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Abstract—Graph partitioning is an important challenging
problem when performing computation tasks over large dis-
tributed graphs; the reason is that a good partitioning leads
to faster computations. In this work, we first introduce a new
heuristic for streaming partitioning and show that it outperforms
the state-of-the-art heuristics for streaming partitioning, leading
to exact balance and lower cut. Secondly, we introduce the partial
restreaming partitioning which is a hybrid streaming model
allowing only several portions of the graph to be restreamed
while the rest is to be partitioned on a single pass of the data
stream. We show that our method yields partitions of similar
quality than those provided by methods restreaming the whole
graph (e.g ReLDG, ReFENNEL), while incurring lower cost in
running time and memory since only several portions of the
graph will be restreamed.

I. INTRODUCTION

Actual graph datasets are massive. The World Wide Web
consists of trillions of unique links [1], Facebook contains
over one billion active users [2], Twitter consists of millions of
users, biological networks are also of similar sizes, e.g protein
interaction networks, to name but a few.
However, the growing size of graph datasets makes it chal-
lenging for performing usual computations over graphs, e.g
community detection, counting triangles, identifying protein
associations as well as many other computation tasks. A
popular solution to this problem is to divide the graph over
several clusters and then run parallel algorithms to perform
computations.

Graph partitioning is a NP-hard problem aiming to divide a
graph dataset into distinct sets under the constraints of equili-
brating the clusters’ size and minimizing the number of edges
crossing the clusters, this partitioning strategy is well known
as the balanced graph partitioning problem. Many platforms
for graph processing are proposed such as PEGASUS [3],
Pregel [4] and Graphlab [5] that use Hash partition as a default
partitioner where vertices are assigned to clusters uniformly at
random and where the only goal is to equilibrate the clusters’
size. Hash Partition is careless about the graph structure, and
its partitioning results may be sub-optimal in terms of edges
cut. As seen in previous works [6], [7], a good partitioning
leads to fast computations, the reason is that the balanced

sizes of clusters make sure that each processor is assigned
the same amount of data and in most cases, the minimized
crossing edges minimizes the network overhead. In fact, more
sophisticated heuristics for graph partitioning are required in
order to optimize computations.

A. Streaming graph partitioning:

In the setting of dynamic graphs, graph partitioning problem
is called streaming graph partitioning where the graph is
serially processed, with nodes arriving in a data stream with
a certain order : Random, Breadth first search or Depth first
search. Once a vertex is loaded,a program has to decide about
the cluster in which the vertex will be placed. This program
is called the partitioner.

B. Application:

Graph Partitioning is widely applied in distributed graph
computation systems. Many systems are proposed: Pregel [4],
GraphLab [5], Microsoft’s Trinity [8] and Horton [9] to name a
few. But these systems use a Hash method to distribute vertices
over clusters, which means that the partitioning is done abso-
lutely at random and does not care about the graph structure.
This is equivalent to using a random cut for partitioning which
leads to balanced partitions. However, random cut will lead to
slower computations due to the communication cost. To deal
with this, another heuristics for partitioning should be used
in order to optimize compuations. Fortunately, the existing
systems support custom partitioning heuristics instead of Hash
method, so it is feasible to substitute the Hash method with
another more sophisticated heuristic.

C. Our contribution:

In this paper, we are presenting a new heuristic for balanced
graph partitioning called Fractional Greedy. We show that it
yields high quality partitions with exact balanced parts’ size
and lower edges cut. At the same time, we introduce the
partial restreaming partitioning which is a hybrid model of
data streaming. In this model a portion of graph dataset is
restreamed several times, and the rest of the graph dataset is
streamed once, as in the streaming model used in [6], [7]. The



main strength of this proposed method is avoiding restreaming
the whole graph to minimize the runtime and the memory cost.
In the proposed partial restreaming model, at most half of the
graph is restreamed, this leads to faster processing and require
only half of graph nodes to be kept in memory for subsequent
iterations of the restream. We show that by restreaming only
a part of the graph dataset we obtain a good partition as in
the setting of fully restreaming the graph dataset [10]. We
use LDG [6] and Fennel [7] and our proposed heuristic FG
for partitioning. The three heuristics were adapted for our
streaming model.
We also introduce the partial selective restreaming partitioning,
which follows the same idea behind the partial restreaming
partitioning but in this case, we select the portions that we wish
to restream depending on their average degree and density.
This selective method perform well independently of the order
in which the vertices arrive.

The rest of the paper is organized as follows. In Section
2, we discuss the related work. In Section 3 we present our
proposed heuristic and our partial restreaming approach. In
Section 4 we present the evaluation set up. Section 5 presents
and discusses the main results. In Section 6 we conclude.

II. RELATED WORK

A. Balanced Graph Partitioning problem

K-way graph partitioning is known to be a NP-hard problem
[11]. It asks to divide a given graph into k balanced shards
while minimizing the edges between these shards. In other
words, given a graph G = (V,E) with |V | = n, the balanced
k-partitioning aims to partition V into k subsets, V1, V2, Vk
such that Vi

⋂
Vj = ∅ for i and

⋃
Vi = V and the number

of edges of E whose incident vertices belong to different
subsets is minimized. When k = 2, it is the problem of
minimum bisection which is also a NP-hard problem [12],
with an approximation algorithm presented in [13] with a
polylogarithmic approximation guarantee.

The k-way graph partitioning is very important in dis-
tributed computation systems and it directly affects their
performance: the k-partitioning aims to reduce the overall
runtime of the application, since it assigns each processor or
machine the same amount of data while minimizing the paral-
lel overhead by minimizing the number of edges cut. Due to
this importance, many heuristics achieving good performance
have been proposed. Among the offline algorithms, we focus
on METIS which is a multilevel method for graph partitioning
[14]. The offline methods are not suitable anymore for process-
ing huge graphs, this leads to develop new methods which
can handle graphs of billions of nodes: online algorithms are
another type of methods for graph partitioning which use a
streaming model to partition a graph [6], [7].

Recent work by Nishimura et al. [10] introduces the re-
streaming graph partitioning, which consists in several passes
of the data stream while capitalizing on results of previous
streams. Ugander et al. [15] presented the problem of balanced
label propagation partitioning, aiming to partition a graph into
k balanced parts using the label propagation method after

a partitioning initialization to ensure high quality partitions
in massive graphs. Duong et al. [16] introduced the net-
work sharding problem which consists in using a strategy of
celebrities node replication over shards in order to minimize
the number of shards queried while performing computations.
Among online algorithms, we focus on Linear Deterministic
Greedy [6], FENNEL [7] and restreaming algorithms [10].

B. Offline methods

Offline methods require complete information about the
graph to partition. There are many methods for graph parti-
tioning such as spectral methods, known to produce excellent
partitions for a wide class of problems despite their high
expense. Geometric methods use geometric information about
the graph to partition it. Geometric algorithms are known to
be fast but usually produce partitions of worse quality than
those of spectral methods. There is also the local spectral
partitioning methods like EvoCut [17], but it still require
information about large portions of the graph and perform
large computation after loading the graph data. Among the
offline methods, we focus on METIS [14] which is a fast
multilevel method and it is used as a reference for comparing
offline and online partitioning methods.

C. Online methods

Unlike offline methods, the online methods for partitioning
do not require full information about the graph. In fact, this
property makes the online methods the most suitable for pro-
cessing massive graphs. To the best of our knowledge, online
partitioning methods in streaming context were introduced
by Stanton and Kliot [6]. Tsourakakis et al. [7] presented
FENNEL as an online streaming partitioning method. These
methods consist in single shot stream of dataset. Afterward,
Nishimura et al. [10] introduced the restreaming partitioning
problem, consisting in several passes of stream dataset.

1) The streaming model: Recent work in streaming parti-
tioning [6], [7], [10] adopts almost the same streaming graph
model in which vertices arrive, each with its adjacency list.
The vertices arrive in a certain order: Random, BFS or DFS
[18], [7], and once the vertex is assigned to a shard, it is never
replaced afterwards. The streaming graph model consists in a
cluster of k machines each one of capacity C such that the
total capacity of the k machines can hold the whole graph.
When the vertex arrives in a stream, a partitioner must decide
in which one of the k machines the vertex must be placed.

2) One Pass Streaming Heuristics:
1) Linear Deterministic Greedy. In [6], Stanton and Kliot

proposed 10 different online heuristics for partitioning
graphs. The most effective heuristic which performs well
over all datasets they have used is Linear Deterministic
Greedy LDG. The goal of LDG is to assign a vertex in
a shard which contains the most of its neighbors while
avoiding overloading shards. LDG yields the best results
in terms of edges cut in FEM datasets, this in due to the
structure of FEMs, their edges are highly local which
make it possible to have very good partitions.



2) FENNEL. Recent work by Tsourakakis et al. [7], in-
troduce another greedy heuristic approach for graph
partitioning FENNEL. This heuristic is very performant,
it yields very good quality partitions of low fraction of
edge cut and balanced parts.

3) Multi-passes streaming Heuristics: In [10], Nishimura et
al. introduced the problem of restreaming partitioning which
consists in several passes of dataset stream. In the restreaming
framework considered, subsequent streams of LDG and FEN-
NEL have access to the result of previous streams [10]. In
particular, Joel Nishimura et al. chose to make a restreaming
version of the two single shot streaming partitioning pre-
sented earlier LDG and FENNEL denoted by reLDG and
reFENNEL. Partition quality yielded by restreaming methods
competes with the partitions found by METIS, the offline
method presented earlier. However, if restreaming partitioning
leads to exact balance - guaranteed for FENNEL - it can be
too expensive for partitioning massive graphs, since it must
restream the whole graph several times. Thus, the tradeoff is to
be done between computational cost and quality of partitions.

III. PROPOSED METHODS

This section presents our main contributions. In section
3.1 we present our streaming partitioning heuristic called
Fractional greedy. In section 3.2 we introduce the partial
restreaming partitioning: first we present the partial restream-
ing model used, then we present the instance of the partial
restreaming partitioning model using Linear Deterministic
Greedy LDG [6], Fennel [7] and Fractional Greedy as heuris-
tics for partitioning. Finally, we give another variant of partial
restreaming, called Selective Partial Restreaming partitioning
where portions to be restreamed are selected depending on
their degree and density.

Notations. We will be using the following notation through-
out the paper. We consider a simple undirected graph G =
(V,E), let|V | = n be the number of vertices in G and
|E| = m be the number of edges of G. Let the current
vertex loaded be v, and N(v) represents his neighbors. k
is the number of clusters or parts we wish to divide the
graph to. s is the number of the streaming iterations. Let
P t = (St1, , S

t
k) be a partition of the graph. Si, · · · , Sk are

called clusters such that Si ⊆ V and Si ∩ Sj = ∅ for
every i 6= j. P t−1 = (St−11 , · · ·St−1k ) represents the partition
obtained from the precedent stream. Let e(S, S − V ) be the
set of edges with ends belonging to different clusters. We
define λ = |e(S, S−V )|/m as the fraction of edge cut and it
should be minimized during partitioning. We define ρ as the
maximum load normalized, it expresses the balance between
clusters’ size and we have ρ = maximumload

n/k , maximumload
representing the size of the biggest cluster. Each cluster Si is
of size C. In our work we set C = dn/ke. C represents also
the size of the portion to be restreamed. We can choose that
several portions of the graph should be restreamed, then β is
the number of portions to be restreamed (each portion is of
size C).

A. Fractional Greedy: a streaming partitioning heuristic

Our proposed heuristic is designed for the constrained graph
partitioning problem, which aims first to balance the size of
the parts and then minimize the crossing edges between parts
[19]. We formally define the Fractional Greedy heuristic by
maximizing the following objective function:

f(v, P ti ) = (P ti ∩N(v))− g(P ti ) (1)

In other words, foreach vertex loaded, we compute the index
ind of the part (or the cluster) as follows:

ind =argmax
i

(P ti ∩N(v))− g(P ti ) (2)

f has two components: one term that computes the intra-parts
edges and the second g, that computes the penalization cost
depending on the size of the part. The main idea is to assign the
loaded vertex to a part that contains the most of its neighbors
and doesnt reach the maximal size. g is defined as:

g(P ti ) =
1

1− |P
t
i
|

C

(3)

The cost function g penalizes the parts of large size. In the
case of a vertex v, we compute the objective function for each
one of the k parts, if the parts that have the most neighbors
of v had reached the maximal size C, then this part should
not be selected or the corresponding value of the objective
function should not be maximal. Thats why we choose a cost
function that penalizes rapidly parts of large sizes even though
it contains the most neighbors of v.

B. Partial Restreaming Partitioning

Partial Restreaming Model:

We consider a simple streaming model as described in
Section 2, where vertices arrive in a random order with their
adjacency lists, the heuristic used for partitioning must make
a decision about the cluster to place the current vertex. In
the partial restreaming model, two major phases exist: the
restreaming phase and the one pass streaming phase. Namely,
a first loaded portion of the graph dataset of size β ∗ C is
going to be restreamed and the rest is going to be processed
in the simple streaming phase. In other words, in this model,
multi-passes of the stream is allowed for only a part of the
dataset. Let P t be the partition obtained at time t, P t−1

represents the partition obtained at the precedent iteration
of the restream. When we attain the number of restreaming
iterations allowed for the portion concerned, we continue
streaming the rest of the graph dataset normally, such that
we dont use information about the last partitioning to build
a new one. In the section below we describe the partitioning
heuristics used in our model.

Partial Restreaming Partitioning :

As a partitioning strategy, we use the state-of-the-art
heuristics [6], [7] in order to compare them with our proposed



heuristic FG. In this section we describe how we adapt these
heuristics (LDG, FENNEL, FG) to our partial restreaming
model.

1) Linear Deterministic Greedy
LinearDeterministicGreedyLDG is the best per-
forming heuristic in [6]. It greedily assigns the vertices
to clusters while adding a penalization for big clusters
to emphasize balance. LDG assigns vertices to clusters
that maximize:

LDG =argmax
i

(P ti ∩N(v)) ∗ (1− |P
t
i |
C

) (4)

In our streaming model, we consider 2 phases: the re-
streaming phase and the simple streaming phase, which
consists in one pass. In the first phase, the LDG function
will use information about the last partitioning to decide
about the placement of the current vertex such that:

PartLDG =argmax
i

(P t−1i ∩N(v)) ∗ (1− |P
t
i |
C

) (5)

Where PartLDG makes a reference to partial LDG for
partially restreaming LDG. In the second phase (the one
pass streaming phase) the vertices are assigned following
the LDG function as follows:

PartLDG =argmax
i

(P ti ∩N(v)) ∗ (1− |P
t
i |
C

) (6)

2) Fennel
Fennel yields partitions of good quality compared to
LDG, with lower fraction of edge cut and also empha-
sizes balance [7]. We adapt Fennel function to the two
phases of our streaming model. In the first restreaming
phase, PartFennel is as follows:

PartFennel =argmax
i

(P t−1i ∩N(v))− αγ|P ti |γ−1

(7)
Where PartLDG makes a reference to partial Fennel
for partially restreaming Fennel. While in the second
phase, PartFennel is as follows:

PartFennel =argmax
i

(P ti ∩N(v))−αγ|P ti |γ−1 (8)

The parameter setting of γ will be presented in Section
4.

3) Fractional Greedy 1

The adaptation of FG to the partial restreaming model
is as follows:
In the restreaming phase, PartFG corresponds to:

PartFG =argmax
i

(P t−1i ∩N(v))− 1

1− |P
t
i
|

C

(9)

And in the second phase, PartFG is defined as:

PartFG =argmax
i

(P ti ∩N(v))− 1

1− |P
t
i
|

C

(10)

1Refer to Section 3.1 for FG description.

Selective Partial Restreaming Partitioning:

Instead of restreaming the first loaded portion of the
graph dataset, we try to select portions of size C that would
lead to a good quality partitioning. We set degree and density
parameters to be the criteria for selecting portions to be
restreamed in the first phase of the model. In other words,
when a portion is loaded, we check its average degree and
its average density, if it is higher than the average degree
(respectively average density) of the whole graph, we select
this portion for restreaming, otherwise it will be processed in
the second phase of one pass streaming.
selection criteria. In order to select a portion for restreaming,
two criteria are considered:

1) Average degree : The average degree of a portion
is the average of vertices degrees inside the portion.
Notice that the degree of a vertex is the number of
its neighbors no matter they are inside or outside the
portion concerned. We take the average degree as a
criterion to make sure that the portion which is going to
decide for the partitioning of the graph must influence
the partitioning decision of a large number of vertices.

2) Average density : The average density of a portion rep-
resents the number of edges inside it. It is important to
have edges inside the portion to make better partitioning
decision as the objective functions used make decision
depending on edges, otherwise the partitioning of the
portion will be done at random and it will definitly lead
to lower quality partitioning of the whole graph.

The average degree and density of the whole graph is an
information which is not always available, we can substitute
this by progressively adding degree and density information
as the data is loaded. A portion with high density and high
degree vertices should act like a kernel to yield partitions of
good quality. In fact, portions with vertices having high degree
would attract and influence the partitioning of large number
of other vertices, and the density criterion inside the portion
makes sure to take into consideration the edges to make better
decision for the partitioning. In Section 5, we show that by
selecting portions of high degree average and high density
average we obtain partitions with better quality than those
obtained by simply restreaming the first loaded portion.

IV. EVALUATION SET UP

1) Evaluation datasets:

Two types of graph datasets were used: web and social.
We test our methods on ten graph datasets listed in
Table I, all obtained from the SNAP repository [20].
Vertices with 0 degree and self-loops were removed.
All the graphs were made undirected by reciprocating
the edges. Graph datasets were chosen in order to be
small enough so that we can find offline solutions with
METIS and still big enough to capture the behavior of
the online heuristics.



TABLE I
GRAPH DATASETS USED FOR OUR TESTS.

Graph |N | |M | Avgdeg type
wikivote 7115 100762 14.16 social
enron 36692 183831 5.01 social
Astro ph 18771 198050 10.55 social
slashdot 77360 469180 6.06 social
Web nd 325729 1090108 3.34 web
stanford 281903 1992636 7.06 web
Web google 875713 4322053 4.93 web
Web berkstan 685230 6649470 9.7 web
Live journal 4846609 42851237 8.84 social
orkut 3072441 117185085 38.14 social

2) Methodology:

We first run FG, LDG and Fennel in one pass stream
setting on our graph datatsets for k = 40 in order
to compare the fraction of edge cut represented by λ
and the balance represented by ρ. For Fennel, the
parameter γ is set to 5 in order to give as balanced parts
as those given by FG and LDG. Then we examine
results of edge cut for different values of β. We begin
by running PartLDG and PartFennel and PartFG
(partially restreaming LDG and partially restreaming
Fennel and partially restreaming FG respectively)
on WebGoogle and LiveJournal for different values of
β and see how the fraction of edge cut reacts to the
change in β. After that, we run our methods on the
ten graph datasets, for k = 40, s = 10 and β = k/2.
Notice that the ordering of vertices is done at random.
β = k/2 means that we are restreaming the half of the
graph.
We compare our results to the whole graph restreaming
methods [10] and to METIS, which represents the
offline methods. Afterwards, we test the partial
restreaming methods (PartLDG,PartFennel)
and the partial selective restreaming methods
(PartSLDG,PartSFennel) on seven graphs. Last
but not least, we show the running time gain for the
partial methods (PartLDG,PartFennel, PartFG)
over the ten graphs for k = 40 and s = 10. Running
time gain is calculated as follows:

GainPartLDG =
ReLDG− PartLDG
ReLDG− LDG

Where ReLDG refers to the execution time of the
version of LDG where the whole graph is restreamed,
LDG is the one pass streaming version.

GainPartFennel =
ReFENNEL− PartFENNEL
ReFENNEL− FENNEL

Same as GainPartLDG, ReFENNEL refers to the
execution time of the version of FENNEL, where the
whole graph is restreamed and FENNEL is the one
pass streaming version.

GainPartFG =
ReFG− PartFG
ReFG− FG

GainPartFG is the runtime gain for Fractional Greedy,
where ReFG refers to restreaming FG and FG is
the one pass streaming version. PartFG is the partial
restreaming version of FG. We notice that the runtime
computed includes only the partitioning runtime.

V. RESULTS AND DISCUSSION

In this section, we present and discuss our results. And
before we delve in the results we give a brief summary about
it.
Summary of our results

• Fractional Greedy outperforms LDG and Fennel in most
cases with exact balanced clusters and lower edge cut.

• Results that were obtained show that by augmenting beta,
or by augmenting the size of the portion to be restreamed,
we obtain better quality partition.

• By restreaming the first loaded half of a graph, we
obtain partitions of similar quality than those yielded by
restreaming the whole graph.

• The partial selective restreaming method preserve the
quality of a partition unlike the partial methods which
depend on the stream order. The reason is that, no matter
the order, the selective methods always pick the good
portions to be restreamed.

• Restreaming only a portion of a graph dataset incurs
lower running time than restreaming the whole graph, for
example, restreaming only the half of the graph takes the
half running time taken by restreaming the whole graph
while the results are almost the same.

Performance discussion

Our proposed heuristic Fractional Greedy outperforms
LDG and Fennel in terms of balance and also of edge cut.
In Table II we show our results, we see that FG yields
partitions of exact balance ρ = 1 and lower edge cut.
However, LDG outperforms FG in web-google (0.310 vs
0.308) and web-berkstan (0.368 vs 0.342). Our proposed
heuristic is the most adapted for the setting of constrained
graph partitioning, it yields exact balanced partitions and
also minimize the edge cut.
In figure 1 we show average results of comparison
between FG,LDG,FENNEL and METIS in terms
of fraction of edge cut over 10 graph datasets. METIS



Fig. 1. Average fraction of edge cut λ for FG,LDG,FennelandMETIS
over ten graph datasets.

Fig. 2. Variation of λ with the growing size of portion being restreamed repre-
sented by β for Webgoogle graph and LiveJournal. On the left PartFennel
and on the right PartLDG and at the bottom PartFG.

is the best performing heuristic, FG is the second bestt
heruistic outeerforming LDG and Fennel.
In Figure 2, we see that the bigger β is the lower the
fraction of edge cut. This shows that the information
about the precedent stream iteration allows vertices to
be more oriented toward the best cluster leading to lower
edge cut. In other words, the more information we have
about the precedent streaming iteration the better is the
edge cut.

Table III shows results in terms of fraction of edge cut and
balance. The difference between edge cut of fully restreaming
methods and partial restreaming methods are minimal in the
most cases.

Table IV shows the diffrence between the performances of
partial restreaming methods and selective partial methods on
seven different datasets. The results shows that in most cases,
selective partial restreaming methods yields better quality
partitions by leading low edge cut. However, in some datasets,
it may be that portions which are conform to the criteria
doesn’t exist, then the selective partial method would not
give the best results, that’s why the simple partial restreaming
method could be a good alternative for both speeding up
computations and imporving partitions quality by restreaming
several portions.

The Running time gain is represented in Table V. In all our
graph datasets, PartFennel has an average gain of 49.93% and
PartLDG 48.85% and PartFG 50.26%. It shows that partial
restreaming reduces the runtime by half.

VI. CONCLUSION AND FUTURE WORK

In this work, we provide new methods for the problem of
balanced graph partitioning. Specifically, we introduce a new
online heuristic for streaming partitioning and we show that we
improve the partitions quality by partially restreaming several
portions of the graph. We showed that our proposed heuristic
produces partitions of significantly enhanced quality in terms
of balance and edge cut: partitions that were produced are
exactly balanced and have a lower edge cut.
We also introduced the partial restreaming graph partitioning
that aims to take several portions of the graph and restream
it several times in order to improve the partitions quality. We
evaluate our proposed methods on ten different graph datasets
and compare it with the state-of-the-art partitioning heuristics
(Fennel and LDG). We showed that our proposed partial
restreaming methods produce partitions of similar quality
than those produced by fully restreaming methods with the
advantage of incurring lower run time and memory cost.
We also present another variant of the partial restreaming
partitioning called selective partial restreaming partitioning
and showed that selecting relevant portions of the graph using
degree and density as selection criteria improve the quality of
the partitions.
There are several future work directions for our work. We
comple this empirical study of partial restreaming partitioning
by theoritical study of convergence of this method. We also
envisage extending our proposed heuristic FG to handle par-
titioning of portions not only of vertices. We are also looking
for other selection criteria to refine the partition quality in the
selective partial restreaming setting.



TABLE II
FRACTION OF EDGE CUT λ AND MAXIMUM LOAD NORMALIZED ρ FOR 3 STREAMING HEURISTICS LDG AND FENNEL AND FG AND METIS,(1.001)

INDICATES THAT THE SLACKNESS ALLOWED IS 001. RESULTS ARE OBTAINED FOR 10 GRAPH DATASETS WHERE k = 40 .

Graphs FG LDG Fennel Metis(1.001)
λ ρ λ ρ λ ρ λ ρ

wikivote 0.844 1 0.867 1 0.862 1 0.822 1.001
enron 0.589 1 0.610 1 0.612 1 0.855 1.001
astro ph 0.555 1 0.619 1 0.578 1 0.535 1.001
slashdot 0.758 1 0.787 1 0.777 1 0.711 1.001
webnd 0.249 1 0.261 1 0.270 1 0.036 1.001
stanford 0.349 1 0.392 1 0.347 1.043 0.123 1.001
webgoogle 0.310 1 0.308 1 0.313 1.023 0.009 1.001
web berkstan 0.386 1 0.342 1 0.367 1.023 0.117 1.001
live journal 0.442 1 0.462 1 0.546 1.009 0.309 1.001
orkut 0.627 1 0.639 1 0.696 1.076 0.376 1.001

TABLE III
COMPARISON OF FRACTION EDGE CUT AND NORMALIZED MAXIMUM LOAD ρ FOR REFG AND PARTFG, RELDG AND PARTRELDG, REFENNEL AND

PARTFENNEL. RESULTS ARE OBTAINED FOR TEN GRAPH DATASETS WHERE k = 40 AND s = 10 AND β = k/2.

Graph ReFG PartFG ReLDG PartLDG ReFENNEL PartFENNEL
λ ρ λ ρ λ ρ λ ρ λ ρ λ ρ

wikivote 0.812 1 0.828 1 0.835 1 0.850 1 0.813 1.023 0.826 1.022
enron 0.479 1 0.509 1 0.475 1 0.507 1 0.476 1.098 0.482 1.087
astro ph 0.433 1 0.475 1 0.418 1 0.501 1 0.413 1.019 0.443 1.019
slashdot 0.711 1 0.705 1 0.713 1 0.722 1 0.703 1.041 0.692 1.106
webnd 0.164 1 0.207 1 0.113 1 0.207 1 0.143 1.048 0.193 1.056
stanford 0.200 1 0.267 1 0.204 1 0.319 1 0.193 1.025 0.216 1.109
webgoogle 0.163 1 0.219 1 0.161 1 0.217 1 0.160 1.087 0.222 1.012
web berkstan 0.241 1 0.276 1 0.212 1 0.276 1 0.254 1.037 0.282 1.073
live journal 0.325 1 0.331 1 0.313 1 0.331 1 0.330 1.006 0.319 1.018
orkut 0.398 1 0.503 1 0.395 1 0.503 1 0.410 1.005 0.451 1.0173

TABLE IV
COMPARISON OF FRACTION OF EDGE CUT λ AND MAXIMUM LOAD NORMALIZED ρ FOR PARTIAL RESTREAMING METHODS AND SELECTIVE PARTIAL

RESTREAMING METHODS PartFG vs PSelectFG, PartLDG vs PSelectLDG, PartFennel vs PSelectFennel. RESULTS ARE OBTAINED FOR 7
GRAPH DATASETS WHERE k = 40 .

Graphs PSelectFG PartFG PSelectLDG PartLDG PSelectFENNEL PartFENNEL
λ ρ λ ρ λ ρ λ ρ λ ρ λ ρ

wikivote 0.826 1 0.828 1 0.849 1 0.850 1 0.845 1.005 0.826 1.022
enron 0.503 1 0.509 1 0.502 1 0.507 1 0.509 1.003 0.482 1.008
astro ph 0.475 1 0.475 1 0.501 1 0.501 1 0.468 1.008 0.443 1.019
slashdot 0.703 1 0.705 1 0.722 1 0.722 1 0.716 1.011 0.692 1.106
webnd 0.213 1 0.207 1 0.214 1 0.207 1 0.217 1.013 0.193 1.056
stanford 0.271 1 0.267 1 0.339 1 0.319 1 0.258 1.024 0.216 1.109
webgoogle 0.189 1 0.219 1 0.188 1 0.217 1 0.187 1.009 0.222 1.012

TABLE V
RUNNING TIME GAIN COMPUTED FOR PartLDG AND PartFennel AND PartFG OVER EXECUTIONS ON TEN GRAPHS WITH k = 40 AND s = 10.

Graphs PartLDG Gain PartFennel Gain PartFG Gain
Wikivote 47.2% 58.5% 45.9%

Enron 50% 48.3% 47.6%
Astro ph 44.5% 44% 47.4%
Slashdot 39.6% 47.5% 45.2%
Web nd 51.4% 49.5% 56.2%
Stanford 54.5% 52.4% 56.8%

Web google 57.5% 52.7% 56.1%
Web berkstan 50.6% 49.6% 65%
Live journal 40.5% 45.6% 42.1%

Orkut 52.7% 51.2% 39.9%
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