n2 in g(type=N)
GET nl.id,n2.id, COUNT (
nl.out (type=N) .out (type=N, id=n2.id)

)

This would be compiled to:

’)/count(]-—‘nl.id,nlid(o—nl.id:n2.id(pn1 (E X E) X pnz (N))))

However, the above statement could be optimized to:
'Ycoum(rnl.id,nZid(pnl (E N E) N pn, (N)))

Redundant Joins. Finally, GRAPHIQL prunes several redun-
dant joins. For instance, if in NV X E no attribute of N other
than its id is used, then GRAPHiIQL removes the redundant
join and simplifies it to E. Likewise, N X N is simplified to
N, given that its join key is also the primary key.

Thus, we see that GRAPHIQL queries can be compiled as
well as tuned to relational algebra expressions. Table II shows
the compiled algebraic expressions for the six application
queries from Section IV.

VI. PERFORMANCE

In this section, we study the performance of GRAPHIQL on
several real graphs running on a relational engine. Specifically,
we ran GRAPHIQL on Vertica [35] and compared it against
Apache Giraph [2], a popular system for graph analytics. We
tested the five applications discussed in Section IV, namely
PageRank, shortest path, triangle counting (both global and
local), strong overlap, and weak ties. Note that PageRank
and shortest path are suited for directed graphs whereas
the remaining make more sense over undirected graphs. We

COMPILED RELATIONAL ALGEBRA EXPRESSIONS FOR GRAPHIQL QUERIES.

chose both a small and a large dataset for both directed and
undirected scenarios, summarized as follows:

e Directed: small Twitter dataset (81,306 nodes and 1,768,149
edges) and large LiveJournal dataset (4,847,571 nodes and
68,993,773 edges), and
e Undirected: small Amazon dataset (334,863 nodes and
925,872 edges) and large LiveJournal dataset (3,997,962 nodes
and 34,681,189 edges)

All datasets are available online [36]. We ran the above
analysis on a machine having a 2GHz 2x6 Xeon (24 total
hardware threads with hyper-threading), 48GB of memory,
1.4T disk, running RHEL Santiago 6.4. We ran all experiments
with a cold disk cache and report the average of three runs.

The top part of Table III shows the performance of
GRAPHIQL compared to Giraph on the small graph. We can
see that GRAPHIQL outperforms Giraph significantly, by a
factor ranging from 6.3 for weak ties to 15.2 for global
triangle counting. The main reason for this huge difference
is that Giraph suffers from a significant initialization cost and
MapReduce overheads, even for small sized graphs. On the
other hand, GRAPHIQL compiles user queries into efficient
relational operators with no such overheads.

Table III also shows the performance of GRAPHIQL and
Giraph on the large graph. GRAPHIQL outperforms Giraph
by 6.5 times on PageRank and 2.1 times on shortest path.
Furthermore, Giraph could not run the remaining queries,
namely triangle counting, strong overlap, and weak ties, on
the large graph since it runs out of memory. This is because
these queries involving passing the 1-hop neighbors in the first
superstep and incurring significant data shuffling overhead.
GRAPHIQL, on the other hand, translates these queries into
efficient join operations which are highly tuned in Vertica. As
a result, it does not suffer from these issues.

Of course, these results are not exhaustive; evaluating
GRAPHIQL on larger graphs, multiple nodes, and against
multiple systems remains an important future step, but we
believe that these encouraging preliminary results, combined
with the simplicity of the GRAPHIQL language suggest the
merits of using relational engines for graph query execution,
coupled with a compiled language like GRAPHiIQL.

VII. OTHER RELATED WORK

Apart from Pregel and SQL, a number of other query
languages have been considered for graph analytics. Below
we review the major ones.

Imperative languages. Imperative languages provide full con-
trol to the programmers on how to perform a given task by
specifying the sequence of instructions to run. Green Marl [37],
for instance, allows programmers to write elaborate C-style



Graph | System PageRank | Shortest Path | Triangles (global) | Triangles (local) | Strong Overlap Weak Ties | Average
Giraph 46.96 43.67 47.12 46.22 42.10 50.51 46.10
Small | GrRarPHiQL 3.31 2.95 3.10 4.93 3.49 8.00 4.30
Improvement 14.2 14.8 15.2 9.4 12.1 6.3 11.99
Giraph 190.42 115.46 out of memory out of memory out of memory | out of memory 152.94
Large | GrRaPHiQL 29.42 54.42 287.77 841.51 1211.73 1483.31 651.36
Improvement 6.5 2.1 - - - - 4.30
TABLE III. THE QUERY PERFORMANCE OF GRAPHIQL COMPARED TO GIRAPH OVER SIX APPLICATION QUERIES.

programs for analyzing graphs, i.e. programmers have control
over the entire graph. However, writing such elaborate code
for every graph analysis could quickly become very messy.
The likely workflow for a graph analyst is to perform an
analysis, analyze the results, and move on to yet more analyses.
Such users would want to quickly analyze the graph and not
burdened with writing and maintaining elaborate code.

XPath. XPath is generally considered a pattern matching query
language for XML. However, some recent graph languages,
such as Cypher [38] and Gremlin [39], also make use of XPath
for graph traversals. The beauty of XPath is that it allows
programmers to express their queries succinctly, compared to
verbose and clumsy implementations in imperative languages.
However, in spite of being succinct, it is not easy to formulate
such path expressions in the first place. Additionally, XPath-
style languages constrain programmers to think in terms of
path expressions, whereas graph analysts are often interested
in broader graph analysis.

Datalog. Datalog is a declarative language in which queries
are expressed as logical rules. There is a renewed interest in
Datalog for graph analysis. This is because Datalog has natural
support for recursion, a key characteristic of several graph
analysis. Socialite [15], for instance, is a recently proposed
Datalog-based system for graph analytics. Unfortunately, in
spite of being a powerful language, Datalog has not been the
language of choice for analysts. This is because Datalog is
primarily an experts language and Datalog queries are often
too complex to be understood by non-expert users.

SPARQL. SPARQL is semantic web language designed for
web applications that involve reasoning such as inferring new
relationship triples. Although primarily used for subgraph
retrieval, SPARQL also supports post-processing the subgraph,
e.g. computing aggregates. As a result, SPARQL increasingly
looks some kind of a vanilla SQL without stored procedures.
Still, SPARQL works well primarily for extracting specific
points in the graph based on their relationships, and not good
for graph analytics [40]. As a result, it is very difficult to
express queries such as PageRank in SPARQL.

VIII. CONCLUSION

In this paper, we presented GRAPHIQL, a graph intuitive
query language for relational databases. GRAPHiIQL allows
developers to reason about more natural graph representations,
i.e. nodes and edges, rather than dealing with relational tables
and joins. GRAPHiIQL provides several key graph constructs,
such as looping and neighborhoods. As a result, GRAPHIQL
shifts the focus of the developer back to his analysis. At
runtime, GRAPHiIQL compiles user queries to optimized SQL
queries, which can run on any relational engine. Our experi-
ments show that GRAPHiIQL queries run significantly faster on
a relational database compared to Giraph: 12x faster on small

graph and 4.3x faster on large graph. Essentially, GRAPHIQL
combines the best of both worlds — ease-of-use of procedural
languages and good performance of declarative languages.
In our future work, we will build an optimizer to tune the
performance of GRAPHiIQL queries to the underlying RDBMS.
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